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Trends in Estuarine Water Quality and Submerged Aquatic Vegetation Invasion  

Abstract 
 

 The interaction between submerged aquatic vegetation (SAV), turbidity, and 

water movement is modeled as a feedback in which SAV reduces water flow, thus 

decreasing turbidity, and promoting growth. This positive feedback can promote 

ecosystem shifts to an alternative state (e.g. from a high turbidity-low SAV state to low 

turbidity-high SAV) from which it is unlikely to revert to its previous state (hysteresis). 

These shifts are usually modeled for SAV and turbidity in shallow lakes. Estuaries have 

different controls on turbidity that complicate this model, such as high mineral 

contribution to turbidity, as well as high hydrologic and environmental variability. The 

objective of this research was to detect feedbacks between SAV and turbidity in an 

anthropogenically modified estuary given the multiple external controls on turbidity and 

the variability of the system, and to determine if these feedbacks promote hysteresis. 

 Remote sensing was necessary to determine SAV distribution. Using a machine 

learning classifier, SAV was mapped in the Sacramento San Joaquin River Delta from 

airborne imaging spectroscopy acquired during June-July 2004-2008. Agreement 

between the map classes and ground reference data was “very good”, although 

discrimination between water and SAV was difficult when SAV was sparse or deep. 

 SAV areal cover was analyzed around in situ turbidity and velocity stations. 

Annual maximum water velocities from 2004-2006 that exceeded 0.49 m·s-1 controlled 

SAV cover. SAV cover limits high growing season turbidities from 2004-2008: SAV has 
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the most significant impact on turbidities ranging from 13.8-15.8 NTU, and this 

constraint on summertime turbidity is likely reducing habitat quality and quantity for the 

endemic and endangered fish the Delta smelt (Hypomesus transpacificus).   

An analysis of historic turbidity data from the same stations showed a significant 

decline from 1975-2008 (-1.3% of the mean site turbidity/year); the turbidity decline is 

highly correlated with SAV cover (R2=0.9). The relative contribution of SAV to the 

decreasing turbidity trend averages between 21-70% of the total trend; this contribution 

varied with percent SAV cover. Anthropogenic activities in the watershed reduced the 

sediment supply into the Delta, which favored the expansion of SAV. Turbidity declines 

were further promoted by expanding SAV.  
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INTRODUCTION 

Turbidity, or the optical clarity of a water body, is an important ecological 

indicator for inland freshwater and estuarine systems. Three primary constituents 

contribute to the clarity of an estuary: 1) suspended and dissolved sediment, 2) 

phytoplankton, and 3) dissolved organic matter (DOM) (Holden and LeDrew 2004). The 

transport of sediment through estuaries can influence the geomorphology and the rate and 

type of biogeochemical processes in wetlands and floodplains (Mertes et al. 1993, Jaffe et 

al. 2007), as well as the penetration of light in the water column which can influence 

productivity of submerged vegetation and photosynthetic capabilities of phytoplankton 

(Cloern 1987). Heavy metals and pesticides adsorb onto sediments in estuaries (Ruhl et 

al. 2001, Schoellhamer et al. 2007), and suspended sediments are cited as the most 

common pollutant in surface waters of freshwater systems (Schmugge et al. 2002); 

mercury, polychlorinated biphenyls (PCBs), and organochlorine (OC) pesticides are 

transported into the system attached to suspended sediment (Schoellhamer et al. 2007). 

Phytoplankton, often measured by the amount of chlorophyll-a in water, is commonly 

used as a trophic indicator of aquatic systems, based on nutrient availability. 

Phytoplankton serve as the base of the aquatic food web, and play an important role in 

biogeochemical and nutrient cycling (Cloern 1996). In the San Francisco Estuary 

phytoplankton are commonly light-limited rather than nutrient-limited, and are thus 

significantly affected by turbidity and suspended sediment.  Phytoplankton populations 

are characterized by temporally and spatially ephemeral blooms (Cloern 1996), many of 

which are toxic to humans, benthic and pelagic organisms. Dissolved organic matter, 

primarily dissolved organic carbon, humic, and fluvic acids, is the primary food resource 

for plankton and nutrient regeneration (Hansell and Carlson 2002), contributes to the 
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acidity of freshwaters (Akkanen and Kukkonen 2001), decreases light availability in the 

water column, and also plays an important role in global carbon cycling (Hansell and 

Carlson 2002).  

Submerged aquatic vegetation (SAV) is a subset of aquatic macrophytes; they are 

rooted, flowering vascular plants that establish in the softer sediments of aquatic habitats 

(Dennison et al. 1993). SAV is important in coastal estuarine systems; it provides habitat 

for fisheries and affects biological and physical processes such as nutrient cycling, 

sediment stabilization, and water turbidity (Dennison et al. 1993). Often, the health of 

SAV can be used as a “barometer” of an aquatic system’s health, and this has become an 

important legal tool for the protection of coastal and estuarine waters (Bostater et al. 

2003). However, in some estuarine systems, growth of submerged macrophytes, or the 

invasion of these species into new habitat indicate conditions of eutrophication or 

ecological disturbance (Giardino and Zilioli 2001). In these instances, the apparent health 

of invasive SAV is indicative of the declining health of the entire estuarine ecosystem. 

Invading SAV is primarily light limited (Barko et al. 1986), and water clarity is the most 

significant factor limiting light availability (Hudon et al. 2000, Madsen et al. 2001). 

However, SAV establishment and growth is also dependent on hydrodynamics (e.g., 

wave energy, water velocity), sediment characteristics and geochemistry (Madsen et al. 

2001). SAV can itself act as an ecosystem engineer (Jones et al. 1994), altering the 

physical habitat it colonizes and inducing feedback mechanisms (Koch 2001). Once 

established, SAV can reduce water velocity (Petticrew and Kalff 1992), attenuate wave 

energy (Koch and Beer 1996), decrease turbidity and increase sedimentation (Madsen et 

al. 2001), which can all lead to further degradation of estuarine habitat, and increased 
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invasion by SAV. This feedback between SAV, turbidity, and water movement permeates 

the trophic structure of aquatic ecosystems, as changes in sediment dynamics, light 

availability and SAV distribution impact benthic habitat composition and pelagic habitat 

quality from primary production through to fish. However, it is unclear whether such 

feedbacks are present in estuaries due to dominance of turbidity by suspended sediment, 

and spatial and temporal variability of hydrology, turbidity, and SAV distribution. 

Furthermore it is unknown how influential these feedbacks, if present, are in ecosystem 

states. 

Quantifying SAV distribution has several challenges: field-based methods can be 

time consuming, logistically precluded by inaccessibility, and direct contact with the 

vegetation can result in further weed dispersal (Bossard et al. 2000). Remote sensing 

provides a synoptic solution to quantifying and monitoring SAV over large spatial areas 

(Ackleson and Klemas 1987). However, for a remote sensing approach to be successful, 

the analysis must be accurate,  repeatable over space and time, and account for the 

inherent variability in the system. In estuarine systems, meteorological, physical, and 

biological heterogeneity present problems that must be considered in order to 

successfully map SAV. 

The objective of this dissertation research was to detect feedbacks between water 

movement, SAV, and turbidity in an anthropogenically modified estuary, to determine 

whether such feedbacks have permeated the trophic structure of the aquatic ecosystem 

and contributed to the declining health of the system. My research was conducted in the 

Sacramento-San Joaquin River Delta (“the Delta”), the upstream component of the San 

Francisco Estuary, the largest estuary in the Western United States. The estuary drains 
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over 160,000 km2 of California into the Pacific Ocean via the San Francisco Bay, 

provides drinking water to 25 million people, and irrigates over 5 million acres of 

agricultural land contributing to the state’s $31 billion agricultural industry. Once a vast 

tidal marsh, the Delta now is a mosaic of reclaimed “islands” of agricultural tracts, rip-

rap levee-bound rivers connected by man-made sloughs, and flooded islands.  Although a 

highly modified estuary (Nichols et al., 1986), the Delta provides critical habitat for five 

federally listed threatened or endangered fish, including the Delta smelt (Hypomesus 

transpacificus), which is sensitive to turbidity declines in the estuary (Sommer et al. 

2007). The hydrodynamic variability of the system is manifest in a wide range of water 

depths, tidal fluxes, salinities, and freshwater inflows that exhibit extreme seasonal and 

inter-annual variability. Saline waters flow upstream into the Delta on flood tides during 

low-flow, and freshwater inflows from the Sacramento, San Joaquin, and tributary rivers 

flow downstream at 1700 + 300 m3s-1 in the winter and 540 + 40 m3s-1 in the summer 

(Jassby and Cloern 2000). El Nino-Southern Oscillation influences on precipitation 

patterns result in extremely dry or wet years, which in turn translate into very low flow 

(e.g.:  1977 annual mean flow 230 m3s-1) or high flow (e.g.:  1983 annual mean flow 

2700 m3s-1) water years (Jassby and Cloern 2000). 

Projections for climate change predict serious impacts on the Delta. Under even 

the coolest of climate warming scenarios, earlier snowmelt and reductions in snowpack 

by 2100 are predicted, which will alter Delta inflows, resulting in wetter winters, and 

drier summers (Knowles and Cayan 2004). This shift in the hydrograph, aggravated by 

increasing sea levels, will likely lead to dramatic changes in suspended sediment, salinity, 

and aquatic foodweb dynamics. Additionally, California’s population is expected to 
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nearly double by 2050 (DWR 2007), placing additional pressure on the Delta for human 

and agricultural water consumption.  

The Delta may be the most invaded estuary in the world (Cohen and Carlton 

1998), and has been recently invaded by a fast growing macrophyte, Egeria densa which 

is actively changing the habitat in the Delta (Service 2007). E. densa grows in dense, 

monospecific stands throughout much of the Delta. It is the dominant SAV species in the 

Delta, and along with several other invasive SAV species (Myriophyllum spicatum, 

Cabomba caroliniana, Potamogeton crispus) has effectively replaced much of the native 

SAV. Egeria densa contributes 85% to the total biomass of SAV, followed by 

Ceratophyllum demersum (native) and Myriophyllum spicatum (invasive). Major 

invasions of E. densa were first reported in the 1980s, and rapid expansion was observed 

in the 1990s. The estuary is also the site of a rapid decline in several fish populations. 

Since 2000 there have been record or near-record low abundances of four species, 

including the endangered Delta smelt (Hyposemus transpacificus). The decline in smelt 

has been attributed, in-part, to expansion of invasive SAV (Brown and Michniuk 2007), 

declining turbidity in the Delta (Nobriga et al. 2005), as well as recent blooms of toxic 

algae (Lehman et al. 2005). This research was motivated by the apparent ecological 

degradation that may have prompted such drastic fish declines.  Have possible feedbacks 

between SAV, turbidity, and water movement contributed to the Delta’s current 

“ecosystem crisis”? 

This dissertation presents four manuscripts on remote sensing, SAV, turbidity, 

and velocity. Chapter 1 (Hestir et al. 2008) is an exploratory analysis of imaging 

spectroscopy to map invasive aquatic plant communities in the Delta. It introduces the 
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utility of remote sensing to determine aquatic vegetation distribution, and discusses the 

unique challenges to detecting submerged aquatic vegetation. Following the initial 

investigation into SAV detection outlined in Chapter 1, Chapter 2 (Hestir et al. 2010a) 

presents the method used to map SAV distribution in the Delta using a machine learning 

classification scheme on airborne imaging spectroscopy. Informed by the conclusions 

from Chapter 1, a field campaign conducted in summer 2008 concurrent with airborne 

spectroscopic remote sensing imagery collection provided the data necessary to train and 

validate an ensemble decision tree classifier to map SAV across 48 flightlines covering 

the Delta. This classifier was then successfully applied to archive image data from 2004-

2007 to map SAV with very good agreement between the maps and ground reference 

data collected in those respective years. Chapter 2 highlights the necessity of narrow-

band data across the visible through the short-wave infrared regions of the reflected 

spectrum-data provided only by airborne imaging spectroscopy- to SAV detection.  

From the SAV distribution maps developed in Chapter 2, it was possible to 

investigate the interaction between SAV, turbidity and water velocity. Chapter 3 (Hestir 

et al. 2010b) uses the SAV areal cover around in situ turbidity and velocity stations and 

the data collected at those stations from 2004-2008 to identify annual maximum water 

velocity thresholds on SAV cover, and to model the limiting effect SAV cover has on 

growing season Delta turbidity. The results from Chapter 3 indicate the likelihood of 

positive feedbacks between SAV, turbidity, and water movement that leads to the 

potential of two ecosystem states reinforced by this feedback. In the first state, SAV 

cover is low, water velocity is high, sediment resuspension is high, and turbidity is high, 

thus limiting SAV. Under the second potential state, water velocity is low, SAV cover is 
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high, and turbidity is low which further promotes SAV growth. Such feedbacks leave 

aquatic ecosystems open to catastrophic ecosystem regime shift (van Nes et al. 2007). 

Chapter 4 (Hestir et al. 2010c) investigates the roles that the diminishing sediment supply 

and the SAV invasion into the Delta have in the declining turbidity trend, and speculates 

on the possibility of a regime shift.  

Collectively, this research is intended to shed light into murky waters. Turbidity 

in estuaries is important to both the quality of water for human use and consumption, as 

well as ecosystem health. In the Delta particularly, high turbidity is needed for 

endangered fish habitat, and it is decreasing. Invasive submerged aquatic vegetation is 

likely acting as an ecosystem engineer; there are important feedbacks between SAV and 

water turbidity that have and may further diminish an already impaired ecosystem’s 

health. An understanding of the interaction between SAV and turbidity in estuaries is 

needed to inform decision making under future climate change and water management 

and use scenarios, both issues of immediate importance in the San Francisco Estuary.  
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ABSTRACT 

Estuaries are among the most invaded ecosystems on the planet. Such invasions have led 

to the formation of a massive $1 billion restoration effort in California’s Sacramento-San Joaquin 

River Delta. However, invasions of weeds into riparian, floodplain, and aquatic habitats threaten 

the success of restoration efforts within the watershed and jeopardize economic activities. The 

doctrine of early detection and rapid response to invasions has been adopted by land and water 

resource managers, and remote sensing is the logical tool of choice for identification and 

detection. However meteorological, physical, and biological heterogeneity in this large riverine 

system present unique challenges to successfully detecting invasive weeds. We present three 

hyperspectral case studies which illustrate the challenges, and potential solutions, to mapping 

invasive weeds in riverine and wetland systems: 1) Perennial pepperweed was mapped over one 

portion of the Delta using a logistic regression model to predict weed occurrence.  2) Water 

hyacinth and 3) submerged aquatic vegetation (SAV), primarily composed of Brazilian 

waterweed, were mapped over the entire Delta using a binary decision tree that incorporated 

spectral mixture analysis (SMA), spectral angle mapping (SAM), band indexes, and continuum 

removal products.   Perennial pepperweed detection was moderately successful; phenological 

stage influenced detection rates. Water hyacinth was mapped with modest accuracies, and SAV 

was mapped with high accuracies. Perennial pepperweed and water hyacinth both exhibited 

significant spectral variation related to plant phenology.  Such variation must be accounted for in 
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order to optimally map these species, and this was done for the water hyacinth case study.  

Submerged aquatic vegetation was not mapped to the species level due to complex nonlinear 

mixing problems between the water column and its constituents, which was beyond the scope of 

the current study. We discuss our study in the context of providing guidelines for future remote 

sensing studies of aquatic systems. 

1.  INTRODUCTION 

 Invasions of aquatic weeds into freshwater, estuarine, and floodplain habitats can 

decrease biodiversity, threaten critical habitat, alter nutrient cycles, and degrade water quality.  

An estimated USD $100 million per year is spent on control and eradication programs targeting 

aquatic weeds in the United States (Pimentel et al., 2000).  Systematic, comprehensive 

monitoring programs are needed to detect invasions in order to effectively control aquatic weeds. 

Traditional methods of monitoring weed infestations are costly, time consuming, and often 

require direct contact with the weeds which can result in further weed dispersal (Bossard et al., 

2000). Additionally, aquatic ecosystems are often inaccessible or logistically difficult for field-

based monitoring methods.  Remote sensing provides a synoptic solution for monitoring aquatic 

weed infestations over large spatial areas (Ackleson and Klemas, 1987).  To be successful, a 

remote sensing approach must be accurate, repeatable over space and time, and account for the 

inherent spatial and environmental heterogeneity of a system.   

We present three case studies that illustrate how these problems can be addressed to 

develop regional-scale monitoring of invasive aquatic and wetland weeds in the Sacramento-San 

Joaquin Delta: the terrestrial riparian weed, perennial pepperweed (Lepidium latifolium); the 

floating aquatic weed, water hyacinth (Eichhornia crassipes); and the submerged aquatic weed, 

Brazilian waterweed (Egeria densa). Each case study highlights the complexities of remote 

sensing of aquatic and wetland systems. They also demonstrate a range of techniques that can be 

used, and often integrated, to produce accurate maps that can be used by wetland and estuarine 

resource managers. Our examples are from a study to map these invasive species at high spatial 
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resolution (3 m) over a regional area of 2500 km2. The challenge of analyzing airborne 

hyperspectral remote sensing over a large study region notwithstanding, we demonstrate that the 

techniques presented can be applied consistently to all flightlines in the study region over 

multiple years, thus creating an effective and comprehensive monitoring program. 

 In estuarine systems, meteorological, physical, and biological heterogeneity present 

serious challenges that must be resolved to successfully map and monitor distributions of aquatic 

vegetation species. Meteorological heterogeneity is one challenge to invasive species monitoring. 

Factors such as weather conditions, sun, and view angle determine the bidirectional reflectance 

distribution function (BRDF), which complicates remote sensing of aquatic vegetation, especially 

submerged aquatic vegetation (SAV) such as Brazilian waterweed.  Sunglint is light specularly 

reflected off the water surface which effectively impedes retrieval of a useable signal (Bostater et 

al., 2004; Mertes et al., 1993; Morel and Belanger, 2006). Variable sun angles and wind speeds 

contribute differing flightline effects that confound region-wide analyses. The spectral detection 

of SAV is also affected both by the apparent optical properties of water, such as surface 

reflectance and vertical diffuse attenuation, and inherent optical properties that do not depend on 

the ambient radiance distribution in the water column (Mobley, 1994). Water depths change with 

tidal stage and runoff; suspended and dissolved materials vary over geomorphological gradients, 

meteorological conditions, flow conditions, and land use practices. All of these effects influence 

remote sensing of aquatic systems by limiting the detection of SAV as light attenuates with depth, 

altering the water leaving reflectance.  

 Another challenge to monitoring this system is its biological heterogeneity. Plant 

phenology varies across the large gradients present in this system. Water hyacinth and perennial 

pepperweed life histories must be accounted for to capture key phenological attributes such as 

flowering and senescence.  Different phenologic states, combined with differences in leaf and 

canopy structure can be present over short distances, creating intra-species variation that can 

result in overlapping spectral features between co-occurring species. Additionally, weed species 
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may be present in subpixel mixtures even at high spatial scales.  Hyperspectral imaging may 

provide sufficient information to overcome these challenges, allowing the application of more 

complex spectral analyses and spectral unmixing techniques (Becker et al., 2007; Bostater et al., 

2004; Hirano et al., 2003; Schmidt and Skidmore, 2003; Williams et al., 2003). 

 To summarize, detecting and monitoring invasive weed species in wetland and aquatic 

ecosystems at the region-wide scale is complicated by considerable physical and environmental 

variability.  The spatial heterogeneity of these systems requires moderate to high spatial 

resolution (< 5m) imagery (Becker et al., 2007). High spectral resolution imaging (> 100 bands 

with narrow bandwidths) can be used to improve discrimination of target species and resolve 

complex mixing problems. Flightline effects also contribute additional variability. We overcame 

this variability by incorporating multiple widely available techniques into novel classification 

schemes for water hyacinth and SAV detection, and by using a logistic regression model to map 

perennial pepperweed.  

2. STUDY SITE 

 The Sacramento-San Joaquin River Delta (hereafter the “Delta”) is formed by the 

confluence of the Sacramento and San Joaquin Rivers and drains into the Pacific Ocean via the 

San Francisco Bay (Figure 1).  The Bay-Delta is the largest estuary in the western United States 

and its watershed drains over 160,000 km2 of California.  The hydrodynamic heterogeneity of the 

Delta system is manifest in a wide range of salinities, tidal fluxes, water depths, and freshwater 

inflows with extreme seasonal and interannual variability (Jassby and Cloern, 2000). Saline 

waters flow upstream into the Delta on flood tides, and freshwater inflows from the Sacramento, 

San Joaquin, and tributary rivers flow downstream at an average of 1700 + 300 m3s-1 in the winter 

and 540 + 40m3s-1 in the summer (Jassby and Cloern, 2000). The El Niño-Southern Oscillation 

influences precipitation patterns, resulting in extremely dry or wet years, that respectively 

translate into very low flow (e.g.:  230 m3s-1 in 1977) or high flow (e.g.:  2700 m3s-1 in 1983) 

water years (Jassby and Cloern, 2000). This study focuses on the Central Delta (2,139 km2), 
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which contains the confluence of the Sacramento and San Joaquin Rivers and the network of 

small channels, rivers, and lakes formed by flooded agricultural tracts that connects them.  

The Delta provides drinking water, agricultural water and land, recreational opportunities 

in the form of boating and fishing, and shipping access to the cities of Stockton and Sacramento. 

The Delta is a major hub for freshwater conveyance systems in the state, providing drinking water 

for 25 million people and important irrigation resources for California’s $32 billion agricultural 

industry (CDFA, 2006). The estuary contains habitat for waterfowl along the Pacific flyway as 

well as threatened and endangered fish species such as Delta smelt, steelhead, and chinook 

salmon. Unfortunately, the Delta may have the largest number of invasive species of any estuary 

in the world (Cohen and Carlton, 1998) and is the focus of a massive coordinated ecosystem 

restoration program, with direct expenditures exceeding USD $1 billion beginning in the mid-

1990s (Lund et al., 2007).  Invasions of aquatic weeds into the Delta negatively impact ecosystem 

health, drinking and agricultural water quality, pumping, recreation, and shipping (Bossard et al., 

2000), and may prevent the success of native habitat restoration projects within the Delta 

(Simenstad et al., 2000).  The three focal invasive species (perennial pepperweed, water hyacinth, 

and Brazilian waterweed; Figure 2) are all considered problems in the Delta, and have been 

granted high visibility and threat status according to the California Invasive Plant Council (Cal-

IPC) and the California Department of Food and Agriculture (CDFA).  

3. REMOTELY SENSED DATA  

 To map perennial pepperweed, water hyacinth and SAV (dominated by Brazilian 

waterweed), we acquired 64 HyMap flightlines encompassing the entire Delta (Figure 1).  

HyMap is an airborne hyperspectral imager that collects 128 bands in the visible and near-

infrared (VNIR; 0.45-1.50 µm) through the shortwave infrared (SWIR; 1.50-to 2.5 µm), at 

bandwidths from 10 nm in the VNIR to 15-20 nm in the SWIR (Cocks et al., 1998). The spatial 

resolution of the data is 3 m, with a swath width of 1.5 km.  The area was flown in an east-west 

orientation, at an altitude of approximately 1510 m.  Imagery was collected during late morning 
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and early afternoon low tides between June 22 and July 5, 2005, and June 21 and June 26, 2006 

(Figure 1).  The HyMap images were converted to apparent surface reflectance using the HyCorr 

atmospheric correction software (Hyvista Corp., Sydney, Australia), a modified version of the 

Atmospheric Removal (ATREM) algorithm (Gao et al., 1993).  We used an orthorectification 

algorithm (Analytical Imaging and Geophysics, Boulder, CO) to orthorectify the imagery using 

the United States Geologic Survey National Elevation Set Digital Elevation Models and a set of 

1-foot (covering 30 flightlines) and 1-meter (covering 34 flightlines) color orthophotos. A 

minimum of 20 ground control points with a total RMSE < 1.0 were used for each flightline. 

Visual inspection of image registration accuracy confirmed a registration error of ~ 1 pixel. For a 

detailed report of image data collection and preprocessing steps please see Ustin et al. 2006.  

4. GROUND REFERENCE DATA 

4.1. Perennial Pepperweed 

Field observations were recorded between 2002 and 2006 with a comprehensive 

inventory of perennial pepperweed populations on selected Cosumnes River Preserve (CRP) 

lands (Viers et al., 2005).  Mapped botanical surveys of perennial pepperweed were conducted 

during flowering to aid in the identification of pepperweed patches, which were defined as areas 

containing a minimum of one individual and located at least 3 meters from another patch.  For 

each perennial pepperweed patch, GPS polygons delineating the patch, the number of individuals, 

areal percent cover, and patch area were recorded (1 m2 minimum).  A total of 345 patches over 

15.5 ha were mapped by the inventory.   

4.2. Water Hyacinth and SAV 

Field data collection efforts for both water hyacinth and SAV were conducted 

simultaneously with hyperspectral image acquisition. GPS locations of large (≥ 3 x 3 meters), 

homogenous patches of aquatic vegetation (submerged and floating or emergent species), patch 

size, percent cover of target and co-occurring species, algal cover, and presence of inflorescences 

were recorded by survey crews in six boats.  Eight emergent or floating species and five 
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submerged aquatic species were selected for field identification. Emergent and floating species 

included water hyacinth, pennywort (Hydrocotyle ranunculoides), water primrose (Ludwigia 

spp.), California tule (Schoenoplectus acutus), cattail (Typha spp.), the wetland common reed 

(Phragmites australis), azolla (Azolla), and duckweed (Lemma minor). Submerged aquatic 

vegetation species recorded included Brazilian waterweed, Eurasian watermilfoil (Myriophyllum 

spicatum), coon’s tail (Ceratophyllum demersum), Carolina fanwort (Cabomba caroliniana), and 

pondweed (Potamogeton spp.). We also collected GPS locations of water with no apparent algae 

or vegetation and assessed turbidity with a Secchi disk. A total of 2,631 points over 33,000 ha 

were collected in 2005, and 3,285 points over the same area were collected in 2006. Field data 

points were screened a posteriori for accuracy in species identification, homogeneity in patch size 

and percent cover, and geographic error associated with the movement of boats with wind and 

currents during point collection. This resulted in 2,381 ground reference points for 2005, and 

2,962 for 2006.  

5. CASE STUDIES 

The novel analysis approaches used in these case studies integrated many well-

established tools used in hyperspectral remote sensing that have previously been applied to a 

variety of remote sensing studies, including invasive weed mapping (Table 1).  

5.1. Cosumnes River Floodplain Perennial Pepperweed Case Study 

Perennial pepperweed is an herb of Eurasian origin that was introduced into the USA in 

the 1930s and is now found throughout California (Figure 2 a; Bossard et al., 2000).  The weed 

grows in several environments, including freshwater, brackish to saline, and alkaline, and in a 

wide range of habitats including riparian areas, wetlands, marshes, meadows, and floodplains 

(Bossard et al., 2000; Renz and Blank, 2004; Young et al., 1997; Young et al., 1995). It is also 

often found in hypersaline conditions (Spenst, 2006), although it is not an obligate halophyte.   

The natural history of perennial pepperweed, which spreads via prolific seed production (Young 
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et al., 1997) and highly friable root fragments (Young et al., 1998), enables highly effective 

propagation and establishment in riparian and floodplain areas. 

 The Cosumnes River Preserve (CRP) is a collection of parcels (18,000 ha) in the Delta 

that are managed as a combination of working and natural landscapes by a consortium of state, 

federal, and non-profit organizations.  The preserve includes a lowland river floodplain that is the 

focus of an ongoing study to characterize the successional trajectory following reconnection of 

the Cosumnes River with its floodplain.  Restoration of the river floodplain was initiated by an 

accidental levee breach (ca. 1985), and subsequently by intentional breaching of levees during the 

late-1990s (Florsheim and Mount, 2003).  Since then, the river channel and its floodplain have 

undergone considerable geomorphic change (Florsheim and Mount, 2002, 2003) that has 

increased the habitat heterogeneity due to colonization of riparian and floodplain vegetation on 

sand deposits.  However, invasion by non-native plant species including perennial pepperweed 

threatens the long-term success of this restoration project.   

 Perennial pepperweed frequently reveals mixed, degraded spectra due to its sparse 

architecture, and the features that lend spectral distinctness at the canopy scale (chiefly, high 

reflectance throughout the visible imparted by characteristic white inflorescences (Andrew and 

Ustin, 2006); resemble vegetation mixed with litter or soil at the pixel scale. We therefore limited 

our classification to pixels dominated by perennial pepperweed selected defined as those where 

perennial pepperweed covers at least 75% of the total pixel area.  Because of the wide range in 

environmental and hydrological conditions throughout the CRP, at the time of image acquisition, 

perennial pepperweed exhibited vegetative, flowering, fruiting, and senescing phenologies. The 

large amount of spectral variation caused by flightline effects, environmental variability, and 

multiple phenologic stages, in combination with other natural environmental variations, precluded 

the use of sophisticated unmixing techniques that have been successful at other sites (notably 

mixture-tuned matched filtering, Andrew and Ustin, 2007). Instead, our mapping strategy used a 

two-tiered approach: first we generated a continuous map of the probability of perennial 
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pepperweed presence using a logistic regression model, and second we set a threshold to classify 

all pixels with > 75% perennial pepperweed cover as being “perennial pepperweed dominated”. 

 5.1.1. Methods  

Eight of the 64 2005 HyMap flightlines of the Delta (acquired 23 June 2005 and 28-29 

June 2005) contained the CRP.  The portions of these flightlines encompassing CRP were 

cropped and mosaicked together. A minimum noise fraction (MNF) transformation was applied 

to the hyperspectral mosaic.  Logistic regression models were developed in JMP IN (v. 5.0, SAS 

Institute, Cary, NC) to predict the per-pixel probability of the occurrence of perennial 

pepperweed.  The regression was trained and validated using a random sample of pixels with 

>75% cover from the CRP inventory (n=930) as well as a random sample of pseudo-absence 

points (n=63,439). The pseudo-absence points were a random sample of pixels selected from the 

region most comprehensively surveyed for perennial pepperweed. Known perennial pepperweed 

pixels were excluded from the random sample, and remaining pixels were assumed to indicate 

perennial pepperweed absence. 75% of the presence (n=693) and pseudo-absence points 

(n=47,553) were used to train the regression. MNF bands containing negligible information were 

excluded from analysis.  MNF bands were visually inspected and those exhibiting severe 

flightline effects were discarded.  The remaining bands were chosen through stepwise entry into 

the logistic regression model. A prediction formula using MNF bands 2-11, 15, and 17 optimized 

the discrimination of perennial pepperweed from other land cover types (evaluated using R2). 

This model was assessed by regressing the estimated probability of perennial pepperweed 

occurrence (p) against percent cover estimates from the CRP inventory data. The value of p 

corresponding to 75% cover by perennial pepperweed was identified and pixels were classified as 

“perennial pepperweed dominated” if their predicted value exceeded this threshold. 

 Classification accuracy was assessed with the remaining perennial pepperweed presence 

(n=219) and pseudo-absence points (n=15,886). To assess the contribution of phenological 

variation to omission errors, we divided all perennial pepperweed dominated pixels into 
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phenological classes using a K-means unsupervised classification on the same MNF bands as 

used by the regression model.  Phenology of these classes was determined through visual 

inspection and verified with three physiological indexes: the normalized difference vegetation 

index (NDVI; Tucker, 1979), the normalized difference water index (NDWI; Gao, 1996), and the 

cellulose absorption index (CAI; Nagler et al., 2000). 

 5.1.2. Results 

The predicted value (p) provided a reasonably good indicator of the percent cover of 

perennial pepperweed within a pixel (p=-0.084253 + 0.0072013[% cover perennial pepperweed], 

R2 = 0.41, n = 2,787).  The final classification distinguished perennial pepperweed from pseudo-

absence pixels (Table 2) with user’s and producer’s accuracies of perennial pepperweed detection 

of 75.8% and 63.0% respectively, and Kappa coefficient relative to the perennial pepperweed 

class of 0.68.  

The K-means classifier found five distinct groups of perennial pepperweed dominated 

pixels (Table 3). These groups fell out along a gradient of dryness/senescence and were 

interpreted as completely senescent (n=1), shaded by or under a tree canopy (n=77), flowering 

(n=277), fruiting (n=363), and senescing (n=190). These interpretations were supported by the 

physiological indexes.  NDVI, NDWI, and CAI all showed significant effect of group (p<0.0001; 

ANOVA) and, for each index, all groups were significantly different from each other at the 

p=0.05 level (Tukey test, Sokal and Rohlf, 2000).  The detection rate of these classes ranged from 

0% (senescent) to 85% (fruiting), with fruiting and flowering phenologies showing the highest 

detection rate (Table 3) in both the training and test sets. The fruiting, flowering, and senescing 

phenology classes are the most relevant to a remote sensing study. When just these three classes 

were used to evaluate the classifier performance, the producer’s accuracy of the classifier 

increased to 76.6%. 

5.2. California Delta Water Hyacinth Case Study 
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 Introduced to the Sacramento River in 1904 by horticulturalists (Cohen and Carlton, 

1995; Finlayson, 1983; Toft et al., 2003) water hyacinth now obstructs navigable waterways, 

degrades water quality, fouls water pumps, blocks irrigation channels, and has caused significant 

changes to ecological assemblages throughout the Delta (Bossard et al., 2000; Toft et al., 2003).  

The California Department of Boating and Waterways is the management agency responsible for 

controlling water hyacinth in the Delta (Cohen and Carlton, 1995), which is done through the 

application of chemical herbicides and mechanical removal.   

 One of the fastest growing plant species in the world (> one ton dry matter day-1 ha-1; 

(Bossard et al., 2000), water hyacinth is a floating aquatic plant forming dense stands that exhibit 

diverse leaf and canopy morphologies, dependent on patch location and mat density (Figure 2b).  

Within a single mat of water hyacinth several different leaf morphologies and phenologies can be 

found (Gopal, 1987).  In the Delta, water hyacinth often occurs alongside other floating emergent 

species like pennywort and water primrose. 

 As with perennial pepperweed, the spectral signature of water hyacinth is highly variable 

as the plant can exhibit many contemporaneous phenologies including vegetative, flowering, 

stressed, and senescent forms that result from herbicide application and frost damage to 

overwintering plants. The spectral variability of water hyacinth results in spectral overlap with the 

co-occurring floating plant species pennywort and water primrose, which leads to mixed pixels 

with spectrally similar constituents. Spectral mixture analysis (SMA; Smith et al., 1990), Spectral 

Angle Mapper (SAM; Kruse et al., 1993) and continuum removal (Clark and Roush, 1984) have 

been demonstrated as an effective technique for species-level vegetation detection. Before using 

these techniques for water hyacinth mapping, we explicitly eliminated other sources of confusion 

(e.g. terrestrial pixels, mixing with water, SAV, and other emergent plant species) from the 

analysis area. 

5.2.1. Methods  
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The strategy for water hyacinth classification was to develop a binary decision tree, 

where each node reduces the variance in the remaining pixels until a map of hyacinth presence 

and absence was achieved, using the 2005 HyMap data (64 flightlines). The 2005 field data was 

separated into training (n=1,027) and validation (n=1,354) data for the decision tree. This same 

methodology was also applied to the 2006 HyMap data using 2006 field data separated into 158 

training and 2,804 validation points. Figure 3 depicts a schematic of the water hyacinth decision 

tree.  

 In order to discriminate aquatic versus terrestrial land cover types, we first created a mask 

of the water boundaries (which includes submerged and emergent aquatic vegetation) by 

manually adjusting the US Bureau of Reclamation GIS layer of waterways. In ArcGIS (version 

9.2, ESRI Inc, Redlands, CA) the line map of waterways was overlaid on a color infrared 

composite of the HyMap images and the edge of the water boundary was matched with the image 

data. An unconstrained spectral mixture analysis (SMA) was used to identify and exclude any 

levee banks that may not have been removed by the watermask. The SMA was performed using 

spectral endmembers of aquatic vegetation, water, and soil derived from the imagery using 

ground reference data (Figure 4).  All pixels in which the SMA fraction for water was < 10% or 

average albedo between 1.5995 µm – 1.764 µm was higher than 4% were identified as aquatic 

vegetation. The average reflectance of bands in the shortwave infrared wavelengths 1.5995 µm – 

1.764 µm (HyMap bands 78-91) was used to discriminate floating emergent species from 

submerged aquatic vegetation, sparse tule, and turbid water. Floating emergent species have 

distinctively high albedo in the SWIR whereas submerged aquatic vegetation, sparse tule and 

turbid water have muted albedo in the SWIR due to strong infrared absorption by water. Thus, 

pixels with SWIR reflectance values less than 4% were classified as submerged aquatic 

vegetation, sparse tule, or turbid water. All other pixels were classified as emergent aquatic 

vegetation.  Note that although tule is an emergent plant, under moderate to low percent cover its 
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reflectance values across the spectrum are usually lower than those of floating emergent species 

as it has an erectophile canopy structure and often occurs in mixed pixels with water. 

 In order to separate darker emergent vegetation such as tule and cattail with high percent 

cover from bright floating emergent vegetation such as water hyacinth, pennywort, and primrose, 

the average reflectance value in the near infrared 1.0451 µm – 1.1186 µm (HyMap bands 42-47) 

was calculated. Pixels identified as emergent aquatic vegetation by the previous node in the 

decision tree were further classified as “dark” emergent aquatic vegetation if their NIR 

reflectance value was less than 40% otherwise they were classified as “bright” floating emergent 

aquatic vegetation. This is a necessary step as many of the pixels classified as water hyacinth 

“spectral class 2” (Figure 5) are significantly darker in the near-infrared, and must be separated 

from brighter emergent aquatic vegetation before being classified to the species level. We next set 

the NIR reflectance threshold even lower to separate tule from other emergent species.  Dark 

emergent aquatic vegetation pixels with less than 24% reflectance in 1.0451 µm – 1.1186 µm 

were classified as tule.  

 The final nodes of the decision tree used both the Spectral Angle Mapper (SAM) 

technique and a water absorption feature to separate water hyacinth from co-occurring floating 

and emergent species in both classes of vegetation (bright and dark). Water hyacinth is a fleshy, 

succulent plant, having greater foliar water content than the co-occurring floating species.  To 

take advantage of this difference, we used continuum removal (Clark and Roush, 1984) to 

quantify the water absorption feature located between 0.907 µm – 1.0746 µm (HyMap bands 33-

44).  Lower continuum-removed values indicate greater water content.  Spectral Angle Mapper is 

appropriate for species-level monitoring at the regional scale as it is not sensitive to albedo 

differences across the 64 flightlines; SAM can identify subtle differences in pixel spectra while 

being insensitive to gain factors. SAM was applied to a subset of the visible and NIR bands (0.45 

µm to 0.9541 µm) to reduce noise contributed to the pixel spectra from mixing with water. The 

SAM technique used endmembers derived from the image data that were representative of 
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different phenological states and geographic locations throughout the dataset, as determined from 

the field data (Figure 5). In the dark emergent class identified by low NIR average reflectance, 

pixels with a continuum removal value less than 0.86, when coupled with the SAM water 

hyacinth classification output were classified as water hyacinth spectral class 1. In the bright 

class, pixels were first classified using the SAM output to identify water hyacinth spectral class 2 

and the remaining pixels from the continuum removal were classified as water hyacinth spectral 

class 1 if their value was less than 0.83, otherwise they were classified as pennywort or water 

primrose.  These thresholds were determined empirically based on our field data. 

 Classification results for validation pixels were extracted from the classified imagery 

using STARSPAN (http://starspan.casil.ucdavis.edu), an algorithm developed to provide fast, 

selective pixel extraction from raster and vector data (Rueda and Greenberg, 2004). The accuracy 

of the emergent classification was assessed with a confusion matrix and kappa statistics were 

calculated (Lillesand et al., 2004).   

5.2.2. Results  

In 2005, water hyacinth infested 167.07 ha in the Delta. Out of the 204 field points of 

water hyacinth that were used for validation, 141 were correctly classified as water hyacinth and 

63 were misclassified, resulting in a producer’s accuracy of 69.1%.  16 pixels were erroneously 

classified as water hyacinth, resulting in a user’s accuracy of 89.8%.  The estimated Kappa 

coefficient relative to the water hyacinth class is 0.81 (Table 4), a value considered to show 

strong agreement (Congalton, 1996).  We interpret water hyacinth spectral class 1 to be either 

stressed or flowering water hyacinth due to its darker reflectance in the near-infrared (Hardisky et 

al., 1986) and a shallower water absorption feature at 0.907 µm – 1.0746 µm (Peñuelas et al., 

1993). Based on field observations, these mats have sparser canopies and smaller leaves, resulting 

in greater confusion with other floating emergent species.  When considering the detection rate of 

these two spectral classes, the producer’s accuracy of the healthy/robust water hyacinth class 

increases to 93.3%, and the producer’s accuracy of the other class is 85.1%. Of the 16 
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commission pixels, 6 were mistakenly identified as healthy/robust water hyacinth, and 10 were 

incorrectly classified as stressed or flowering water hyacinth. 

5.2.3. 2006 Water Hyacinth Classification 

 A decision tree containing these same variables but with different thresholds determined 

from 2006 field data was applied to the 2006 HyMap imagery. The areal infestation of hyacinth 

increased in 2006, where 303 ha of water hyacinth were identified. Out of the 218 water hyacinth 

field points used for classification validation, 112 pixels were correctly classified as water 

hyacinth, and 106 were misclassified, producing a user’s accuracy of 51.4%. Sixty-nine pixels 

were incorrectly identified as water hyacinth, resulting in a producer’s accuracy of 61.9% (Table 

5). The estimated Kappa coefficient relative to the water hyacinth class is 0.49, a value 

considered to show moderate agreement (Congalton, 1996).  The producer’s accuracies of the 

healthy/robust water hyacinth and the stressed/flowering hyacinth are 86.5% and 44.9%, 

respectively; only 10 comissed pixels were erroneously classified as healthy or robust water 

hyacinth, whereas 59 commission pixels were misclassified as stressed or flowering water 

hyacinth. Thus, the decision tree approach described above accounts for the variability inherent in 

such a dynamic ecosystem; successfully identifying the target species over multiple flightlines, 

and with minor modifications, over multiple years without requiring enormous training sets for 

each new year. Nearly half of the 2005 field data were needed to train the 2005 decision tree, 

whereas only about a tenth was needed in 2006. 

5.3. California Delta SAV Case Study  

Brazilian waterweed is an SAV species that is the focus of considerable concern in the 

Delta. Delta aquatic habitats are generally considered degraded (Meng and Moyle, 1995), but 

more specifically, Brazilian waterweed infested areas hinder the movement of threatened and 

endangered fishes such as anadromous salmonids, splittail, and Delta smelt (Brown, 2003), and it 

may prove to make restoration of native habitat nearly impossible where it is firmly established 

(Simenstad et al., 2000).  Furthermore, dense mats of Brazilian waterweed interfere with 
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recreational and commercial activities such as fishing, boating, swimming, and urban water and 

irrigation pumping (Bossard et al., 2000). The California Department of Boating and Waterways 

is again the responsible agency for controlling Brazilian waterweed in order to maintain 

navigable waterways in the Delta. 

 Brazilian waterweed forms thick, mono-specific stands of long, intertwining stems and 

has small white flowers that float at the water surface (Figure 2 c), spreading via fragmentation 

(Bossard et al., 2000). Its stems can grow as long as 4.5 m, branch frequently, and although 

usually rooted to the substrate as deep as 7 m below the water surface (Parsons and Cuthbertson, 

1992), it can also be found as a free floating mat (Bossard et al., 2000). Brazilian waterweed is 

adapted to low-light conditions and turbid water appears to favor growth, but it has also been 

found to thrive under red light, suggesting an affinity for the water surface (Bossard et al., 2000). 

 The remote sensing signal of SAV at the water surface can become degraded due to 

attenuation of light with water depth, which varies widely based on bathymetric variability and 

tidal variability (Underwood et al., 2006), and increased concentrations of water constituents 

which also vary across the region. Additionally, non-linear spectral mixing occurs as epiphytic 

algae often grow on Brazilian waterweed and other species of SAV, and emergent algae mats 

form on top of SAV canopies, obscuring the spectral target. SMA has been successfully applied 

to Brazilian waterweed discrimination at local sites (single flightlines) in the Delta since 2003 

(Mulitsch and Ustin, 2003; Underwood et al., 2006). After reducing other sources of variance 

from turbid water and very low cover tule in an approach similar to the water hyacinth case study 

(section 5.2), a combination of spectral unmixing and SAM were used to overcome the mixing 

problem and to discriminate Brazilian waterweed dominated SAV from other water constituents 

and isolate it from algae while taking flightline effects into account.   

5.3.1. Methods 

A decision tree approach was used to map SAV across the 64 2005 HyMap flightlines 

(Figure 6). Training (n=1,027) and validation data (n=1,354) are described above. All pixels 
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previously classified by the SMA and the SWIR reflectance value threshold (section 4.2.1.) as 

SAV, turbid water, or tule were analyzed using this tree.  

 The classic “red edge” reflectance feature, indicative of chlorophyll in vegetation (Curran 

et al., 1991; Filella and Peñuelas, 1994; Gitelson and Merzlyak, 1997) was quantified with 

HyMap bands 19 and 16 (0.7313 µm and 0.6736 µm) in a normalized difference band index 

which separated turbid water pixels from vegetated pixels. Hoogenboom et al. (1998) found that 

turbid water bodies with relatively high total suspended solids (TSS) and low phytoplankton 

concentrations, such as the Delta, display high reflectance up to 0.72 µm. Thus it is relatively 

easy to separate the red edge from visibly “bright” turbid water. 

 Although most emergent aquatic species were screened using the SMA and SWIR 

thresholds described in the water hyacinth decision tree, it was necessary to isolate tule pixels of 

low percent cover that were classified as SAV because of the spectral dominance of water. The 

average reflectance of the SWIR bands (1.5995 µm – 1.764 µm) from section 4.2.1. was used, 

and the threshold was lowered so that pixels with SWIR reflectance less than 3% were classified 

as submerged aquatic vegetation. 

 SMA is most successful when just a few endmembers that are spectrally distinct are used 

to train the SMA.  When more similar endmembers are included, the RMSE of the estimated 

fractions increases (Roberts et al. 1993). To circumvent this problem, a second SMA was 

conducted on pixels with a water fraction of 10% or greater as determined by the first SMA 

(section 4.2.1.) and the low SWIR albedo (4.3.1.).  The second SMA was trained with four 

endmembers selected from the imagery using ground reference points of clear water, turbid 

water, SAV, and emergent algae.  Although the endmembers appear spectrally similar (Figure 7), 

they effectively encompassed the range of spectral variation present in pixels analyzed, which 

was itself limited, resulting in acceptably accurate (based on validation data) SMA fractions. 

However, SMA and classic chlorophyll absorption characteristics could not fully identify SAV 

and discriminate it from other constituents of the water column.  In order to further discriminate 
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water from submerged aquatic vegetation and to isolate SAV from emergent algae on the water 

surface, SAM was conducted using the visible and NIR wavelengths (as described in section 

4.2.1.). This step was included as the final node in the SAV decision tree.  

At the time of this analysis, we were unable to identify individual SAV species 

accurately. Even in pixels with 100% SAV cover at the water surface, pixel reflectance is still 

dominated by the very strong absorption of water and the spectral variability between species is 

slight.  Nevertheless, Brazilian waterweed has been successfully discriminated from co-occurring 

SAV species using SMA at very small-scale sites (Mulitsch, 2005). However, given the large 

scale of the entire Delta, and the extensive variation resulting from the many confounding factors 

discussed, we have not yet demonstrated that the subtle spectral differences between SAV species 

are consistently detectable.  

5.3.2. Results 

 In 2005 2,246.5 hectares of Delta waterways were infested with SAV. Out of 316 

validation points collected of submerged aquatic vegetation, 187 were correctly classified as 

SAV, 50 were misclassified as water, and 79 were incorrectly classified as emergent vegetation, 

resulting in a producer’s accuracy of 59.2%; 16 field points were misclassified as SAV, resulting 

in a user’s accuracy of 92.1%.  The Kappa coefficient relative to the SAV class is 0.86 (Table 6), 

indicating strong agreement (Congalton, 1996).  

5.3.3. 2006 SAV decision tree 

 Although we were not able to differentiate SAV to the species level, we were able to 

develop a method that, like the water hyacinth decision tree, is repeatable across multiple 

flightlines and multiple years for the same geographic location.  A slightly modified decision tree 

was developed for 2006 imagery that could detect three different SAV classes based on the output 

of Spectral Angle Mapper. However, other than the additional SAM classes (see Figure 8 for 

SAM endmembers), the decision tree contained the same variables as the 2005 tree. Areal 

infestation of SAV decreased to 1,722.8 hectares in 2006. Out of the 1218 SAV field points used 
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for validation, 844 were correctly identified as SAV, 255 were misclassified as emergent 

vegetation, and 119 were misclassified as water, resulting in a producer’s accuracy of 69.3%. 

Sixty-one field points were incorrectly classified at SAV, resulting in a user’s accuracy of 93.3%. 

The Kappa coefficient relative to the SAV class is 0.87 (Table 7), a value considered to show 

strong agreement (Congalton, 1996). 

6. DISCUSSION & CONCLUSIONS 

 The approaches in these case studies provide useful solutions for overcoming the spectral 

heterogeneity inherent to aquatic and wetland ecosystems. We found that hyperspectral remote 

sensing can be used to map invasive weeds in extensive dynamic ecosystems such as the Delta, 

and that multiple hyperspectral tools can be combined to accommodate high variability. Our case 

studies have demonstrated that both traditional and novel approaches to species mapping and 

monitoring are effective for use with large datasets, composed of many flightlines with 

sometimes severe flightline effects and multiple sources of variability. While we encourage the 

use of the methodology presented, we highlight the challenges involved so that they might serve 

as guidelines for future studies.  

6.1. Meteorological and Illumination Geometry Variability 

A certain amount of spectral degradation can be attributed to specular reflection from the 

water surface received by the sensor, which can distort or block the features of interest. We used 

careful flight planning to avoid specular reflectance; we controlled for meteorological conditions, 

such as wind velocities and time of day (Lillesand et al., 2004; Masuda et al., 1988) during data 

acquisition. In the Delta, summer meteorological conditions are characterized by morning low 

cloud cover, followed by moderate to high winds in the late mornings and early afternoons. The 

need for optimal weather conditions within a narrow range of sun angles forced imagery to be 

acquired over the course of two weeks in 2005, which increased inter-flightline variability due to 

differences in BRDF, ground conditions and environmental conditions. This variability had to be 

overcome with a decision tree approach for water hyacinth and Brazilian waterweed and limited 
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the use of MNF, which is very sensitive to flightline effects, to the local-scale perennial 

pepperweed analysis. However, it may not be possible, or cost-effective, to control for sunglint by 

careful flight planning in all studies. Correction techniques, which minimize the effects of 

sunglint and information loss, are available to reduce this impact (Hedley et al., 2005; Hochberg 

et al., 2003) but were not used in this study. 

 Previous studies have shown that the contribution of SAV to the water-leaving 

reflectance received by the sensor decreases as the depth of the water column between 

macrophytes and the sensor increases (Han and Rundquist, 2003), thus degrading the measured 

spectral signature of the target species (Han, 2002). Some hyperspectral remote sensing analyses 

of benthic organisms have applied water depth corrections based on a homogenous water column 

(Holden and LeDrew, 2001) or more sophisticated techniques that use spectral libraries created 

from radiative transfer computations (Hedley and Mumby, 2003; Louchard et al., 2003; Mobley 

et al., 2005). Our image acquisition protocol attempted to address some of this issue by further 

restricting the image acquisition to low tide conditions.  

6.2. Pixel Constituent Variability 

In the three case studies presented, pixel composition presents a common problem. The 

architecture and patchy distribution of perennial pepperweed reduce the strength and 

distinctiveness of its spectral signature due to mixing with other vegetation, litter, and soil. Water 

hyacinth is commonly found in mixed patches with pennywort and water primrose, and the SAV 

class is characterized by mixing among multiple submerged species and mixing with the water 

column itself. Multiple approaches have been proposed to improve class separation including 

improving endmember collection (Tompkins et al., 1997), using stochastic mixture models 

(Eismann and Hardie, 2004), and applying multiple endmember spectral mixture analysis 

(MESMA) that can account for phenological changes (Dennison and Roberts, 2003) or water 

quality. 
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 SAV presents additional mixture problems due to the overlying water column. The Delta 

has high turbidity and there are gradients in water quality throughout the system caused by tidal 

flux and run-off. This added pixel constituent creates a most decidedly non-linear, three-

dimensional mixing problem that reduces the signal of the target species; 20.9% of SAV field 

points were misclassified as water. In addition, emergent algae, which have a distinct spectral 

signature, occur epiphytically on the SAV canopy, making it necessary to exclude pixels 

identified as emergent algae from the SAV class. This in turn results in an underestimate of SAV 

distribution. When present on the water surface, supported by understory SAV, emergent algae 

resemble emergent aquatic vegetation (Underwood et al., 2006). Our results corroborate this 

pattern: nearly 10% of SAV field points, which were generally covered in algae, were classified 

as emergent vegetation. Our methods largely assume that planktonic algae play an insignificant 

role in the turbidity of the Delta. However, there are regional locations of very high 

phytoplankton content that further confound SAV detection. For example, chlorophyll 

concentrations in the shallow eastern Delta sloughs and lower San Joaquin River are high and 

variable (Ball and Arthur, 1979). Although we were not able to successfully discriminate SAV 

species, several studies that have been used to successfully resolve benthic substrates and species 

through a variety of water variables and depths (Kutser et al., 2003; Legleiter et al., 2004; 

Louchard et al., 2003; Louchard et al., 2002; Vahtmäe et al., 2006) suggest this may be possible 

upon further investigation. From our experience mapping SAV, we recommend future research to 

adequately identify sources of variability, characterize planktonic vs. SAV chlorophyll, and 

continue to investigate species-level spectral differences of SAV.  

6.3. Biological Variability 

 Species life history stages have different spectral characteristics. Whenever possible, data 

collection (both field and remotely sensed) must consider the life history of the target species 

(Figure 9). The three species in our case studies all differ phenologically. Brazilian waterweed 

flowers early in the summer, at the time of data acquisition, however, these flowers are relatively 
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small and sparse in the weed mat.  Brazilian waterweed has two peaks in its growth, an initial one 

during the beginning of the summer, and a stronger peak once again during late summer. An 

acquisition later in the summer may reduce omission errors as plants may be given more time to 

grow to the water surface, and may help improve classification to the species level.  

 Of the perennial pepperweed phenological classes identified by the K-means classifier, 

the classes interpreted as flowering, fruiting, and senescing are relevant to a remote sensing study, 

and the classifier performance improved when just these were considered (resulting in a 

producer’s accuracy of 76.6%). Accuracy can be improved by mapping each phenological state 

individually. As senescence of this sparse weed progresses, the similarity of its signal to 

surrounding litter and soil increases. Andrew and Ustin (2006) were able to resolve both 

flowering and fruiting phenologies of perennial pepperweed from co-occurring species with 

spectral data, and suggested that this weed is most tractably mapped between flowering in late 

spring and senescence in late summer (Figure 10).  

 Water hyacinth life stages are distinct in color and can occur simultaneously in the same 

mat. Accounting for water hyacinth phenological states in the decision tree allowed us to better 

map the weed. We observed two distinct spectral classes. Of the 67 field points classified as 

“stressed” water hyacinth, 10 were identified in the field as pennywort or water primrose (error of 

commission = 14.9%). The second spectral class is interpreted as vegetative or “healthy” water 

hyacinth, and is well characterized by the spectral angle mapping algorithm, with an error of 

commission of just 6.7%. However, significant growth of water hyacinth in the Delta does not 

occur until August through September (Figure 10), which may be limiting the success of water 

hyacinth detection. We suggest that timing data acquisition to coincide with the peak occurrence 

of vegetative water hyacinth in the late summer will improve the detection of this target weed.  

6.4. Conclusions: Applications of Mapping and Monitoring Invasive Aquatic Weeds 

 We describe the challenges of mapping aquatic and riparian weeds in this study as 

ecohydrological constraints, and although they were considered in flight planning for this study, it 
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is impossible to account for all spatial and temporal variability over such a large study area 

(213,900 ha).  From the results of our case studies, we present several conclusions that may serve 

as guidelines for future regional-scale wetland mapping strategies: 1) incorporating multiple 

methods in a decision tree approach can account for variability in large datasets; 2) MNF-based 

approaches should be used in smaller areas, especially when sensitivity to subtle spectral 

differences is required; 3) mapping accuracy is improved by partitioning species variability into 

phenological stages. 

A further complication to remote sensing of wetlands is that land managers must often 

request post facto analyses of image data that has been acquired without consideration paid to the 

characteristics of the target species or with field data that was not acquired with remote sensing in 

mind (e.g. discounting phenological state or percent cover), as was the case with the perennial 

pepperweed mapping study. This being said, rarely are managers in the position of having 

unlimited resources and adequate foresight: more typically, managers must adaptively respond to 

emerging crises, such as non-native plant invasions. Therefore, remote sensing practitioners must 

continue to develop methodologies that overcome the challenges inherent in riparian, wetland, 

and floodplain systems, and must do so in support of early detection and rapid response. 

 One of the most pressing issues for managers of complex, highly invaded ecosystems 

such as the Delta is to assess infestation cover and the spatial distribution of invasive species. In 

spite of the intrinsic variability of the Delta, hyperspectral remote sensing provides a powerful set 

of tools that can be applied to produce maps of species distributions. Our approach provides a 

comprehensive, timely, and repeatable product that assesses areal cover of very diverse invasive 

weeds. The use of hyperspectral imagery to detect and map invasive aquatic and riparian weeds 

has shown that the technology and its methodologies have reached a stage of maturity; it is being 

successfully applied to meet operational goals for weed management. For instance, California 

state agencies are using the results described herein to monitor the spatial and temporal dynamics 

of weed populations under their prescribed control programs. 
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Table 1. Hyperspectral remote sensing tools used in case studies 

Analysis tool Summary Relevant applications 

 

Minimum noise 
fraction (MNF) 

 

Essentially a two-tiered principal 
components analysis that segregates noise 
and reduces data dimensionality for 
subsequent analyses (Green et al., 1988). 
Demonstrated to be effective for mapping 
invasive weeds with HyMap data. 

 

 

Mundt et al., 2005 

Underwood et al., 2003 

Band indexes Augment spectral differences between 
bands, highlighting specific physiological 
characteristics of vegetation (Sims and 
Gamon, 2002). 

 

Pontius et al., 2005 

Schlerf et al., 2005 

Underwood et al., 2003 

Spectral mixture 
analysis (SMA) 

Solves for the fraction of endmembers 
contained within a pixel (Smith et al., 
1990; Foody and Cox, 1994; Adams et al., 
1995). Has been successfully applied to 
SAV detection in the Delta since 2003. 

 

Mulitsch and Ustin, 2003 

Underwood et al., 2006 

Spectral Angle 
Mapper (SAM)  

Measures the similarity between image 
spectra and a reference spectrum by 
treating the spectra as vectors with a 
dimensionality equal to the number of 
bands in the image (Kruse et al., 1993). 
Effective for identifying aquatic 
vegetation. 

 

Alberotanza, 1999 

Hirano et al., 2003 

Merenyi et al. 2000 

Continuum 
removal 

Quantifies useful absorption features 
which can be used to characterize and 
identify vegetation (Clark and Roush, 
1984). 

Huang et al., 2004 

Kokaly et al., 2003 

Underwood et al., 2003 
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Table 2. Confusion matrix and classification accuracy of the perennial pepperweed logistic 
regression model training and validation points.  

   Ground Reference  

  
 

Perennial 
Pepperweed 

Pseudo-
absence 

Total 
Producer’s 
accuracy 

User’s 
accuracy 

T
ra

in
in

g 
M

ap
 C

la
ss

es
 

Perennial 
pepperweed 

458 130 588 66.1% 77.9% 

Unclassified 235 47,423 47,658 99.7% 99.5% 

Total 693 47,553 48,246 
Perennial pepperweed 
Kappa = 0.71 

V
al

id
at

io
n 

M
ap

 C
la

ss
es

 

Perennial 
pepperweed 

138 44 182 63.0% 75.8% 

Unclassified 81 15,842 15,923 99.7% 99.5% 

Total 219 15,886 16,105 
Perennial pepperweed 
Kappa = 0.68 

 

 

 

Table 3: Classes of perennial pepperweed dominated pixels as determined by a K-means 
classification, along with the phenological interpretation; mean NDVI, NDWI, and CAI for each 
group and proportion of each group classified as perennial pepperweed dominated by the 
regression model during training and validation. 

      % classified 

Group Phenology n NDVI NDWI CAI Training Test 

1 Senescent 1 0.331 -0.093 247.0 0 0 

2 Trees, shaded 77 0.864 0.071 6.4 1.7 0 

3 Flowering 277 0.765 0.042 1.0 68.9 73.5 

4 Fruiting 363 0.637 -0.016 36.3 76.3 84.9 

5 Senescing 190 0.494 -0.062 102.9 59.6 64.6 
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Table 4: Condensed confusion matrix and classification accuracy of the 2005 water hyacinth 
decision tree. The Kappa coefficient relative to the water hyacinth class is 0.81. 

 

  Ground Reference  

 
 

Water 
hyacinth 

Other emergent 
& floating 
vegetation 

Total 
Producer’s 
accuracy 

User’s 
accuracy 

M
ap

 C
la

ss
es

 

Water hyacinth 141 16 157 69.1% 89.8% 

Other emergent 
& floating 
vegetation 

63 211 274 93.0%  77.0% 

Total 204 227 431   

 

 

 

 

Table 5: Condensed confusion matrix and classification accuracy of the 2006 water hyacinth 
decision tree. The Kappa coefficient relative to the water hyacinth class is 0.49. 

 

  Ground Reference  

 
 

Water 
hyacinth 

Other emergent 
& floating 
vegetation 

Total 
Producer’s 
accuracy 

User’s 
accuracy 

M
ap

 C
la

ss
es

 

Water hyacinth 112 106 181 51.4% 61.9% 

Other emergent 
& floating 
vegetation 

106 592 698 89.6% 84.8% 

Total 218 661 879   

 

 



47 
 

 

Table 6: Condensed confusion matrix and classification accuracy of the 2005 SAV decision tree. 
The Kappa coefficient relative to the SAV class is 0.86.  

  Ground Reference  

 
 SAV Water 

Emergent & 
floating 
vegetation 

Total 
Producer’s 
accuracy 

User’s 
accuracy 

M
ap

 C
la

ss
es

 

SAV 187 2 14 203 59.2% 92.1% 

Water 50 37 16 103 90.2% 35.9% 

Emergent & 
floating 
vegetation 

79 2 349 430 92.1% 81.2% 

Total 316 41 379 736   

 

 

 

 

Table 7: Condensed confusion matrix and classification accuracy of the 2006 SAV decision tree. 
The Kappa coefficient relative to the SAV class is 0.87.  

  Ground Reference  

 
 SAV Water 

Emergent & 
floating 
vegetation 

Total 
Producer’s 
accuracy 

User’s 
accuracy 

M
ap

 C
la

ss
es

 

SAV 844 12 49 905 69.3% 93.3% 

Water 255 337 57 649 96.3% 51.9% 

Emergent & 
floating 
vegetation 

119 1 779 899 88.0% 86.6% 

Total 1218 350 885 2453   
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Figure 1: Map of the California Bay-Delta. Overlaid are the boundaries of the HyMap flightlines 

across which water hyacinth and submerged aquatic vegetation were mapped. An inset  highlights 
the Cosumnes River Preserve, where perennial pepperweed was mapped. 
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Figure 2: The three focal invasive species for monitoring in the Delta a) perennial pepperweed, b) 
Brazilian waterweed, c) water hyacinth. 
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Figure 3: Schematic of the decision tree used to identify water hyacinth in 2005 across 64 HyMap 
flightlines  
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Figure 4: Endmembers of healthy vegetation, soil, and water as used in the first spectral mixture 
analysis. Spectra were extracted from the HyMap imagery from ground reference data points. 
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Figure 5: Training endmembers for the Spectral Angle Mapper node of the 2005 decision tree. 
Spectra were extracted from the HyMap imagery from ground reference data points. 
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Figure 6: Schematic of the decision tree used to identify SAV in 2005 across 64 HyMap 
flightlines 
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Figure 7: Endmembers of emergent algae, turbid water, relatively “clear” water, and SAV as used 
in a “nested” second spectral mixture analysis to identify SAV. Spectra were extracted from the 
HyMap imagery from ground reference data points. 
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Figure 8: Endmembers used to train the Spectral Angle Mapper used in both the 2006 water 
hyacinth and SAV decision trees. Spectra were extracted from the HyMap imagery from ground 
reference data points. 
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Figure 9: Case study invasive species annual life cycle and respective June spectra extracted from 
HyMap imagery using ground reference locations.  
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Classification Trees for Aquatic Vegetation Community Prediction from Imaging 
Spectroscopy  
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ABSTRACT 

 Imaging spectroscopy provides the information needed to identify vegetation 

communities and functional groups. However, the high variability of the target classes, as 

well as the variability contained in multiple images acquired over large areas complicates 

classification, as the need for greater training data increases as the variability and feature 

space of the imagery increases. There is a need to find robust and easy-to-use classifiers 

that can account for data with high variability, non-normal distributions, and high 

dimensionality. We used the C5.0 algorithm to train and test ensemble classification trees 

with one collection of 48 imaging spectroscopy flightlines from a single year and 

corresponding ground reference data. The classifier achieved an overall accuracy of 

84.6% on the test dataset. We then applied the classifier trained from that single year to 

four years of historic airborne imaging spectroscopy data sets of the same size over the 

same area and validated the resultant maps with corresponding historic ground reference 

data. Overall historic accuracies ranged from 78.8% to 85.9%, with target class kappa 

coefficients ranging from 0.71-0.83. This classification method was successful because 

the training dataset encompassed the range of variability of the study area and dataset and 

the relative frequency of occurrence of each of the cover classes.     
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1. INTRODUCTION 

Identifying aquatic vegetation communities using remotely sensed imagery 

presents several challenges. Aquatic plants often co-occur in mixed patches with multiple 

species and phenologies present.  Aquatic vegetation communities often have varying 

species composition and canopy sizes and densities in space. Differing water depth and 

quality, sun angle and wind conditions make detection of submerged aquatic vegetation 

especially problematic as the signal from the water surface and overlying water column 

deteriorate plant canopy reflectance signals (Han and Rundquist 2003, Hestir et al. 2008).  

To account for high spatial heterogeneity, phenological and canopy morphological 

variability, high spatial and spectral resolution imagery available from airborne imaging 

spectrometers is required to discriminate aquatic vegetation communities (Mundt et al. 

2005, Becker et al. 2007, Chan and Paelinckx 2008, Hestir et al. 2008). However, land 

cover classification from airborne imaging spectroscopy is complicated by a number of 

factors. In order to acquire data over entire regions, multiple flight paths are often 

necessary. This results in mosaicked images composed of many flightlines with different 

view angles and acquisition dates, leading to differing sun angles, atmospheric, and 

environmental conditions. The combination of variability in both the image data and the 

target classes themselves make image classification challenging even when only a few 

classes are the target. Furthermore, although imaging spectroscopy provides more 

spectral information by providing hundreds of narrow bands, identifying which bands are 

informative for vegetation community detection is critical (Pal and Mather 2003, Becker 

et al. 2007).   
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In order to successfully detect aquatic vegetation communities using imaging 

spectroscopy, an image classification approach needs to 1) effectively use the information 

content in high dimensionality data; 2) make no distributional assumptions about the 

training set (i.e. a classifier that can handle land cover classes with multimodal 

distributions in spectral space exemplified by submerged aquatic vegetation in a 

heterogeneous environment); and 3) be stable, and not require year-to-year or flightline-

to-flightline reclassification, as was the case in previous work by Hestir et al. (2008); so 

that  the classifier can be trained and validated with a single year of data, and then 

accurately applied to datasets from other years (past or future). The purpose of this study 

was to classify three highly variable land cover classes (submerged aquatic vegetation, 

floating and emergent vegetation, and water) all with multi-modal distributions. We 

aimed to detect submerged aquatic vegetation communities and separate them from 

floating and emergent vegetation communities and water. We then tested whether 

classification trees (developed in C5.0, Rulequest Research) trained from a single year’s 

airborne imaging spectroscopy data could be applied to other years with reasonable 

accuracy. 

1.1 Motivation 

 The Sacramento-San Joaquin River Delta (henceforth, the Delta) provides 

approximately 80% of the freshwater to the San Francisco Bay (Knowles and Cayan 

2002), comprising the largest estuary in the Western United States (Figure 1). The Delta 

provides habitat for a number of threatened and endangered fish species, migrating 

waterfowl along the Pacific Flyway, and serves as the freshwater hub for California’s 

agricultural and growing urban sectors. The Bay-Delta system is also a gateway for 
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aquatic biological invasions (Cohen and Carlton 1998), and the recent expansion of 

invasive submerged aquatic vegetation may have contributed to the precipitous decline of 

the now endangered endemic fish, the delta smelt (Hypomesus transpacificus) (Brown 

and Michniuk 2007, Feyrer et al. 2007). Understanding the distribution of submerged 

aquatic vegetation during the period of decline of the delta smelt provides insights into 

the effects of the submerged aquatic vegetation invasion on habitat quality and its 

contribution to the smelt species decline. This in turn can help guide habitat management 

for successful species protection and recovery.  

1.2 Classification Trees and C5.0 

 Classification trees have been recognized as a useful technique for remote sensing 

because they are non-parametric, can accommodate different types of variables (i.e. 

categorical and continuous), and frequently result in higher classification accuracies 

(Friedl and Brodley 1997, Friedl et al. 1999) and also (Brown de Colstoun et al. 2003)  

and references therein. Classification trees predict class membership by splitting a dataset 

into a sequence of Boolean decisions (interior nodes, or branches) that result in a final 

grouping of the data into membership classes (terminal nodes, or trees) (Tso and Mather 

2001). In the C5.0 (See5 for Windows) (Quinlan 2009), Rulequest Research) 

classification tree algorithm, an automated method of creating classification trees, the 

split at the interior nodes of the tree is estimated using the “information gain ratio.” The 

information gain considers the information after splitting subtracted from the information 

before splitting, and it uses this measure to test each possible subdivision of data until a 

subdivision with the greatest information gain is selected (Tso and Mather 2001). That is, 

at an interior node of the tree, C5.0 maximizes the homogeneity of resulting subsets by 
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choosing the split that maximizes the information gain. However, this metric favors tests 

that result in large number of splits, so the information gain is normalized by the 

instrinsic information of the split into account (i.e., how much information gain would 

occur if the training set were allocated into separate classes?). (DeFries and Chan 2000, 

Tso and Mather 2001). This is the information gain ratio.   C5.0 uses the ratio to reduce 

bias toward oversplitting attributes by taking into account the number and size of 

branches and choosing a split that minimizes the branches. The dataset is recursively split 

until there is no decrease in information or until the terminal node contains observations 

from only a single class (DeFries and Chan 2000).  Because of this recursive process, 

which attempts to develop a 100% match with the training data, classification trees can 

perform poorly when applied to independent, unseen data. This process is known as 

overfitting, a common problem for classification trees (Lawrence et al. 2006) especially if 

there is error or “noise” in the data (Liu et al. 2008), as is commonly the case with remote 

sensing data. Overfitting classification results may yield high statistical accuracies on 

both training and unseen data, but will produce maps that are spatially incoherent and 

incorrect by even cursory qualitative evaluation. Pruning classification trees helps 

eliminate some overfitting (DeFries and Chan 2000, Olden et al. 2008). C5.0 prunes, or 

creates simpler trees, by examining the trees initially produced and removing or pruning 

lower interior nodes that are predicted to have higher error rates and replacing them with 

terminal nodes or sub-interior nodes (Quinlan 2009).  

An ensemble of classification trees is often used rather than a single tree because 

it improves classification accuracy (Breiman 2001). To create an ensemble, C5.0 uses an 

adaptive boosting algorithm, AdaBoost (Freund and Schapire 1996), to iteratively create 
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classification trees where each tree learns from the errors of the previous tree until an 

ensemble of classification trees is created which then vote to determine the predicted 

class membership for every pixel (e.g. water, vegetation, soil). Boosting typically 

enhances remote sensing classification success (DeFries and Chan 2000, Brown de 

Colstoun and Walthall 2006, Chan and Paelinckx 2008), however see (Moisen et al. 

2006), and especially (Pal and Mather 2003) with regard to high-dimensional data. 

Attribute winnowing can be enabled to address the problems of high dimensional data, 

namely the requirement of a large training set, and feature selection for splitting decisions 

(Pal and Mather 2003). Before constructing its classifiers, attribute winnowing searches 

through feature space and discards variables that do not provide predictive information as 

well as those variables which have significant overlap. The result when applied to high-

dimensional applications is improved predictive accuracy and smaller classifiers (Quinlan 

2009) which are easier to interpret.  

2. METHODS 

Airborne imaging spectroscopy was collected annually over the Sacramento-San 

Joaquin Delta (~2,100 km2) from 2004-2008 to map the distribution of several invasive 

species, both aquatic and terrestrial (Underwood et al. 2006, Andrew and Ustin 2008, 

Hestir et al. 2008, Khanna et al. 2010). Concurrent with the overflights, intensive field 

campaigns were conducted to gather ground reference data. This dataset provides a 

unique opportunity to test the robustness of a classification developed on and trained with 

a dataset from a single flight/field campaign and applied to historic imagery.  

2.1 Image Data 



64 
 

 

 Airborne spectroscopic imagery was acquired by the HyVista Corporation using 

the HyMap imaging spectrometer (Cocks et al., 1998) during morning and afternoon low 

tide periods between June 29 and July 7, 2008. HyMap measures radiance across 128 

bands from 400 nm to 2500 nm and was flown at an altitude of ~1.5 km, resulting in a 

ground resolution of 3 meter pixels. A total area of 2,166 km2 was covered by 48 

flightlines. The imagery was atmospherically corrected to apparent reflectance using a 

modified version of the ATREM algorithm (Gao et al. 1993), HyCorr (HyVista Corp., 

Sydney, Australia). HyVista identified and removed noisy bands, leaving 126 usable 

bands. Additional geographic correction was made using orthophoto correction software 

developed specifically for the HyMap instrument (Analytical Imaging & Geophysics, 

CO), resulting in an RMSE of ± 1.5 m between the orthophoto and the HyMap image 

(~1/2 pixel). These same procedures were employed on all the historic HyMap data 

collected over the same area, with the same acquisition requirements.  

In addition to the reflectance bands, six additional spectral indexes that were 

identified as important for submerged aquatic vegetation detection during previous 

mapping efforts (Hestir et al. 2008) were calculated. These spectral indexes were merged 

with the reflectance bands resulting in a 132 band image. Table 1 summarizes the spectral 

indices used as inputs.  

2.2 Field Data Collection 

 Ground reference data (GRD) were collected between June 23 and July 8, 2008. 

In order to ensure the number of points sampled for each cover class (submerged aquatic 

vegetation, water, floating & emergent vegetation) were proportional to the cover of that 
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class in the field we used previous years classification results to randomly select 

sampling locations a priori for field sampling. Random points were generated in a 

Geographic Information System (GIS), stratified based on frequency of occurrence 

informed by studies conducted by Hestir et al. (2008), and field crews navigated to within 

10 meters of the points using airboat and outboard motorboats. At each location the 

following information was recorded: the geographic position from a differential global 

positioning system (DGPS) unit, the cover class, percent cover (percent cover at the 

surface for submerged vegetation), a rake was used to sample the presence and absence 

of submerged plants and a visual estimate of the quantity, by approximating length and 

width of the patch at the water surface, and secondarily from a nadir and oblique digital 

photograph at each point. Figure 2 shows the geographic distribution of ground reference 

data collected. Table 2 summarizes the number of points collected for each cover class.  

 Historic ground reference data were collected concurrent with historic overflights 

during June and July 2004-2007 (Table 3-hymap overflight dates, and associated GRD). 

Similar field protocol was followed and similar attributes were recorded in the field as 

from 2008, with two key differences. 1) Rather than an a priori approach as used in 2008, 

opportunistic sampling was employed where field researchers recorded ground reference 

data of cover classes as they came upon them, resulting in a more equal distribution of 

cover classes rather than one proportional to the occurrence of cover classes. This 

approach was followed in earlier studies (Underwood et al. 2006, Andrew and Ustin 

2008, Hestir et al. 2008, Khanna et al. 2010), which focused on defining the spectral 

properties and the variance of the classes.  2) GRD collected in 2004-2007 only recorded 

locations of cover classes and plant species where cover was greater than 75% and in the 
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case of submerged vegetation, only where it was present at the surface with 75% or 

greater cover as visually estimated. Rakes were not used to confirm submerged 

vegetation presence, density, or absence.  

Submerged aquatic vegetation ground reference data from 2008 were screened by 

percent plant cover at the surface, and only points with greater than 75% cover were used 

in training and testing of the classifier, to make it comparable to the previous years’ data.  

The 2008 ground reference data were split (50/50) into training and test subsets to 

develop and validate the classifier.  

2.3 Imagery Classification  

We developed the ensemble classifier in See5 version 2.02a (Rulequest Research) 

and applied it using ENVI 4.6 (ITT Visual Information Solutions). We used STARSPAN 

(http://starspan.casil.ucdavis.edu) to extract the band information from pixels which 

overlap ground reference data for input into the classifier. Once the classification tree was 

developed and tested, it was implemented on 2008 image subsets consisting of windows 

of 31 pixels (~90 square meters) around a ground reference data point using STARSPAN. 

The classification results of the subset images were qualitatively evaluated for spatial 

consistency and expected patterns. The classifier was then applied to all flightlines from 

2008 as well as historic imagery 2004-2007. The resulting classification maps were 

masked to the applicable study area (the waterways) using a water and riparian tree 

shadow mask derived from LiDAR data collected by Airborne 1 for the California 

Department of Water Resources (CA DWR). The water mask was obtained from the last 

return DEM developed from the LiDAR dataset and rescaled to the same 3 m resolution 

as the HyMap imagery. The shadow mask was created using a ray tracing algorithm, 
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r.sun (Scharmer and Greif 2000) on the first return raster (rescaled to 3m) for the date of 

each HyMap image. Classification maps from historic imagery were validating using 

corresponding GRD for each of the years.  

3. RESULTS AND DISCUSSION 

Of the 132 bands provided to the classifier, 121 bands were winnowed. Of the 11 

bands remaining, one band index calculated over  a narrow wavelength interval between 

the red and red/near-infrared region (Normalized Difference Vegetation Index 2, NDVI2, 

Table 1) which detects the “red edge” spectral feature of vegetation (Filella and Penuelas 

1994), and one calculated using a more traditional longer near-infrared wavelength 

(NDVI1, Table 1). The other bands came from the reflected visible, near-infrared, and 

shortwave infrared regions. The near infra-red region (0.9431 µm) and the shortwave 

infrared (2.4757 µm) were estimated to be the most important attributes contributing to 

the predictive power of the classifier. This was followed by the blue visible region 

(0.4417 µm). Of these 11 bands, only NDVI1 was used by 100% of the trees, though this 

was followed by closely NDVI2, shortwave infrared (2.4757 µm), and near infrared 

(0.9431 µm) which all had a frequency of use of 99% by the trees. Table 3 lists the 

important bands, as well as the frequency of use in the ensemble classification trees. The 

attributes selected by winnowing reveal the utility of imaging spectroscopy data for this 

particular classification problem; the classifier used several narrow regions throughout 

the reflected spectrum. Critical to discriminating water and submerged vegetation from 

other vegetation is the information contained in the shortwave-infrared bands, as was 

information contained within the near-infrared for detecting submerged vegetation in 

water.  
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The final classification of 2008 had an error of 15.4% for the test data set which 

meets acceptable land cover classification standards suggested by the literature 

(Thomlinson et al. 1999, Foody 2002). The overall kappa coefficient, a measure of 

agreement between ground reference data and map classes that takes into account the 

probability of chance agreement, for the training and test sets is 0.96 and 0.69, 

respectively, indicating “excellent” and “good” agreement (Monserud and Leemans 

1992). The kappa coefficient for submerged aquatic vegetation is 0.54, which is 

considered “fair” agreement (Congalton 1991, Monserud and Leemans 1992). The 2008 

test producer’s and user’s Accuracies (indicating the level of class omission and 

commission, respectively) were lowest for submerged vegetation. Despite the accuracy 

limitations, displays of the mini-rasters show the maps have spatially coherent patterns. 

Additionally, the distributions follow locations where submerged vegetation would likely 

be present due to channel conditions (e.g. shallow and low flow areas). The application of 

the ensemble classifier to the historic imagery resulted in overall errors ranging from 

20.4% to 14.1%; overall kappa coefficients range from 0.69 to 0.77 (“good” to “very 

good”) and kappa coefficients relative to submerged vegetation range from 0.71 to 0.83 

(“very good”) (Table 4).   

The largest source of confusion in the classification is discriminating submerged 

vegetation from water (see Hestir et al., 2008 for a detailed discussion of this problem). 

In the test set, 24 submerged vegetation points were misclassified as water, and 25 water 

points were erroneously classified as submerged vegetation, resulting in producer’s and 

user’s accuracies of 61% and 56 %, respectively (Table 5). However, in contrast to the 

methodology presented in Hestir et al. (2008), training data for 2008 were not biased 
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toward surface submerged vegetation, which produced higher detection rates of 

submerged vegetation at depth. We suggest that detectability of submerged vegetation 

may be most limited by plant density and cover rather than the inherent optical properties 

of the overlying water column itself. Detectability of submerged vegetation diminishes as 

submerged vegetation cover or density decreases or water depth to the submerged 

vegetation canopy increases. This is evident in the unsuccessful classifications using 

training data with low estimated percent cover, and confirmed by rake data collected in 

2008 (Figure 4).  Submerged vegetation detection is most successful when plant density 

is highest and least successful when it occurs at low cover and density. This is further 

supported by the high accuracies observed for classification of historic imagery whose 

validation data only include patches with dense cover at the surface (for which the 

classifier has been optimally trained).  

Although rarely discussed, we feel it is important to highlight some of the 

problems with common assumptions regarding remote sensing accuracy assessments. 

Ground reference data is commonly thought of as ground truth data, and is often 

presumed to have no inherent errors in it, which is, of course, incorrect (Foody 2002). 

Positional errors between the ground reference point and the pixel due to GPS positional 

errors from the boats’ movement from wind, wave, and current action can result in errors 

that are not due to the thematic accuracy of the map (Loveland et al. 1999).  

Classification trees are highly sensitive to the training data values (Olden et al. 

2008), quantity (Pal and Mather 2003), and quality (Liu et al. 2008) (such as the 

positional accuracy of ground reference data). Small changes in the training data can 

result in significant changes in the variables used in the trees themselves and can 
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significantly impact the mapping results. Appropriately distributed and accurately 

collected training data is critical to the success of ensemble classification. The low 

submerged vegetation class accuracies are due, in part, to its infrequent occurrence in the 

Delta during the 2008 field campaign. Submerged vegetation was relatively sparse 

compared to previous years, and many of the patches sampled had low densities, and 

were deep in the water column. Although our sampling was structured to be 

representative of all classes, the lack of submerged aquatic vegetation points available for 

training contribute to decreased accuracies for that class relative to other classes which 

had more points. Another potential source of error is from the photo-interpreted water 

class training data, although the water training points were photo-interpreted from the 

center of deep channels where submerged vegetation does not occur, some classification 

error is possible.  

4. CONCLUSIONS 

Our study demonstrated the robustness of ensemble classification trees for historic 

aquatic vegetation classification when constructed with an appropriate training set. The 

high cost of obtaining ground reference data and the frequent unavailability of historic 

ground reference data require that classification techniques be sufficiently robust to be 

relied upon when validation data is unavailable. We were able to construct a classifier 

using a single year of airborne imaging spectroscopy (48 flightlines) and correspondent 

ground reference data, and apply that classifier to the four years of historic spectroscopic 

imagery covering the same site, with high agreement between the predicted distribution 

and the real distribution of submerged vegetation in the Delta. Classification maps were 
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successfully constructed in spite of the flightline-to-flightline or year-to-year calibration 

and environmental and climate-hydrological heterogeneity.  

Using C5.0 on the 2008 data to construct a classifier was successful due to the 

sampling strategy used during ground reference data collection. As a basic function of the 

algorithm, C5.0 considers the probability that a set of training data for a particular class 

(e.g. submerged vegetation) is the relative frequency of observations in that class (Tso 

and Mather 2001). In order to successfully implement the classifier, it was important to 

ensure that our sampling strategy reflected the relative distribution of classes (submerged 

vegetation, emergent and floating vegetation, and water) present in the system. Capturing 

the variability within the study area through a carefully planned field campaign was 

necessary to construct a classifier robust enough to apply to highly variable, high 

dimensional historic imagery.  A priori understanding of the cover classes and variability 

of the system allowed us to estimate the relative frequency of each of the classes and 

stratify our field sampling techniques accordingly. The historic classification validation 

enabled us to test the robustness of the training data and classifier. 

5. ACKNOWLEDGEMENTS 

This study benefited greatly from insightful input from Maria J. Santos. The staff 

and field crews of the Center for Spatial Technologies and Remote Sensing at UC Davis, 

the California Department of Boating and Waterways, and the California Department of 

Food and Agriculture provided critical support in the field. We are grateful to Carlos 

Rueda for developing a program to apply C5.0 classification trees to image data. This 

study was funded by the California Department of Water Resources contract 



72 
 

 

4600008137-T4, and California Department of Boating and Waterways agreement 03-

105-114. 

6. REFERENCES 

Andrew, M. E. and S. L. Ustin. 2008. The role of environmental context in mapping 
invasive plants with hyperspectral image data. Remote Sensing of Environment 
112: 4301-4317. 

Becker, B. L., D. P. Lusch, and J. Qi. 2007. A classification-based assessment of the 
optimal spectral and spatial resolutions for Great Lakes coastal wetland imagery. 
Remote Sensing of Environment 108: 111-120. 

Breiman, L. 2001. Random Forests. Machine Learning 45: 5-32. 

Brown de Colstoun, E. C., M. H. Story, C. Thompson, K. Commisso, T. G. Smith, and J. 
R. Irons. 2003. National Park vegetation mapping using multitemporal Landsat 7 
data and a decision tree classifier. Remote Sensing of Environment 85: 316-327. 

Brown de Colstoun, E. C. and C. L. Walthall. 2006. Improving global scale land cover 
classifications with multi-directional POLDER data and a decision tree classifier. 
Remote Sensing of Environment 100: 474-485. 

Brown, L. and D. Michniuk. 2007. Littoral fish assemblages of the alien-dominated 
Sacramento-San Joaquin Delta, California, 1980–1983 and 2001–2003. Estuaries 
and Coasts 30: 186-200. 

Chan, J. C.-W. and D. Paelinckx. 2008. Evaluation of Random Forest and Adaboost tree-
based ensemble classification and spectral band selection for ecotope mapping 
using airborne hyperspectral imagery. Remote Sensing of Environment 112: 
2999-3011. 

Cohen, A. N. and J. T. Carlton. 1998. Accelerating Invasion Rate in a Highly Invaded 
Estuary. Science 279: 555-558. 

Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely 
sensed data. Remote Sensing of Environment 37: 35-46. 

DeFries, R. S. and J. C.-W. Chan. 2000. Multiple Criteria for Evaluating Machine 
Learning Algorithms for Land Cover Classification from Satellite Data. Remote 
Sensing of Environment 74: 503-515. 

Feyrer, F., M. L. Nobriga, and T. R. Sommer. 2007. Multidecadal trends for three 
declining fish species: habitat patterns and mechanisms in the San Francisco 
Estuary, California, USA. Canadian Journal of Fisheries and Aquatic Sciences 64: 
723-734. 



73 
 

 

Filella, I. and J. Penuelas. 1994. The red edge position and shape as indicators of plant 
chlorophyll content, biomass and hydric status. International Journal of Remote 
Sensing 15: 1459 - 1470. 

Foody, G. M. 2002. Status of land cover classification accuracy assessment Remote 
Sensing of Environment 80: 185-201. 

Freund, Y. and R. E. Schapire. 1996. Experiments with a new boosting algorithm. Pages 
148-156 in Machine Learning: Proceedings of the Thirteenth International 
Conference. 

Friedl, M. A. and C. E. Brodley. 1997. Decision Tree Classification of Land Cover from 
Remotely Sensed Data. Remote Sensing of Environment 61: 399-409. 

Friedl, M. A., C. E. Brodley, and A. H. Strahler. 1999. Maximizing land cover 
classification accuracies produced by decision trees at continental to global scales. 
Geoscience and Remote Sensing, IEEE Transactions on 37: 969-977. 

Gao, B. C., K. B. Heidebrecht, and A. F. H. Goetz. 1993. Derivation of scaled surface 
reflectances from AVIRIS data. Remote Sensing of Environment 44: 165-178. 

Han, L. and D. C. Rundquist. 2003. The spectral responses of Ceratophyllum demersum 
at varying depths in an experimental tank. International Journal of Remote 
Sensing 24: 859-864. 

Hestir, E. L., S. Khanna, M. E. Andrew, M. J. Santos, J. H. Viers, J. A. Greenberg, S. S. 
Rajapakse, and S. L. Ustin. 2008. Identification of invasive vegetation using 
hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing 
of Environment 112: 4034-4047. 

Khanna, S., M. J. Santos, S. Ustin, and P. J. Haverkamp. 2010. An integrated approach to 
biophysiologically based classification of floating aquatic macrophytes. 
International Journal of Remote Sensing In press. 

Knowles, N. and D. R. Cayan. 2002. Potential effects of global warming on the 
Sacramento/San Joaquin watershed and the San Francisco estuary. Geophys. Res. 
Lett. 29: 4p. 

Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. Mapping invasive plants using 
hyperspectral imagery and Breiman Cutler classifications (randomForest). 
Remote Sensing of Environment 100: 356-362. 

Liu, K., X. Li, X. Shi, and S. Wang. 2008. Monitoring mangrove forest changes using 
remote sensing and GIS data with decision tree-learning. Wetlands 28: 336-346. 

Loveland, T. R., Z. Zhu, D. O. Ohlen, J. F. Brown, B. C. Reed, and L. Yang. 1999. An 
analysis of the IGBP global land-cover characterization process. Photogrammetric 
Engineering and Remote Sensing 65: 1021-1032. 



74 
 

 

Moisen, G. G., E. A. Freeman, J. A. Blackard, T. S. Frescino, N. E. Zimmermann, and J. 
T. C. Edwards. 2006. Predicting tree species presence and basal area in Utah: A 
comparison of stochastic gradient boosting, generalized additive models, and tree-
based methods. Ecological Modelling 199: 176-187. 

Monserud, R. A. and R. Leemans. 1992. Comparing global vegetation maps with the 
Kappa statistic. Ecological Modelling 62: 275-293. 

Mundt, J. T., N. F. Glenn, K. T. Weber, T. S. Prather, L. W. Lass, and J. Pettingill. 2005. 
Discrimination of hoary cress and determination of its detection limits via 
hyperspectral image processing and accuracy assessment techniques. Remote 
Sensing of Environment 96: 509-517. 

Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine learning methods without tears: 
a primer for ecologists. Quarterly Review of Biology 83: 171-193. 

Pal, M. and P. M. Mather. 2003. An assessment of the effectiveness of decision tree 
methods for land cover classification. Remote Sensing of Environment 86: 554-
565. 

Quinlan, J. R. 2009. C5.0 An Informal Tutorial. Rulequest Research. 

Scharmer, K. and J. Greif, editors. 2000. The European solar radiation atlas, Vol. 2: 
Database and exploitation software. Les Presses de l’ École des Mines, Paris. 

Thomlinson, J. R., P. V. Bolstad, and W. B. Cohen. 1999. Coordinating Methodologies 
for Scaling Landcover Classifications from Site-Specific to Global: Steps toward 
Validating Global Map Products. Remote Sensing of Environment 70 :16-28. 

Tso, B. and P. M. Mather. 2001. Classification Methods for Remotely Sensed Data. 
Taylor and Francis, New York. 

Underwood, E., M. Mulitsch, J. Greenberg, M. Whiting, S. Ustin, and S. Kefauver. 2006. 
Mapping Invasive Aquatic Vegetation in the Sacramento-San Joaquin Delta using 
Hyperspectral Imagery. Environmental Monitoring and Assessment 121 :47-64. 

 

 
 

 

 

 

 

 

 



75 
 

 

Table 1. Spectral indices used as inputs into C5.0. ρ0.649 indicates reflectance value at  
wavelength 0.649 µm.  

Index Equation 

NDVI1, Normalized 
Difference Vegetation Index  

NDVI2, Normalized 
Difference Vegetation Index  

Green/red ratio 
 

Normalized green/red ratio 
 

Average SWIR Reflectance 
1 

Average(ρ1.62 to 
ρ1.77) 

Average SWIR Reflectance 
2 

Average(ρ2.165 to 
ρ2.25) 

 

 

 

 

Table 2. Summary of HyMap acquisition and concurrent ground reference data 
collection. For each “water” point, a rake was dropped to the bottom to ascertain 
definitively the presence or absence of submerged plant material. 

Image Acquisition 

Ground Reference Data 

Submerged 
vegetation 

Floating & 
Emergent 

Water Total 

June 25, 2004-July 10, 2004 795 1106 99 2000 

June 22, 2005-July 8, 2005 796 1335 52 2183 

June 21, 2006-June 26, 2006 1387 1163 335 2885 

June 19, 2007-June 26, 2007 320 423 226 969 

June 29, 2008-July 7, 2008 347 191 726 1264 
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Table 3. HyMap reflective and index bands remaining after attribute winnowing, and 
their frequency of use by the ensemble of classification trees.  

Band Frequency 

NDVI1 100% 

2.4757 µm 99% 

NDVI2 99% 

1.6855 µm 94% 

2.2843 µm 94% 

0.4971 µm 88% 

1.9652 µm 84% 

0.5584 µm 82% 

2.4135 µm 81% 

 

 

Table 4. A summary of the classification accuracies for 2008 and historic HyMap 
imagery.  

 2008Train 2008Test 2007 2006 2005 2004 

Overall Accuracy 97.7% 84.6% 79.6% 85.9% 84.3% 78.8% 

Overall Kappa 0.96 0.69 0.69 0.77 0.70 0.65 

KappaSAV 0.97 0.54 0.71 0.83 0.79 0.83 

Producer’s AccuracySAV 98.1% 55.8% 72.2% 82.4% 80.0% 64.7% 

User’s AccuracySAV 97.8% 60.6% 80.5% 90.9% 86.7% 89.5% 
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Table 5. Classification confusion matrices between the ground reference data (columns), 
and the predicted class membership (rows) for 2008-2004. 

2008Test Ground Reference Data 

Classified Data Submerged 
Vegetation 

Water Floating & 
Emergent 

Total 

Submerged Vegetation 43 24 4 71 

Water 25 320 6 351 

Floating & Emergent 9 13 83 105 

Total 77 357 93 527 

     
2007     

Submerged Vegetation 231 22 34 287 

Water 81 203 52 336 

Floating & Emergent 8 1 337 346 

Total 320 226 423 969 

     
2006     

Submerged Vegetation 1143 17 97 1257 

Water 147 317 48 512 

Floating & Emergent 97 1 1018 1116 

Total 1387 335 1163 2885 

     
2005     

Submerged Vegetation 637 1 97 735 

Water 88 51 86 225 

Floating & Emergent 71 0 1152 1223 

Total 796 52 1335 2183 

     
2004     

Submerged Vegetation 514 5 55 574 

Water 255 93 82 430 

Floating & Emergent 26 1 969 996 

Total 795 99 1106 2000 
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Figure 1.  A map of the Sacramento-San Joaquin River Delta and upper San Francisco 
Bay. The inset map indicates the study area’s location (in black) within California. The 
Delta’s watersheds drain nearly 40% of California, over 160,000 km2. 
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Figure 2. Ground reference data collected 23 June-8 July 2008. Stratified random points 
of the target cover classes (submerged aquatic vegetation, water, floating and emergent 
vegetation) were selected a priori to the field campaign and navigated to using boats. The 
actual cover class and percent cover were recorded with handheld differential GPS 
devices. 
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Figure 3. Two maps of predicted submerged aquatic vegetation distribution (in black) 
from the 2008 spectroscopic imagery. The spatial patterns of submerged vegetation 
occurrence match those expected from field observation and previous study (Hestir et al. 
2008); submerged vegetation does not occur in fast flowing or deep channels or lakes, it 
inhabits shallow channel margins and backwater areas of slow flow. These patterns were 
also observed for submerged aquatic vegetation distribution predicted from the historic 
imagery. 
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Figure 4. The cumulative detection rate of submerged aquatic vegetation by the number 
of rake teeth covered by submerged vegetation during a sample. Rake teeth are a proxy 
for submerged plant density in the water column at the sampling location. Detection rates 
are highest at sample locations with high submerged aquatic vegetation density. 
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Interactions between Submerged Vegetation, Turbidity, and Water Movement in a 
Tidal River Delta  
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ABSTRACT 

 The interactions between water velocity, submerged vegetation, and turbidity are 

commonly described as a feedback in which the presence of submerged vegetation at 

lower velocities further decreases turbidity, which then promotes continued persistence 

and growth of submerged vegetation. However, these interactions are determined by 

spatial variability in hydrology and plant distributions. This study examines submerged 

vegetation cover, water velocity, and turbidity in the Sacramento-San Joaquin River 

Delta, a tidal river delta with high inter-and intra-annual hydrologic variability, as well as 

variable submerged vegetation distribution to determine whether these interactions are 

detectable. We found annual maximum water velocity limits submerged vegetation cover 

above 0.49 m·s-1. We also found submerged vegetation cover has a negative linear 

relation with turbidity, and limits high turbidities (13.8-15.8 NTU). This limiting relation 

between submerged vegetation cover and turbidity negatively affects endangered fish 

species habitat (i.e., delta smelt, Hypomesus transpacificus), although removal of the 

vegetation may not affect sufficient increases in turbidity to restore fish habitat. 

1. INTRODUCTION 

Turbidity, or the optical clarity of a water body, is an important ecological 

indicator for freshwater and estuarine systems.  Turbidity controls light penetration 
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through the water column which limits the growth and survival of submerged vegetation 

(Dennison et al. 1993). Once established, submerged vegetation can reduce water 

velocity both within the plant bed (Madsen et al. 2001) and at the channel scale 

(Chambers et al. 1991), thus decreasing turbidity, increasing sedimentation (Madsen et al. 

2001, Crooks 2002, Schulz et al. 2003) and light availability, and promoting further 

growth. Conversely, high velocities mediate the establishment, growth, and distribution 

of submerged plants (Biggs 1996), resulting in higher sediment resuspension and 

turbidity, limited light availability, and limited submerged plant productivity.  Additional 

factors contribute to the establishment and growth of submerged vegetation, but these 

tend to strengthen feedback loops that either amplify or dampen submerged vegetation 

growth and persistence. For example, high current velocity also changes bed composition 

(Chambers et al. 1991), leading to reduced sediment and fertility (Barko et al. 1991), and 

high velocities present direct physiological and mechanical limits to submerged 

vegetation establishment and growth (Koch 2001). However, recent studies suggest the 

interaction between water movement, sediment, and submerged vegetation, although 

regional in scope, may be of only second-order importance and the relations are 

dependent on the biomass and distribution of submerged vegetation (Havens 2004, 

Gurnell et al. 2006). Given the spatial variability of submerged vegetation distribution at 

the ecosystem scale, the influence of submerged vegetation on increased water clarity is 

likely to vary spatially as well. Therefore, we ask: are the feedbacks between submerged 

vegetation, velocity, and turbidity detectable in a hydrologically variable tidal river delta 

with variable submerged vegetation distribution? 
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1.1 Study Site 

 The Sacramento-San Joaquin River Delta is formed by the confluence of four 

rivers in the Central Valley of California: the Sacramento, San Joaquin, the Cosumnes, 

and the Mokelumne Rivers (Figure 1). Historically a vast tidal marsh which drained to 

the Pacific Ocean via the San Francisco Bay, the Delta is now a network of levee-bound 

rivers and man-made channels, reclaimed agricultural tracts of land (islands), and shallow 

lakes formed by flooded islands (Wright and Schoellhamer 2005). Hydraulics in the 

Delta are altered by cross-Delta conveyance channels, freshwater export pumping, and 

agricultural consumption and drainage within the Delta. The hydrology is dominated by 

freshwater inflows from the Sacramento and San Joaquin rivers with extreme seasonal 

(1700 ± 300 m3·s-1 in the winter and 540 ± 40 m3·s-1 in summer) and interannual (230 

m3·s-1 in a low flow year to 2700 m3·s-1 in a high flow year) variability (Jassby and Cloern 

2000). Tides propagate eastward through the estuary, dampening as they move inland, 

and disseminating over most of the Delta during low river inflow (Wright and 

Schoellhamer 2005). Water velocities range from 0.02 m·s-1 during slack tides to 5.5 m·s-

1 during ebb tides. Turbidity in the Delta is primarily controlled by suspended sediments, 

which are essentially equivalent to total suspended solids in this system (Gray et al. 

2000). 

The altered hydrology of the Delta has resulted in an increase in exotic plant and 

animal species (Santos et al. 2010), and the expansion of submerged vegetation over the 

past three decades, particularly of the invasive Brazilian waterweed (Egeria 

densa)(Jassby and Cloern 2000), has led to increased concern about its possible role in 

altering aquatic habitat (Service 2007, Santos et al. 2009). Of particular concern is the 
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impact submerged vegetation has on turbidity, which has become one of the focal habitat 

indicators for the endangered endemic fish, delta smelt (Hypomesus transpacificus) 

(Nobriga et al. 2005, Feyrer et al. 2007). The submerged vegetation community is 

comprised of four exotic rooted submerged plant species, Egeria densa (which accounts 

for approximately 85% of the submerged vegetation community biomass [Hestir et al. 

unpublished data]), Myriophyllum spicatum, Potamogeton crispus, and Cabomba 

caroliniana, and four rooted native species, Stuckenia pectinatus, Stuckenia filiformis, 

Potamogeton nodosus, and Elodea canadensis, as well a fifth, free floating submerged 

plant, Ceratophyllum demersum. Understanding how submerged vegetation interacts with 

turbidity and water velocity can inform endangered species habitat conservation, invasive 

plant management strategies, and may provide insight into the impact of proposed water 

diversion projects on submerged vegetation in the Delta.   

2. METHODS 

2.1 Submerged vegetation distribution data 

 We used submerged vegetation distribution maps derived from airborne imaging 

spectroscopy to determine submerged vegetation distribution. The HyVista Corporation 

acquired HyMap imaging spectrometer (Cocks et al. 1998)data during morning and 

afternoon low tides during late June and early July of each year 2004-2008 with a ground 

resolution of 3 meter pixels (9m2). The images were classified using ensemble 

classification trees developed in C5.0 (Rulequest Research), and validated with ground 

reference data collected concurrent with image acquisition. The overall classification 

accuracies for all years range from 79%-86%, with Kappa coefficients (an indicator of 

the level of agreement between ground data and map data that accounts for the 



87 
 

 

probability of random agreement) ranging from 0.65-0.77 indicating “good” to “very 

good” agreement with ground reference data (Monserud and Leemans 1992). Table 1 

details the image acquisition dates and accuracies of classifications. The final submerged 

vegetation classes were exported to shapefiles. Image data calibration and corrections are 

described in (Hestir et al. 2008). For ground reference data collection and classifier 

development and performance, see (Hestir et al. 2010). 

To quantify the coverage of submerged vegetation near sites where turbidity is 

measured, we used the fraction of water area containing submerged vegetation within a 1 

km radius by generating a 1 km buffer around each turbidity station, and then clipping the 

submerged vegetation maps within these buffers using ArcMap 9.2 (ESRI, Redlands, 

CA).  We selected a 1 km radius because the time it takes a parcel of water to move 1 km 

[1000 m/0.3 ms-1 ≈ O (1hr)] is the same order of magnitude as the time it would take a 

particle to settle from the water surface to bottom [5 m/10-3 ms-1 ≈ O (1hr)] in typical 

Delta channels. Thus, 1 km is a sufficient distance for suspended sediment concentration 

to adjust to the conditions in the reach of the channel. The same buffer size (1 km) was 

used for velocity measurement stations. We tested whether there were significant 

differences in submerged vegetation cover between years (using Tukey’s HSD pairwise 

test) for both the turbidity and velocity buffers, and found none. Therefore we treated 

each year of submerged vegetation cover as a replicate for a given site.  

2.2 Turbidity data 

 The California Department of Water Resources conducts monthly water quality 

sampling cruises in the Delta and northern San Francisco Bay. Measured parameters 

include turbidity 1 meter below the surface. Data are made available at 
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http://bdat.ca.gov/. A total of ten sites were active within the study area for the period of 

interest, 2004-2008, and we calculated the mean turbidity during the growing season 

(April-October) of submerged vegetation for each site, based on the submerged 

vegetation maps produced from the spectroscopic imagery (Hestir et al. 2010). 

2.3 Velocity data 

 The US Geological Survey measures water velocity using hydroacoustic velocity 

meters at 31 stations within the study area, beginning in June 2006. Data were 

downloaded from the California Data Exchange Center (http://cdec.water.ca.gov). 

Velocity data is recorded every 15 minutes. The data were run through a low-pass filter, 

and the annual maximum water flow velocity for each year (2006-2008) at each site was 

determined.  

2.4 Turbidity and submerged vegetation interactions  

 We related turbidity values averaged over the submerged vegetation growing 

season with the percent cover of submerged vegetation within each 1 km buffer around 

the 10 turbidity sites to determine if submerged vegetation cover controls turbidity. We 

hypothesized that, once established, submerged vegetation cover constrains, or limits 

turbidity in the Delta. We used quantile regression (Koenker and Bassett 1978, Koenker 

and Hallock 2001), to model the upper limit of the turbidity response to SAV cover. 

Quantile regression is a form of least absolute deviation (LAD) regression (Cade et al. 

1999) that predicts a range of conditional distribution of responses, rather than just the 

conditional mean of responses (as provided by ordinary least squares (OLS) regression) 

given a set of predictor variables (Yu et al. 2003). While OLS regression models the 
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central tendency of a distribution of data, quantile regression can model the outer edge of 

a distribution (Cade et al. 1999), represented by an upper quantile (e.g. 75% of the 

observations), which indicates the limiting condition of the predictor variable on the 

response variable (Cade and Noon 2003). We implemented linear quantile regression 

using the quantreg package (Koenker 2009) in R (version 2.9.2, R: A Language and 

Environment for Statistical Computing, http://www.R-project.org). To calculate the 

standard errors of the model coefficients, we used the (x,y)-pair bootstrap method 

(Koenker and Hallock 2001) in quantreg. Similar to OLS regression, the parameter 

estimates in linear quantile regression provide estimates for the rates of change 

conditional on adjusting for the effects of the other variable in the model, but for a 

specific quantile. We selected the regression quantile with the lowest variance in slope 

estimation from among the upper quantiles to use as our limitation model (Koenker and 

Hallock 2001, Bryce et al. 2008). 

2.5 Velocity threshold identification 

 Water velocity has long been recognized as a habitat constraint for submerged 

vegetation (Chambers et al. 1991), and high water velocities can impede submerged 

vegetation establishment and persistence through both mechanical and physiological 

damage (Sand-Jensen 2008). We tested whether there was a maximum water velocity 

critical to submerged vegetation cover in the Delta. We binned maximum water velocity 

measurements into 0.03 m·s-1 increments, and performed a t-test to determine the 

significance of the separation between submerged vegetation cover above and below each 

velocity bin. This t-test was iterated through each water velocity bin from 0.0 cm·s-1 to 

1.2 m·s-1. We hypothesized that if there is a velocity threshold that controls submerged 
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vegetation cover, there should be a discernible value at which maximum separation of 

covers occurs. The velocity position that yielded the most significant separation is the 

velocity threshold on submerged vegetation establishment and persistence, and the p-

value is the significance of this threshold.  

3. RESULTS 

3.1 Submerged vegetation constraint on growing season turbidity 

 From the upper quantiles we regressed, we found that all estimated regression 

parameters were significant, and the estimated slope from 90th quantile regression model 

had lowest standard error (Table 2). Therefore, we take the 90th regression quantile as the 

most appropriate model for the constraint submerged vegetation cover has on growing 

season turbidity. This model shows a negative relation between increased submerged 

vegetation cover and growing season turbidity, and describes a significant, linear upper 

limit of turbidity by submerged vegetation cover (Figure 2). The slope from the 90th 

regression quantile represents decreases in turbidity associated with the constraints of 

increased submerged vegetation cover. Figure 3 shows the estimated slope and the 

intercept of the linear quantile regression as a function of quantiles from 0.02-0.98, 

incremented every 0.01, and shown with 95% confidence interval bands. This figure 

demonstrates the variability of slopes and intercepts over the full range of turbidity 

quantiles and its sensitivity to submerged vegetation cover. Figure 3 reveals the upper 

distributional limit of turbidity to be a function of a limiting factor, in this case, 

submerged vegetation cover (Cade et al. 1999, Koenker and Hallock 2001). For example, 

the rate of decrease in turbidity (slope) at the 10th quantile (-0.08 ± 0.08 NTU change in 

turbidity per unit change in submerged vegetation) is much less than at the 90th quantile 
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of the turbidity distribution (-0.6 ± 0.07 NTU). The gray horizontal solid line and 

confidence interval (dashed lines) shows the least squares regression estimate for the 

slope and intercept coefficients, illustrating the mean response. 

3.2 Velocity thresholds on submerged vegetation cover 

 As we iterated the t-tests through the 3.0 cm·s-1 velocity bins, the significance of 

separation of submerged vegetation cover increased (p-values decreased), until it reached 

a maximum separation of submerged vegetation cover at 0.49 m·s-1 (a minimum p-value 

of 3.4 x 10-6), after which the significance of separation of cover decreased again (Figure 

4).  

4. DISCUSSION 

4.1 Velocity controls submerged vegetation distribution  

Submerged vegetation cover is highly variable throughout the Delta, and the 

distribution of submerged vegetation in the Delta is controlled, at least in part, by water 

velocity. Our iterative t-tests found a discernible value at which maximum separation of 

submerged vegetation cover occurs. We interpret this to be the velocity threshold 

controlling submerged vegetation cover in the Delta. In channels where the annual 

maximum velocity exceed 0.49 m·s-1, submerged vegetation cover is significantly lower 

than at sites with lower velocity. The observed velocity threshold for the submerged 

vegetation community cover in the Delta falls within the range of velocities observed in 

other studies; in streams intermediate current velocities (> 0.3 m·s-1) reduced (Nilsson 

1987), or even proscribed submerged vegetation (>0.28 m·s-1) (Gantes and Caro 2001). In 

larger rivers, submerged vegetation occurrence was rare at current velocities of 0.4-0.6 

m·s-1 (French and Chambers 1996) or was absent where current velocities exceeded 1 
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m·s-1 (Chambers et al. 1991, Fortin et al. 1993). The effects of variable flow due to 

flooding, or in this study tides, on submerged vegetation distribution are not well 

understood (Madsen et al. 2001) but in large rivers the direct effects of velocity on 

submerged vegetation might be very localized; a weak (Gantes and Caro 2001) or even 

no response (Sprenkle et al. 2004) to velocity may be detected if measurements are not 

made within the plant bed. In such systems velocity may have secondary effects on 

submerged vegetation growth by altering bed sediment composition (Chambers et al. 

1991) even if a strong linear correlation is not observed.  

 In the Delta velocity events above 0.49 m·s-1 constrain submerged vegetation 

cover, but below that threshold cover is controlled by other variables; sites with high 

velocity events have little or no submerged vegetation (mean cover = 1.76%), whereas 

sites with low velocity have much more vegetation (mean cover = 7.23%). Additionally, 

the variance in the low velocity sites is much higher than low velocity sites (64% and 

44% respectively). That is, submerged vegetation occurs in a range of cover in low 

velocity sites, but there is little or no submerged vegetation in high velocity sites. In the 

low velocity sites, other environmental conditions (such as light limitation, sediment 

quality, and nutrient availability) (Sprenkle et al. 2004), as well as species-specific plant 

traits (including dispersal and recruitment strategies, resistance to flow) (Sand-Jensen 

2008) influence submerged vegetation distribution. We imagine that some of the 

variation in response observed in this study is due to the varying species composition of 

the submerged vegetation community. Velocity reduction in submerged vegetation 

canopies is biomass and species dependent: plant and canopy morphology strongly 

influence the reduction in drag forces in the plant beds (Madsen et al. 2001, Sand-Jensen 
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2008). Although the community is dominated by Egeria densa, a ramifying species with 

dense canopy growth throughout the water column, some native species such as 

Stuckenia pectinatus and Stuckenia filiformis have more streamlined canopies with blade-

like leaves. It is likely that variations in community composition across the Delta 

contribute to the variation in responses to water velocity. 

4.2 Submerged vegetation cover constrains high turbidity   

 There is a significant negative relation between submerged vegetation cover and 

turbidity, and the results of the quantile regression suggest that submerged vegetation 

cover limits high turbidity in the Delta. This is a response that would be underestimated 

by ordinary least squares regression; submerged vegetation cover has a greater impact on 

higher turbidity values than on lower ones as demonstrated by Figure 3 in which the 

slope of the regression increases with increasing turbidity quantiles (Figure 3). Just as 

submerged vegetation cover is controlled by a number of factors (including velocity), 

there are many possible variables contributing to the variability of turbidity in this 

system. The Delta is characterized by high inter- and intra-annual hydrodynamic 

variability, and local variability in channel morphology and water velocity, as well as 

proximity to external sources of suspended sediment from the Sacramento River 

(upstream) and the Suisun Bay (downstream) all are likely to determine turbidity. 

Turbidity at some sites may be low or high without the presence of submerged vegetation 

due to these other explanatory variables, but at higher turbidities in the Delta, submerged 

vegetation cover will always constrain turbidity values. The 90th regression quantile is the 

best model for estimating changes in turbidity when submerged vegetation cover is the 

limiting factor.  Cause and effect is not proven here, but submerged vegetation cover as a 
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limiting factor on turbidity supports the hypothesized feedback in which submerged 

vegetation decreases turbidity which allows submerged vegetation to persist and possibly 

spread without the impediment of light limitation. 

 Unfortunately velocity and turbidity were not measured in the same locations, 

save for one site in Old River, which makes direct conclusions about the interactions and 

proposed feedbacks between velocity, submerged vegetation and turbidity difficult to 

make. However, Old River where all three factors are measured, velocity is high (1.0-1.8 

m·s-1) and should be limiting, submerged vegetation cover is low-moderate (4.5%), and 

turbidity is moderate (5-7 NTU). It will be useful to conduct more turbidity and velocity 

measurements in the same location. Such data would provide the information needed to 

conduct multivariate analyses which may shed further light on the interplay between 

these three factors. 

 Our study is observational, which leads us to conclude correlation, but not 

causation. An experiment which removed submerged vegetation from the environment 

and then recorded subsequent changes in turbidity would allow us to test predictions 

made from the submerged vegetation-turbidity feedback model. The application of 

herbicides to manage Egeria densa in the Delta by the California Department of Boating 

and Waterways (CDBW) Egeria densa Control Program (EDCP) has been successful in 

one location (Frank’s Tract) in the Delta beginning in 2007 (Santos et al. 2009). 

Successful treatment of Egeria densa at Frank’s tract resulted in a decrease in areal 

submerged vegetation cover from 2006 to 2007 of 47% (Santos et al. 2009) and 

continuation of treatment has resulted in a further decrease of 56% from 2007 to 2008. 

The reductions in submerged vegetation at Frank’s Tract provide a natural experiment in 
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which we can examine the effects of submerged vegetation removal on turbidity. 

Turbidity station D19 is located in the central-eastern portion of Frank’s Tract, a flooded 

island, or lake, which is now a popular recreation site for boaters and anglers. At site 

D19, submerged vegetation cover decreased from 4.7% in 2006 to 1.1% in 2007 (a 77% 

decrease) and mean growing season turbidity decreased from 6.6 (SD =5.3)  NTU to 5.1 

NTU (SD = 2.4). However, from 2007 to 2008, submerged vegetation cover was reduced 

again from 1.1% to 0.1% (a 91% decrease), and turbidity increased to 8.3 NTU (SD=3.9). 

This appears to at least follow the general linear relation we observe for turbidity 

response to submerged vegetation cover in a situation where submerged vegetation cover 

is the confirmed independent variable. In this case, turbidity at D19 for all of these years 

is not in the upper quantiles of turbidity distribution in the Delta (below the 50th quantile-

the median-for all years), which means that it may be influenced by factors in addition to 

or other than submerged vegetation cover (all points fall in the left corner of the wedge-

shaped distribution of points). However, when submerged vegetation cover is decreased 

an order of magnitude, the effects on turbidity become apparent, and turbidity increases 

by almost a full standard deviation.  

4.3 Impacts on endangered species habitat 

 The impact of submerged vegetation on turbidity may have consequences on 

habitat suitability for the endemic endangered delta smelt (Hypomesus transpacificus). 

High summertime water clarity, and the trend in increasing water clarity over the past 

several decades has contributed to the decline of the delta smelt (Jassby et al. 2002, 

Nobriga et al. 2005, Nobriga et al. 2008) and several studies have speculated that 

submerged vegetation has figured into this decline by acting as a water filter to reduce 
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turbidity (Nobriga et al. 2005, Brown and Michniuk 2007, Nobriga et al. 2008). 

Turbidities during the growing season range from 4.3 to 17.5 NTU, with the upper range 

of these turbidities (75th-90th quantile = 13.8-15.8 NTU) limited by submerged vegetation 

cover. This range of turbidities is the same range that is important to delta smelt: 

turbidities exceeding 12-15 NTU are a functional cue for delta smelt spawning migration 

(CALFED 2009), and reductions to these levels of turbidities may restrict the amount of 

habitat available to delta smelt (Nobriga et al. 2005). Submerged vegetation cover has the 

greatest impact on the habitat range most important to delta smelt; thus submerged 

vegetation may be directly reducing habitat quality for this endangered fish species. 

5. CONCLUSION    

 Submerged vegetation distribution in the tidal Sacramento-San Joaquin River 

Delta is controlled by high water velocity events. Most likely the variation in response of 

submerged vegetation cover results from channel morphology and hydrology, bed 

composition, and vegetation community composition. The estimated velocity threshold of 

0.49 m·s-1 comes from velocity measurements made at the channel-scale rather than from 

within the plant bed itself. Although this measurement may result in a loss of information 

about the interaction with water movement and the canopy and bed, it does provide us 

with a useful, quantifiable value that may inform invasive species management through 

altered flow regimes. Similarly, this value allows evaluation of potential impacts from 

proposed hydrologic diversions and restored or altered flows on submerged vegetation 

cover in the Delta.  Additionally, submerged vegetation cover is negatively associated 

with turbidity, and limits high turbidity in the Delta. This leads us to conclude that 

submerged vegetation cover has a direct impact on endangered delta smelt habitat by 
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constraining the amount of available habitat during the growing season (April-October). 

Although this may induce some to suggest system-wide removal of invasive submerged 

vegetation, removal success is unlikely (Santos et al. 2009). Even if successful, such an 

effort may not result in a sufficient increase in turbidities. Despite the eventual increase 

in turbidity upon reduction and then near removal of submerged vegetation in Frank’s 

Tract, water clarity was not sufficiently reduced to levels critical to delta smelt. Further, 

sediment supply to the Delta has been decreasing over the past 50 years due to upstream 

dam construction and flood control channels, diminishment of the hydraulic mining 

sediment pulse, and bank protection from extensive levee and rip rap construction 

(Wright and Schoellhamer 2004, McKee et al. 2006, Florsheim et al. 2008, Singer et al. 

2008). The existing sediment supply may not provide enough suspended matter to the 

Delta to increase turbidities to levels needed for delta smelt habitat in spite of submerged 

vegetation removal. This motivates us to encourage further research into the interactions 

between water velocity, submerged vegetation, and turbidity to determine how changing 

flows, sediment supply, and submerged vegetation invasion affect turbidity in the Delta, 

and how these may be managed to conserve and restore delta smelt habitat.  
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Table 1. Image acquisition dates and classification accuracies. The Kappa statistic ranges 
between 0-1.0, and is an indicator of the level of agreement between ground data and 
map data that accounts for the probability of random agreement. Both the overall kappa 
coefficient and the kappa coefficient relative to the submerged vegetation class are 
presented. The Producer’s and User’s accuracies for the submerged vegetation class 
detail the error of omission and commission (respectively). For a detailed discussion of 
image classification and performance see Hestir et al. (2010). 
 

Image Acquisition 
Overall 
Accuracy 

Overall 
Kappa 

Kappa 
submerged 

vegetation 

Producer’s 
Accuracy 

submerged 

vegetation 

User’s 
Accuracy 

submerged 

vegetation 
June 25, 2004-July 10, 2004 78.8% 0.65 0.83 64.7% 89.5% 

June 22, 2005-July 8, 2005 84.3% 0.70 0.79 80.0% 86.7% 

June 21, 2006-June 26, 2006 85.9% 0.77 0.83 82.4% 90.9% 

June 19, 2007-June 26, 2007 79.6% 0.69 0.71 72.2% 80.5% 

June 29, 2008-July 7, 2008 84.6% 0.69 0.54 55.8% 60.6% 

 

 

 

 

Table 2. Estimated regression parameters for 6 upper quantile regressions, the standard 
error for the estimated slope, and the t-statistic and probability that for H0: slope = 0 for 
each model.  

Quantile Intercept Slope Slope 
Standard error 

t p 

0.70 14.59 -0.533 0.109 -4.87 0.00001 

0.75 15.17 -0.569 0.102 -5.56 0.00000 

0.80 15.39 -0.489 0.098 -4.96 0.00001 

0.85 15.73 -0.510 0.086 -5.89 0.00000 

0.90 16.74 -0.576 0.073 -7.86 0.00000 

0.95 16.98 -0.592 0.499 -11.86 0.00000 
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Figure 1. The Sacramento-San Joaquin River Delta and the upper San Francisco Estuary. 
The area of waterways mapped for submerged vegetation is highlighted in grey. Within 
the mapping area, there are 10 turbidity stations indicated by black triangles, and 31 
water velocity stations indicated by white circles. Submerged vegetation cover within a 1 
km buffer around these stations was used for the study. 
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Figure 2. Mean submerged vegetation growing season turbidity (April-October) 
measured in NTU and submerged vegetation cover contained within a 1 km buffer 
around each turbidity station for 10 sites between 2004 and 2008 (n=60). There is no 
statistically significant difference in submerged vegetation cover between years, so each 
year was treated as replicate for each station. The 70th regression quantile is shown with a 
dashed line, and the 90th regression quantile is shown with a solid line. The 90th 
regression quantile describes the limiting condition of submerged vegetation cover on 
turbidity. The scatter of points below the quantile represents conditions under which 
turbidity is limited by a factor other than, or in addition to, submerged vegetation.  
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Figure 3. Estimated regression coefficients, intercept (top), and slope (bottom) from the 
linear quantile regression from 2nd-98th quantile (dots). The gray area shows the 95% 
point-wise confidence band. The gray solid line shows the estimated value from ordinary 
least squares estimates with the confidence intervals (dashed line). The upper black line 
in the slope plot shows the null hypothesis (H0: slope = 0).  
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Figure 4. Submerged vegetation cover and annual maximum water velocity measured in 
31 locations throughout the Delta from 2006-2008. The dashed line represents the 
velocity (0.49 m·s-1) at which the iterative t-test produced the most significant separation 
in submerged vegetation cover. We interpret this to be the velocity threshold that controls 
submerged vegetation cover in the Delta. The mean submerged vegetation cover below 
this threshold is 7.23% (n=48), and the mean above is 1.76% (n=38). 
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ABSTRACT 

 External forcings on aquatic ecosystems with submerged aquatic vegetation 

(SAV) can promote an ecosystem shift to an alternative meta-stable state (e.g. from a 

high-turbidity-low SAV state to a low turbidity-high SAV state) from which it is unlikely 

to revert back to its previous state (ecological hysteresis). We analyzed historic turbidity 

data from a tidal river delta in the San Francisco Estuary which has had both an 

anthropogenically-induced decline in sediment supply and an expansion of primarily 

invasive SAV over the past three decades. We found a significant negative trend in 

turbidity from 1975-2008, and when we removed the sediment supply signal from the 

trend we found the trend to still be significant and negative. The decreasing turbidity 

trend is correlated with SAV cover (R2=0.90), and we estimate the relative contribution 

of SAV to the decreasing turbidity trend is 21-70% of the total trend. We suggest the 

decreasing sediment supply favored SAV expansion and triggered an ecosystem regime 

shift into a state of low turbidity-high SAV.     

1. INTRODUCTION  

The interaction between turbidity, water movement and submerged vegetation is a 

positive feedback loop that often results in two different ecosystem states: high turbidity, 

low submerged vegetation; or low turbidity, high submerged vegetation (Scheffer et al. 
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1993, Madsen et al. 2001, Scheffer and van Nes 2007). In the first case, submerged 

vegetation is sparse, velocity is high, sediment resuspension is high and turbidity is high, 

all of which further limit the growth of submerged vegetation. In the second case 

submerged vegetation is dense which can reduce water velocity, thus decreasing 

turbidity, increasing sedimentation and increasing light availability which promotes 

further plant growth (Madsen et al. 2001, Crooks 2002, Schulz et al. 2003).  The strength 

of the feedback results in a strong biomodality of ecosystem regimes (e.g. high vegetation 

and clear water, or low vegetation and turbid water) (Figure 1). This propensity of aquatic 

ecosystems to occur in one of these two states and be reinforced through feedbacks has 

been well described in alternative stable state theory (Scheffer et al. 1993, Scheffer and 

Carpenter 2003, Scheffer and van Nes 2007). Alternative stable states make aquatic 

ecosystems vulnerable to catastrophic regime shifts and ecological hysteresis, an 

ecological condition under which a shift to an alternative state driven by a change in an 

external variable cannot be reversed to its previous state simply by reversing the 

modification of that variable (sensu Scheffer and Carpenter 2003, Scheffer et al., 2001). 

Ecological hysteresis presents complications to ecosystem management and restoration 

projects because the feedbacks that promote alternative stable states may make it 

impossible to restore an ecosystem by simply restoring environmental conditions to their 

previous circumstances (Scheffer et al. 2001).  

Catastrophic regime shifts are usually modeled for submerged aquatic vegetation 

and turbidity in shallow lakes in which nutrient loading is the external force that triggers 

the shift into hysteresis. Estuaries have multiple external controls on turbidity that 

complicate this model such as high mineral contribution to turbidity, sensitivity to 
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watershed (upstream) and coastal (downstream) inputs, tidal fluctuations, short residence 

times and strong top down control by benthic suspension feeders (Jassby et al. 2002). 

Additionally, estuaries are often characterized by high hydrodynamic and sediment 

variability. Such environmental heterogeneity can determine hysteresis and may smooth 

ecosystem responses, weakening the potential for catastrophic regime shifts (van Nes and 

Scheffer 2005). In this study we used remote sensing submerged vegetation maps and 

field monitoring data from a highly modified, ecologically impaired tidal river delta to 

investigate trends in turbidity and submerged vegetation in the context of submerged 

vegetation-turbidity feedbacks. We then appraised the implications of our findings to the 

possibility of hysteresis and observed ecosystem shifts.  

1.1 Site Description 

The Sacramento-San Joaquin River Delta (henceforth, “the Delta”) drains over 

160,000 km2 of California into the Pacific Ocean via the San Francisco Bay (Figure 2). 

The Delta is a tidal river network of levee-bound channels, rivers, and flooded tracts of 

lands (or lakes) that comprise the upstream component of the San Francisco Estuary, the 

largest estuary in the Western United States. The hydrodynamic heterogeneity of the 

Estuary is manifest in a wide variety of salinities, tidal fluxes, and seasonal and intra-

annual inflows reflecting the Mediterranean climate of California. The Delta is critical 

habitat to several threatened and endangered species. In the Delta, turbidity has become 

one of the focal water quality indicators for the endemic and endangered Delta smelt 

(Hypomesus transpacificus). Since 2000, the abundances of four key pelagic fish species 

in the Delta, including the Delta smelt, have declined precipitously (Sommer et al. 2007), 

and reduced suspended sediment concentrations and turbidity have been identified as one 
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of the critical contributors (Nobriga et al. 2005). Delta smelt are dependent on highly 

turbid water (>18 NTU) for successful feeding (Baskerville-Bridges et al. 2004), and 

their habitat use is directly linked to regions in the Delta with higher turbidities (Nobriga 

et al. 2005, Feyrer et al. 2007). Additionally, increasing water clarity in the Estuary has 

contributed to a shift in species composition, timing, and variability of primary 

production (Jassby et al. 2002) which raises serious concerns about the stability of the 

food web and the importance of nutrient inputs in a traditionally light-limited estuary.   

The concentration of total suspended solids, the primary factor controlling 

turbidity in the Delta, has decreased from 1975-1995 (Jassby et al. 2002). At this same 

time, two events have occurred that may explain the decrease in turbidity: 1) expansion 

of submerged aquatic vegetation (SAV), and 2) decreased sediment supply. The 

expansion of SAV includes the invasive Brazilian waterweed (Egeria densa) which has 

been actively changing aquatic habitat in the Delta (Service 2007, Santos et al. 2009). 

First reported in the Delta in 1946 as a result of aquaria release (Light et al. 2005), 

Brazilian waterweed has been rapidly expanding in the Delta over the past three decades 

(Jassby and Cloern 2000), and acting as an ecosystem engineer by aiding the 

establishment of other native and submersed species (Santos et al. 2009). Brazilian 

waterweed is the dominant submerged aquatic plant species in the Delta: 85% of the 

submerged aquatic vegetation community biomass is contributed by Brazilian waterweed 

(Hestir et al., unpublished data). We hypothesized that a feedback loop between turbidity 

and SAV in this estuary may explain the decrease in turbidity. However, the supply of 

suspended sediment, considered equivalent to suspended solids in this estuary (Gray et al. 

2000), has also decreased. The Sacramento River is the primary source of suspended 



112 
 

 

sediment and the dominant sediment pathway to the Delta (Wright and Schoellhamer 

2004, 2005). Sediment supply from this river decreased 50% from 1957-2001 due to 

diminishment of the hydraulic mining sediment pulse (McKee et al. 2006), sediment 

trapping behind dams in the upper watershed (Wright and Schoellhamer 2004), 

deposition in flood bypasses (Singer et al. 2008), and bank protection from riprap 

construction (USFWS 2000, Florsheim et al. 2008). Therefore we considered the effect of 

decreased sediment supply in our study in order to address the alternate hypothesis that 

external, upstream controls on turbidity explain decreased turbidity. 

2. METHODS 

2.1 SAV distribution data 

We used SAV maps from Hestir et al. (2010) for the contemporary SAV 

distribution, and a review of previous field surveys and reports to infer historical SAV 

distribution. The contemporary SAV maps were derived from classification of airborne 

imaging spectroscopy collected in June and July 2004-2007. The maps have a ground 

resolution of 3 x 3 m (9m2), and the overall classification accuracies for each year ranges 

from 79-85%, with target class (SAV) Kappa coefficients (an indicator of the level of 

agreement between ground data and map results that accounts for the probability of 

random agreement) ranging from 0.71-0.83, indicating very good agreement with ground 

reference data (Monserud and Leemans 1992) (Table 1) (Hestir et al. 2010a). Final SAV 

maps were exported to shapefiles.  

 We generated a 1 km radius around each turbidity station using ArcMap 9.2 

(ESRI, Redlands, CA) and calculated the percent cover of water area covered by SAV. 

Based on average settling rates and water velocity, we selected 1 km as a sufficient 
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distance for suspended sediment to adjust to the conditions of the channel; in a typical 

Delta channel, the amount of time it takes a particle to settle from the water surface to 

bottom [5 m/10-3 m/s ≈ O (1hr)] is on the same order of magnitude as the time it takes a 

parcel of water to move 1 km [100 m/0.3 m/s ≈ O (1hr)] (Hestir et al. 2010b). 

In order to estimate the SAV trend from 1975-2008 we first calculated the 

average SAV cover from 2004-2008 within each of the turbidity sites in order to 

minimize the influence of year to year fluctuations in SAV cover, even though these were 

minimal. Using a pair-wise Student’s t-test, we found no statistically significant 

difference in SAV cover between years at each site, thus the average cover of 2004-2008 

is representative of the contemporary SAV cover at the turbidity monitoring stations. 

Field surveys conducted in the 1970s and reported in 1979 found one occurrence of 

Brazilian waterweed with negligible cover (no patches greater than 10m2), minimal 

occurrence and cover of exotic milfoil (Myriophyllum spicatum) (three 10-20 m2 sites 

with < 5% cover, and one with 6-25%), and minimal occurrence of native sago pondweed 

(Pomatogeton/Stuckenia pectinatus) and native waterweed (Elodea canadensis) (Atwater 

et al. 1979). Brazilian waterweed and SAV cover was minimal until the 1990s (Jassby 

and Cloern 2000, Brown and Michniuk 2007) when a significant expansion occurred: 35 

of 204 reaches, i.e.  17.2% of reaches (1000 m) sampled in 1980-1983 had SAV present 

at any percent cover and most had less than 50% cover, whereas 133 of 389 (34.2%) 

reaches sampled in 2001-2003 had 100%  SAV cover (Brown and Michniuk 2007). By 

the late 1990s the rapid expansion of SAV resulted in a Delta-wide SAV cover of 

approximately 1830 ha in 1997 as estimated from color-infrared aerial photos (Jassby and 

Cloern 2000), a cover which appears to have stabilized. Mapping results from Hestir et 
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al. (2010) show fluctuation in SAV cover between the years 2004-2008, but the mean 

total cover for all of those years was 1817 ha. Based on this review of past studies we 

assumed the mean 2004-2008 SAV cover represents the trend in SAV from 1975, when 

there was little or no SAV present prior to its rapid expansion to 2008. [(SAV2004-2008-

SAV1975)/33yrs = SAV2004-2008/33yrs]. 

2.2 Turbidity data 

 Turbidity, 1 m below the surface, is measured monthly by the California 

Department of Water Resources (http://bdat.ca.gov/) (Figure 3). Eight sites in the Delta 

were active from 1975-2008 and were within the SAV mapping area used in this analysis 

(Figure 1). A ninth site, D10, is west of the SAV mapping area, but was included in the 

trend analysis. For the San Francisco Bay, Ganju et al. (2007) found a linear relation 

between SSC and turbidity. Thus we considered trends of turbidity and SSC in units of 

percent mean value per year to be comparable.  

2.3 River sediment data 

 The US Geological Survey measures daily average suspended sediment 

concentrations (SSC) and suspended sediment discharge in the Sacramento River at 

Freeport (site 1147650) and on the San Joaquin River at Vernalis (site 11303500) 

(http://waterdata.usgs.gov/nwis). The Freeport station began operation in 1979. From 

water years 1957-1978, data were collected at a station upstream, but the two stations are 

considered equivalent (Wright and Schoellhamer 2004). 

2.4 Turbidity trend test 

 We used the Seasonal Kendall test, a nonparametric method used to identify 

monotonic trends in water quality data that accounts for seasonal variability (Helsel and 
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Hirsch 1992) to determine whether there was a decreasing turbidity trend in the Delta. 

The tests were implemented in the ESTREND program (Schertz et al. 1991) for SPlus 

(TIBCO Spotfire S+ 8.1) (http://bwtst.usgs.gov/apps/s-plus/index.html). We considered a 

trend to be significant if p<0.05. We applied the trend test to Delta turbidity and turbidity 

corrected for sediment supply to identify whether there was a significant decreasing trend 

in turbidity that is not explained by decreased sediment supply. For the sediment supply 

correction, we used the mean SSC at Freeport in the Sacramento River for the five days 

prior to collection of the turbidity sample. A five day mean was used as travel time from 

the Sacramento River into the Delta, which varies by 1-6 days (Kuivila and Foe 1995), 

varying by location in the Delta and river flow. We applied linear regression to the log 

transformed 5 day mean flow and SSC at Freeport which removed the effect of variable 

flow from the SSC data, thus improving the statistical significance of the trend in 

decreasing sediment supply. At each turbidity site in the Delta, we applied linear 

regression to the log-transformed turbidity and to the Freeport residual SSC. We then 

applied the Seasonal Kendall test to the residual turbidity to determine the sediment 

supply corrected trend. 

3. RESULTS 

3.1 Turbidity trend without sediment supply adjustment 

 Turbidity in the Delta significantly decreased at eight of nine sites from 1975-

2008 (Table 2). The only site without significant decrease was D22 on the Sacramento 

River, which had a decreasing trend but with a slightly higher p-value (p=0.06). At the 

sites with a significant downward trend, the slope of the trend ranged from -1.1% to -

2.3% of the mean site turbidity per year. 
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3.2 River sediment supply trend with and without flow adjustment 

 Flow correction proved to be necessary to detect a significant downward trend of 

SSC in the Sacramento River with the Seasonal Kendall test. The 5-day mean suspended 

sediment concentration in the Sacramento River from 1975-2008 had a downward trend 

that had a p-value 0.064, slightly greater than 0.05. Regression of log-transformed 5-day 

mean SSC and discharge had an R2 of 0.56. The downward trend p-value was 0.0065 

when SSC was corrected for the 5-day mean discharge. The slope of the downward trend 

was -1.3% of the mean SSC per year.  

 The 5-day mean SSC in the San Joaquin River from 1975-2008 had a downward 

trend that had a p-value of < 0.0010. The slope of the downward trend was also -1.3% of 

the mean SSC per year. Flow and SSC are poorly correlated in this river, thus flow 

correction has a negligible effect on trend.  

3.3 Turbidity trend adjusted for sediment supply 

 Most sites still had a significant downward trend in turbidity after adjusting for 

sediment supply (Table 2). Adjusting for sediment supply made the trends less significant 

(increased p-values). Sites in the Sacramento River, (D22 and D4) and downstream from 

the confluence of the Sacramento and San Joaquin Rivers (D10) did not have significant 

downward trends in supply adjusted turbidity. Sites upstream from the confluence and 

not in the Sacramento River retained a less significant downward turbidity trend. The 

slope of the downward trend at these sites ranges from -0.83% to -2.07% of the mean site 

turbidity per year.  

 Turbidity in the Sacramento San Joaquin River Delta has decreased from 1975-

2008. The downward trend in turbidity increased, and the significance of the downward 



117 
 

 

trend in turbidity increased as SAV cover at monitoring sites increased (Table 2). 

Correcting turbidity for the Sacramento River sediment supply reduced the downward 

trend, and decreased the significance of the trend downstream of the Sacramento River. 

Among those sites with a significant trend, the average trend in decreased turbidity 

unadjusted for sediment supply was -1.6%/year of the mean site turbidity per year, and 

the average decreasing trend when adjusted for sediment supply was -1.3% of mean site 

turbidity per year. These decreasing trends correspond to an observed expansion of SAV 

from little or no cover at the beginning of the time series (1975) to its current distribution 

in which SAV infests approximately 6% of the water surface. Furthermore, stations with 

higher rates of invasion (larger values of % cover/year) had steeper and more significant 

trends.  

To estimate the relative effect of SAV on the turbidity trend relative to decreasing 

sediment supply, we can use two approaches to retrieve the upper and lower bounds for 

the effect of SAV relative to decreased sediment supply. First the trend in river sediment 

supply,       -1.3%/year is assumed to be equal to the unadjusted turbidity trend 

throughout the Delta. This assumption overestimates the effect of river supply, and 

underestimates the effect of SAV because river waters mix with Bay waters in the Delta. 

Where the unadjusted turbidity trend is less negative than -1.3%/year, the trend due to 

SAV is assumed to be zero. The difference between the unadjusted turbidity trends and 

the sediment supply trend is the turbidity trend due to SAV: 0.0 to -1.0%/year; up to 44% 

of the strongest trend (figure 4). The second approach assumes the adjusted turbidity 

trend contains only the effect of the SAV. The turbidity trend due to decreased sediment 

supply is then the difference in the unadjusted and adjusted trends. This assumption 
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overestimates the effect of the SAV, as the adjusted turbidity trend likely includes factors 

other than SAV. The trend due to SAV is -0.83 to -2.07%/year, or 40%-100% of the 

strongest trend (Figure 4).  

4. DISCUSSION 

Trends in suspended sediment concentration (SSC) in the Sacramento River and 

unadjusted turbidity in the Delta support findings from previous studies that observed 

significant declines in turbidity and suspended sediments in this system. Wright and 

Schoellhamer (2004) found the sediment yield of the Sacramento River decreased by 

about one-half from 1957-2001, and the trend was -1.1% of the mean value per year. This 

is similar to the -1.3%/year trend found for 1975-2008 in this study. Unlike the 

Sacramento River, the San Joaquin River watershed did not experience hydraulic mining, 

but it is much more regulated and impounded than the Sacramento River, which may 

explain the identical declining SSC trends. Jassby et al (2002) analyzed total suspended 

solids (TSS) data from many of the same sites used in this study and also found a 50% 

decrease from 1975-1995. They found a TSS (equivalent to the SSC trend (Gray et al. 

2000)) trend of -2.4%/year which is near the upper limit of turbidity trends found in this 

study (Table 2). The present study is the first to examine turbidity trends with the supply 

signal removed, and our findings support the hypothesis that the expansion of submerged 

aquatic vegetation in the Delta may be contributing to the observed increase in water 

clarity. 

Even with the sediment supply signal removed from the trend analysis, significant 

decreasing trends were still identified at 6 of the 9 sites. Of the three sites that did not 

have a significant trend after supply adjustment, two had information available about 
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associated SAV cover (D22 and D4), and both of these sites had mean SAV cover below 

both the average (2.47%) and median (1.35%) cover of all the sites. The two sites with 

the strongest decreasing turbidity trend, D28A and D19 both had significantly higher 

mean SAV cover than the other sites (pairwise Student’s t). When the turbidity trend is 

adjusted for sediment supply, the strength of the trend between sites switches: D28, 

which has higher cover, has a larger trend than D19. This indicates the importance of 

SAV cover to the decreased turbidity trend.  Furthermore, SAV cover and decreased 

turbidity trends are collocated; sites with greater SAV cover have higher trend 

significance (smaller p-value), and a stronger trend (steeper slope). This can be quantified 

with linear regressions between log-transformed p-values and mean SAV cover for both 

supply adjusted and unadjusted turbidity trends, which are significant, as are linear 

regressions between the slope and mean SAV cover (Table 3). Most meaningfully, 2004-

2008 mean SAV cover explains 90% of the supply adjusted turbidity trend variation for 

sites with a significant decreasing turbidity trend (Figure 5).  That is, after removal of one 

explanatory variable for declining turbidity (sediment supply), turbidity is still 

significantly decreasing at 6 sites, and this decline is highly correlated with SAV cover.  

Our results are consistent with a previous study using experimental ponds that found 

turbidity decreased with increased vegetation volume (Nakamura et al. 2008). 

The sediment supply from the Sacramento River can be considered an external 

(upstream) variable controlling turbidity trends. Therefore, the removal of this upstream 

variable and the resulting decreasing turbidity trend implies an internal (instream) control 

of turbidity. Water optical properties in the Delta, as in most estuaries, are explained 

primarily by suspended minerals (Cloern 2001, Jassby et al. 2002), and since the vast 
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majority of river banks within the Delta are riprap that effectively eliminates bank 

erosion, turbidity is most likely a function of water column-bed sediment settling and 

resuspension dynamics. These dynamics are influenced by the presence and density of 

SAV. One factor we do not consider in this analysis is the interaction of the Delta and the 

San Francisco Bay, the downstream variable. Tides exchange water and suspended 

sediment between the two, and a decrease in Bay SSC would decrease SSC in the western 

Delta within several kilometers (one tidal excursion) of the Bay. There was a statistically 

significant step change in the water year mean SSC between 1998 and 1999 at station 

D10 (Mallard Island, where SSC is monitored continuously) (Schoellhamer 2009). This 

decline in SSC may contribute to some of the decreasing turbidity trend identified in this 

study, especially for the westernmost Delta sites. 

We estimate the relative contribution of SAV to the decreasing turbidity trend 

averages between 21%-70% of the total trend (the median of the estimated upper and 

lower bounds in figure 4), and that this contribution varies with SAV cover; the fraction 

of decreasing turbidity trend attributable to SAV increases as SAV cover increases. For 

SAV cover less than 2%, upstream influences may be more important to the turbidity 

trend, whereas for cover greater than 5%, instream influences contribute more to the 

decreasing turbidity trend. Eighty-five percent of the surface area of channels with SAV 

present have greater than 5% SAV cover (4.9% of the total surface area of Delta waters) 

(Figure 6) and in these areas we expect SAV to play the dominant role in increasing 

water clarity, and the subsequent ecologic impacts observed:  decreased phytoplankton 

(Jassby et al. 2003), decreased fish abundances (Sommer et al. 2007), increased harmful 
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algal blooms (Jassby et al. 2003), and persistent and increasing SAV distribution (Santos 

et al. 2009). 

4.1 Regime shift 

There are clear linkages between submerged aquatic vegetation (SAV) and 

increased water clarity; SAV is light limited and can be controlled by high turbidity, but 

SAV can also increase water clarity, promoting its own expansion. It is suggested that 

spatial heterogeneity of the environment reduces the chance of a regime shift, and change 

may be more characteristic of a smooth large-scale response rather than an abrupt shift 

(Scheffer and van Nes 2007). However, intense dispersion of matter and organisms may 

counteract the heterogeneity of a system, and a large-scale regime shift may still occur 

(van Nes and Scheffer 2005). This is a likely scenario in a tidal river system. Although at 

a Delta-wide scale, SAV cover significantly decreased from 2006-2007 (Tukey-Kramer 

HSD test) from a total of 2324 ha to 1827 ha and significantly decreased again from 

2007-2008 (1827 ha-927.6 ha). We do not observe a significant difference in turbidity 

between any years 2004-2008. This may be due to the fact that there is no significant 

difference in SAV cover in the 1 km buffers at turbidity monitoring sites between any of 

the years; however, it may also indicate the current stability of the new ecosystem 

regime. That is, SAV cover is changing in certain areas which are geographically 

dispersed (a heterogeneous environment in terms of cover), but if the ecosystem has 

undergone a regime shift, then it may be in hysteresis and may not revert back to its 

previous high-turbidity state even with a reduction in SAV cover.  

In shallow lake models, nutrient loading leads to changes in turbidity, thus forcing 

an ecosystem regime shift to its alternative meta-stable state. Estuaries, on the other hand, 
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have other external controls that complicate this model, such as high mineral contribution 

to turbidity such that they are not considered nutrient limited (Jassby et al. 2002), and are 

sensitive to both watershed (upstream) (Li et al. 2007, Loverde-Oliveira et al. 2009) and 

coastal (downstream) influences (Cho and Poirrier 2005). For example, in Lake 

Pontchartrain, Louisiana, SAV cover was dominated by sensitivity to climate forcing on 

inflow and salinity rather than nutrient loading and light limitation (Cho and Poirrier 

2005).  Nonetheless, our results provide a preponderance of evidence that leads us to 

suggest that we have observed a regime shift in the Delta from a state of high turbidity, 

low SAV at or prior to 1975 to that of low turbidity, high SAV in its current state. 

Historic sediment inputs to the estuary were high, which limited SAV. As the hydraulic 

mining sediment pulse moved through the estuary and sediments were trapped upstream, 

light conditions began to favor expansion of SAV. Our study demonstrates that the trend 

in turbidity declines after 1975 may be largely explained by this expansion of SAV. We 

postulate that a tipping point was reached, and a new ecologic regime of high SAV-low 

turbidity is now in place. Furthermore, the current state is at a sort of equilibrium in 

which SAV cover is limiting high turbidity, and SAV cover is currently controlled by 

channel flow velocities, rather than light limitation (Hestir et al. 2010b) and may not 

revert to its previously turbid state, even upon removal or reduction of SAV cover. 
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Table 1. Image acquisition dates and classification accuracies for SAV distribution maps. 
The Kappa statistic ranges between 0-1.0, and is an indicator of the level of agreement 
between ground data and map data that accounts for the probability of random agreement. 
Both the overall kappa coefficient and the kappa coefficient relative to the submerged 
vegetation class are presented. The Producer’s and User’s accuracies for the submerged 
vegetation class detail the error of omission and commission (respectively). For details 
about image classification and performance see Hestir et al. (2010). 

Image Acquisition 
Overall 
Accuracy 

Overall 
Kappa 

Kappa 
submerged 

vegetation 

Producer’s 
Accuracy 

submerged 

vegetation 

User’s 
Accuracy 

submerged 

vegetation 
June 25, 2004-July 10, 2004 78.8% 0.65 0.83 64.7% 89.5% 

June 22, 2005-July 8, 2005 84.3% 0.70 0.79 80.0% 86.7% 

June 21, 2006-June 26, 2006 85.9% 0.77 0.83 82.4% 90.9% 

June 19, 2007-June 26, 2007 79.6% 0.69 0.71 72.2% 80.5% 

June 29, 2008-July 7, 2008 84.6% 0.69 0.54 55.8% 60.6% 

 

 

 

Table 2. SAV and turbidity trends from 1975-2008 at the nine monitoring stations. The 
SAV cover trend is given in percent cover per year. The significance (p) from the 
Seasonal Kendall trend test, and the resulting slope of the trend given in percent of the 
mean site turbidity per year for turbidity with and without suspended sediment supply 
adjustment. Asterisks (*) denote significant p-values (p< 0.05).   

Site Mean SAV cover 
within 1 km, 
2004-2008 

SAV cover trend 
(%/yr) 1975-2008 

No supply adjustment Adjusted for supply 

p Trend 
(%/yr) 

p Trend 
(%/yr) 

D16 0.84%      0.03 

 

 

 

< 0.001* -1.44 0.008* -1.08 
D19 5.99% 0.18 < 0.001* -2.33 < 0.001* -1.84 
D22 0.19% 0.01 0.066 -0.90 0.43 -0.37 
D26 1.46% 0.04 < 0.001* -1.33 0.048* -0.83 
D4 1.24% 0.04 0.006* -1.15 0.12 -0.66 
D10 - - 0.019* -1.10 0.17 -0.60 
D12 1.67% 0.05 < 0.001* -1.67 0.024* -0.92 
D28A 7.26% 0.22 < 0.001* -2.22 0.0001* -2.07 
P8 1.08% 0.03 < 0.001* -1.35 0.014* -1.15 
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Table 3. Summary of linear regressions between significance (p value) and trend (slope) 
of trend test for sediment supply adjusted and unadjusted turbidity versus 204-2008 mean 
SAV cover. All regressions were significant (p<0.05, noted with an asterisk *), and SAV 
cover is most strongly correlated with the sediment supply adjusted turbidity trend.   

 Supply 
adjusted? 

Equation R2 Significance 

p-value vs SAV No Log(p) = -5.65-0.75(SAV) 0.56 0.032* 

p-value vs SAV Yes Log(p) = -2.11-0.93(SAV) 0.82 0.002* 

Trend (slope) vs SAV 
(all sites) 

No Trend = -1.11-0.18(SAV) 0.85 0.001* 

Trend (slope) vs SAV 
(all sites) 

Yes Trend = -0.61-0.20(SAV) 0.86 <0.001* 

Trend (slope) vs SAV 
(significant sites) 

No Trend = -1.19-0.16(SAV) 0.86 0.003* 

Trend (slope) vs SAV  
(significant sites) 

Yes Trend = -0.78-0.17(SAV) 0.90 0.003* 
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Figure 1. Two aquatic ecosystem regimes reinforced by feedbacks between water 
velocity, submerged aquatic vegetation amd turbidity. In the first state, submerged 
aquatic vegetation is sparse, water velocity is high, sediment resuspension is high, and 
turbidity is high. In the second state submerged vegetation is dense, water velocity is low, 
and turbidity is low. The potential for two possible ecosystem regimes makes ecosystems 
with these feedbacks vulnerable to catastrophic regime shifts once a change in an external 
factor reaches a critical tipping point. Conceptualized from Madsen et al. (2001) and 
Scheffer et al. (1993). 
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Figure 2. The upper San Francisco Estuary, including the Sacramento-San Joaquin River 
Delta is located in the Central Valley and coast of California. The SAV mapping area is 
indicated in grey, monthly turbidity monitoring stations are represented by black 
triangles, and suspended sediment concentration stations are designated by stars.
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Figure 3. Monthly turbidity measurements at nine monitoring stations in the Delta (see 
Figure 1 for station location information) from 1975-2008. Gaps in the time series (blank 
regions) are periods when data were not collected. Note turbidity (in NTU) is displayed 
on log-scale on the y-axes.  
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Figure 4. The portion of the decreasing turbidity trend attributable to submerged aquatic 
vegetation (SAV) as a function of contemporary SAV cover at sites with significant 
supply-adjusted trends. The lower bound assumes the trend in river sediment supply is 
equal to the supply turbidity trend, overestimating the effect of river supply and 
underestimating the effect of SAV. The upper bound assumes the turbidity trend adjusted 
for sediment supply is due entirely to SAV, overestimating the effect of SAV on the 
trend. The mean of these two estimates is represented by open circles.   
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Figure 5. A plot of the slope of the sediment supply adjusted turbidity trend (in percent of 
the mean site turbidity per year) at sites with significant decreasing trends against the 
corresponding 2004-2008 mean submerged aquatic vegetation (SAV) cover in percent. 
SAV cover and the declining turbidity trend are negatively correlated (R2 = 0.90); sites 
with greater SAV cover have stronger, more significant decreasing turbidity trends. 
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Figure 6. Reaches of the Delta that contain greater than 5% SAV cover (in dark grey). 
These reaches constitute 85% of all channels with any SAV present; 4.9% of the total 
water surface area. In these reaches, we expect SAV to have a considerable impact on 
increased water clarity.  
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CONCLUSIONS 

Remote sensing provides a synoptic solution for monitoring submerged aquatic 

vegetation distribution over extensive river networks.  However, mapping and monitoring 

the distribution of submerged aquatic vegetation (SAV) is difficult due to limited access 

to aquatic field sites, as well as the added problem of additional weed dispersal upon boat 

contact with vegetation patches. There are additional remote sensing challenges 

associated with successful SAV detection, including meterological conditions, water 

depth and water clarity, and pixel mixing. Appropriately distributed training data, as well 

as narrow-band reflectance data across the visible-shortwave infrared spectrum, is needed 

to successfully detect SAV. Constraining flight times for image acquisition to morning 

and afternoon low tide conditions can further improve detection.  

I used a systematic, automated machine learning classification to detect SAV 

from hyperspectral remote sensing imagery with reasonable accuracies. However, 

discrimination between SAV and water still remains challenging, especially when SAV 

patches are sparse, or very deep in the water column.  

 There are feedbacks between SAV, water movement, and turbidity in estuaries, 

despite the sediment-dominated turbidity as well as the spatial and temporal variability in 

hydrology and SAV distribution. Furthermore, these feedbacks have contributed to the 

decreasing turbidity trend in the Sacramento-San Joaquin River Delta, negatively 

impacting endangered Delta smelt (Hypomesus transpacificus) habitat. Annual maximum 

water velocities exceeding 0.49 m·s-1 control SAV cover for the years 2004-2006. In 

reaches with annual maximum velocities below this threshold, other environmental 

conditions and species specific plant traits influence SAV distribution. There is also a 
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significant negative relation between SAV cover and turbidity, and SAV cover from 

2004-2008 is limiting turbidities in the peak growing season: SAV is most limiting on 

turbidities ranging from 13.8-15.8 NTU. Recent research attributes the decline of the 

Delta smelt to high summertime water clarity and the trend in increasing water clarity 

over the past several decades (Jassby et al. 2002, Nobriga et al. 2005, Nobriga et al. 

2008). The constraint SAV places on turbidities in the peak growing season is likely 

contributing to the degradation of Delta smelt habitat quality, thus negatively impacting 

this endangered fish. 

Not only do the feedbacks between SAV, turbidity, and water velocity impact 

current ecosystem quality in the Delta, but it is likely that these feedbacks contributed to 

the decline of the ecosystem’s health over the past 30 years, and may have forced a shift 

in the ecosystem regime. Turbidity in the Delta experienced a significant decreasing trend 

from 1975-2008, and the expansion of SAV contributed to 21-71% of the total trend. 

Sediment supply to the Delta has decreased approximately 50% since 1957 (Wright and 

Schoellhamer 2004) due primarily to anthropogenic activities in the watershed including 

dam construction on nearly every tributary into the Delta, upstream diversions, rip-rap 

bank protection and the diminishment of the hydraulic mining pulse. These disturbances 

to the sediment supply led to an increase in light availability and a rapid expansion of 

invasive SAV, and the positive feedback between SAV, turbidity, and water movement 

likely caused the system to shift from a low-SAV, high turbidity state into a high-SAV, 

low-turbidity state.  

Alternative stable-state theory predicts ecosystem hysteresis in systems with two 

potential ecosystems states reinforced by positive feedbacks, such as aquatic ecosystems 
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dominated by SAV (Scheffer et al. 1993, Scheffer et al. 2001, Scheffer and Carpenter 

2003). Under ecosystem hysteresis, instead of a dynamic ecosystem that responds 

smoothly to a change in external conditions, an ecosystem is likely shift into an 

alternative regime once a change in the external factor reaches a critical tipping point. 

This shift is called “catastrophic regime shift” because once shifted, the system is 

unlikely to switch back to its previous state, even if there is a modification in the external 

condition (Scheffer et al. 2001). It is very likely that the Delta has or may soon undergo 

such a shift; if this happens, then in spite of current efforts to remove invasive SAV from 

the system by state agencies it is unlikely to transition back to its previous light limited 

condition.  

More research is needed to better understand the multivariate interaction between 

water velocity, turbidity, and SAV, and how those interactions vary across SAV species 

and community composition. Does species composition influence the strength of the 

feedbacks? How might changing flows, sediment supply, and SAV species composition 

affect the interactions between water movement, SAV, and turbidity? Are there possible 

ways to manage these external variables in such a way that promotes regime shift in a 

“desirable” direction that aids species conservation efforts?  This dissertation is but a first 

step in understanding the interactions between SAV, turbidity, and water movement in 

highly modified estuaries.  The implications of the potential for ecosystem hysteresis in 

the Delta cannot be ignored by resource managers in the face of plans to drastically alter 

water conveyance through the system while conserving and restoring Delta smelt habitat, 

and planning for the impacts of climate change on the Delta’s water quality and water 

quantity.  
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