"Conservation Planning Foundation for Restoring Chinook Salmon (*Oncorhynchus tshawytscha*) and *O. mykiss* in the Stanislaus River"

A Structured Approach for Conservation and Recovery Planning

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

Where did the SEP originate?

Bay-Delta Water Quality Control Plan Update

SEPs Evolution Science Team Bay-Delta Water Quality Control (SEP) Plan Update **Current San Joaquin Settlement Process**

SEP Team:

American Rivers : John Cain, Sara Larsen

The Bay Institute: Jon Rosenfeld, Alison Weber-Stover

CDFW: John Shelton, Stephen Louie, Tim Heyne

National Marine Fisheries Service: David Swank, Rachel Johnson, John Wooster, Brian Ellrott, Monica Gutierrez, Rhonda Reed, Stephen Edmondson, Sierra Franks

The Nature Conservancy: Jeanette Howard, Julie Zimmerman

Trout Unlimited : Rene Henery

US Fish and Wildlife Service: John D. Wikert, Paul Cadrett, Ramon Martin

Anchor QEA: John Ferguson, Elizabeth Appy

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

Current Challenges

Desired Outcomes for Salmon recovery (valley-wide goals) have been established

- CVPIA/AFRP
- Water Quality Control Plan
- ESA
- Fish and Game Code, etc.

But they often lack the articulation (i.e., **specific measurable achievable relevant and timebound biological or environmental "objectives")** to make them implementable

Flow applied as a proxy for environmental conditions

- Provides less flexibility to maximize beneficial uses
- Does not address non-flow measures

In the absence of S.M.A.R.T. objectives, difficult to design, prioritize, or measure success of recovery actions

Process Products Include

S.M.A.R.T. biological and environmental objectives

- Describe desired conditions for species and habitats
- *Biological objectives* describe and set bars for healthy populations through time as they progress towards, achieve, and maintain target population levels
- Environmental objectives describe and set bars for the habitat conditions in the system (including timing and spatial extent) necessary to achieve and support biological objectives

Prioritized description of stressors

- Relate current conditions to biological and environmental objectives in a way that:
 - Informs sequencing of implementation actions
 - Calibrates anticipated outcomes by scope of impact

Process Products <u>Do Not</u> Include

Conservation Actions

- SEP Biological and Environmental Objectives are agnostic about the approach taken to achieve them
 - Allows for a wide variety of potential solutions
- Different combinations of flow and non-flow actions may achieve the same desired conditions
 - In those cases, other factors (policy, economics, practicality) will determine which combinations are preferred
- Flow levels may be "solved for"
 - Given assumptions about other habitat conditions, what level of flow is needed to produce desired outcomes
- Need for passage determined as part of a comprehensive assessment of stress

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

Scope Policy

Set objectives for the Stanislaus that harmonize desired outcomes of numerous policies, including:

- CVPIA, AFRP
- Water Quality Control Plan
- ESA
- Fish and Game Code, etc.

Scope Geographic

Set objectives for the Stanislaus that:

- Can be attained by actions in that watershed
- Are independent of outcome elsewhere in the anadromous life history
- Serve Central Valley Goals and High Level Desired Outcomes

* Does not explicitly address southern Delta nor larger estuary

Scope Biological

Three salmonid populations

- Fall run Chinook salmon
- Spring run Chinook salmon
- Oncorhynchus mykiss

* Stanislaus document does not cover desired outcomes for other species or ecosystem functions or necessary conditions to support them, in the Stan or beyond

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

Goal: Support the fullest expression of fall run Chinook salmon life history diversity in order to increase population stability, resilience, and productivity.

Objective #1: (Life History – Timing of Migration)

By year 12, in every year, migration of fall run Chinook salmon spawned in the Stanislaus River will be detected in every week*

	Caswe	ell RST	Mossdale** Trawl			
Size	Start	End	Start	End		
Fry (<55mm)	Last week of January	2 nd week of April	***	***		
Parr (55mm>x<75mm)	1st week of February	Last week of May	2 nd week of February	1st week of June		
Smolt (>75mm)	3rd week of February	1st week of June	Last week of February	2 nd week of June		

* Until mean daily temperature at Mossdale \geq 25°C.

** Tributary contribution can be assigned (e.g. by otolith analyses)

*** Mossdale Trawl does not reliably detect fish <55mm.

Goal: Support the fullest expression of fall run Chinook salmon life history diversity in order to increase population stability, resilience, and productivity.

Objective #2: (Life History -- Size at Migration)

By year 12, generate annual emigrant size-class distribution as measured at Caswell RST* as follows:

Size Class	Wetter Years	Drier Years
Fry (<55mm)	20% min	20% min
Parr (55>x<75mm)	20% min	30% min
Smolt* (>75mm)	10% min	20% min

Initial estimates of size class distribution & relative success based on work by Rachel Johnson, Anna Sturrock, & others *in preparation*

* Includes only juveniles that migrate before daily mean temperatures >25°C at Mossdale

Productivity Goals

Desirable Population Growth Rate -- Often determined as a function of **abundance** target and time window to attain abundance target

Productivity Goals

- Typical population growth rates for Chinook salmon are much higher than those suggested by the "time-to-attain-doubling" approach
- Current Cohort Replacement Rate's are much lower than 1, suggesting short time to extirpation

Productivity Goals

Objective #3: Freshwater Survival Rates:

Goal A) Rebuild

- Support population growth rate of 2x within three generations

• <u>Objective 3a</u> -- 2.12 % total freshwater survival rate w/i 10 years

Goal B) Resilient

- Population can rebound from low recruitment to attain abundance/ production targets in 1 generation
- <u>Objective 3b</u> -- 4.20% total freshwater survival rate w/i 15 years

Goal C) Healthy

- Support species typical juvenile survival and population growth rates
- <u>Objective 3c</u> -- 10% total freshwater survival rate w/i 24 years

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

- Intended to represent environmental conditions needed to support Chinook salmon and O. mykiss populations
- Define the physical and chemical conditions needed to attain the biological objectives
- Provide life-stage specific guidance that should be used in the development and prioritization of conservation measures

Environmental objectives have been developed for:

- Adult upstream migration
- Adult holding
- Spawning
- Egg incubation
- Juvenile rearing and migration

	Fall-run Chin Spring-run C O. mykiss	nook Salmon Chinook Salmo	'n									
	January	February	March	April	Мау	June	July	August	September	October	November	December
Adult Migration												
Adult Holding												
Spawning		-										
Egg Incubation		-										
Fry Migration												
Parr Migration												
Smolt Migration												
Yearling Rearing												
Adult Residency												

Figure 7 Timeline for Chinook Salmon and O. mykiss Migration and Rearing Periods in the San Joaquin River Basin

Table 2B - Spatial Distribution

Spatial Application of Environmental Objectives

Life Stage	Habitat Type	Species	Reach						
			Upstream of Goodwin	Goodwin (59) to Knights Ferry (55)	Kights Ferry to Oakdale (41)	Oakdale to Riverbank (33)	Riverbank to Rippon ()	Rippon To Caswell ()	Caswell to Confluence
		Fall Run	x	x	х	х			
Egg and Emergence	In channel	Spring Run	x	x	х	x			
		Steelhead	x	x	x	x			
		Fall Run	x	x	x	х			
	Short Innundation	Spring Run	x	x	х	х			
luvonilo Popring		Steelhead	x	X	x	x			
Juvenile Kearing		Fall Run					x	x	x
	Long Innundation	Spring Run					x	x	x
		Steelhead	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	In channel	Fall Run	x	x	х	х	х	х	x
Juvenile Migration		Spring Run	x	x	x	x	x	x	x
		Steelhead	x	x	x	x	x	x	x
	In channel	Fall Run	x	x	x	x	x	x	x
Adult Migration		Spring Run	x	x	x	x	х	x	x
		Steelhead	x	x	х	х	х	х	x
	In channel	Fall Run	x	X					
Adult Holding		Spring Run	x	X					
		Steelhead	x	x					
Adult Spawning		Fall Run	x	X					
	Upstream (In channel)	Spring Run	x	x					
		Steelhead	x	x					
	Downstream (in channel)	Fall Run			x	x			
		Spring Run			x	x			
		Steelhead			х	х			

Three categories of conditions: Optimal

- Contribute to health & growth of individuals & the population
- Support the attainment of biological objectives

Sub-optimal

- Associated with some degree of impact at the population level
- May or may not support attainment of biological objectives

<u>Detrimental</u>

- Associated with a significant level of harm at the population level
- Do not support and are a detriment to the attainment of one or multiple biological objectives

Physical Rearing Habitat Objectives (Including Metrics for Cover, Substrate, Depth, and Velocity) for Juvenile Chinook Salmon and O. mykiss

Define habitat in specific, measureable terms

ex: Not all rearing habitat is (or needs) to be "optimal"; so total acreage needs to reflect habitat quality

Habitat Type	Parameter	Condition	Range (Metric)			
Floodplain – Short	Substrate	Optimal	> 5% fines to support vegetation recruitment			
	Cover	Optimal	Average HSI score of ≥ 0.5 for all cover types Or: HSI for individual cover types: Woody debris ≥ 0.9 Cobble boulder ≥ 0.5 Overhanging vegetation ≥ 0.8 Root wad ≥ 1			
Inundation	D th	Optimal	0.15 m to 1.22 m (0.5 ft to 4 ft) Averaged spatially			
	Depth	Sub-optimal	1.23 m to 2.13 m (4 ft to 7 ft) Averaged spatially			
		Optimal	0 m/s to 0.9 m/s (0 ft/s to 3 ft/s)			
	Velocity	Sub-optimal	> 0.9 m/s (> 3 ft/s)			
	Substrate	Optimal	> 5% fines to support vegetation recruitment			
	Cover Optimal		Average HSI score of ≥ 0.5 for all cover types			
Floodplain –	Death	Optimal	0.15 m to 1.22 m (0.5 ft to 4 ft) Averaged spatially			
Long Inundation	Depth	Sub-optimal	1.23 m to 2.13 m (4 ft to 7 ft) Averaged spatially			
	Velocity	Optimal	0 m/s to 0.9 m/s (0 ft/s to 3 ft/s) s			
	velocity	Sub-optimal	> 0.9 m/s (> 3 ft/s)			
	Substrate	Optimal	See spawning habitat requirements			
Channel	Cover Optimal		Average HSI score of ≥ 0.5 for all cover types Or: HSI for individual cover types: Woody debris ≥ 0.9 Cobble boulder ≥ 0.5 Overhanging vegetation ≥ 0.8 Root wad ≥ 1			
	Flow variability Optimal		Summer flow variability that mimics the natural hydrograph; intended to contribute to the expression of anadromy			

Outline

- Stanislaus River Scientific Evaluation Process (SEP)
- Approach to Defining Desired Outcomes
- Scope
- Biological Objectives
- Environmental Objectives
- Stressors

What environmental conditions limit attainment of objectives?

- Stressors were summarized at two scales:
 - Coarse scale stressors designed to guide where conservation efforts are focused
 - e.g., "Lack of suitable rearing habitat"
 - e.g., "Lack of suitable migratory cues"
 - e.g., "Negative sub-lethal effects during adult migration"
 - Fine scale stressors designed to guide the development of specific actions, associated monitoring, and adaptive management
 - e.g., "Lack of suitable rearing habitat as a function of temperature"
 - More directly linked to objectives

General Process

- Identify key stressors identify their relative impact and relationship to one another
- Prioritize stressors and identify approaches to stressor reduction

Process Components

- Stressor prioritization by life history stage
- Prioritization of stressors relative to:

1) current population, and

2) target population

- Scoring 1-4 points in two categories
 - Magnitude
 - Certainty

Magnitude

Magnitude assesses the size or level of the impact. It can be assigned using consideration of population or habitat effects; higher scores require consideration of the scale of impact.

Certainty

Certainty describes the scientific basis for scoring the scale and magnitude of a particular stressor. Certainty considers both the predictability and understanding of linkages.

Prioritization

- Magnitude and Certainty scores are combined to prioritize three different types of stressor response:
 - Action To alleviate the stress and advance objectives
 - Research To inform actions and the relative need for them
 - *Monitoring* To track the level of stress

		Magnitude							
			No Action	Priority Action					
		Priority	1	2	3	4			
	earch	1	Lowest Priority Research	Low Priority Research	Med Priority Research	High Priority Research			
Certainty	2 Res	2	Lowest Priority Research	Med Priority Research	High Priority Research	Highest Priority Research			
	ing	3	High Priority Monitoring	Medium Priority Action	Med – Hi Priority Action + Monitoring	High Priority Action + ARM			
	Monitor	4	Baseline Monitoring	Med – Hi Priority Action + Monitoring	High Priority Action	Highest Priority Action			

Stressors - Results

- Stressor prioritization scores were summarized at two scales:
 - Coarse scale stressors (e.g., "lack of suitable rearing habitat")
 - Designed to guide where conservation efforts are focused
 - Fine scale stressors (e.g., "lack of suitable rearing habitat as a function of temperature")
 - More directly linked to objectives
 - Designed to guide the development of specific actions, associated monitoring, and adaptive management

Priority 1 (Highest)

Actions and Associated Monitoring:

Adult Spawning

 Interactions with hatchery fish and other runs

Egg Incubation

 Inadequate incubation conditions

Juvenile Rearing/Migration

- Lack of suitable rearing habitat
- Lack of suitable migratory conditions

Stressors – Results Ranked for Each Species

Priority 2 (High) **Actions and Associated Research:** Monitoring: Adult Holding **Adult Migration** Adult Holding Loss of fecundity Negative sub-lethal effects (indirect; e.g., reduced Lack of suitable habitat fecundity or mortality via Adult Spawning disease) **Actions and Adaptive** Compression of the spawning window Management: Juvenile Rearing/Migration Juvenile Rearing/Migration Compression of the rearing and migration window Lack of suitable migratory cues Priority 3 (Medium) **Actions and Adaptive Management: Research:** None **Adult Spawning** Inadequate availability of high-quality habitat Priority 4 (Low) **Actions and Adaptive Management: Research:** None **Adult Migration** Significant delay and/or failure to reach natal stream (direct effects)

Coarse scale – Spring Run

Priority 5 (Lowest)

Actions and Adaptive Management: None Research: Monitoring Baseline:

None

Juvenile Rearing/Migration

Lack of suitable over-summering habitat

Priority 1 (Highest)

Actions and Associated Monitoring:

Adult Spawning

 Interactions with hatchery fish and other runs Egg Incubation

- Inadequate incubation conditions
- Juvenile Rearing/Migration
- Lack of suitable rearing habitat
- Lack of suitable migratory conditions

Priority 2 (High)

Actions and Associated Monitoring:

Adult Holding

• Lack of suitable habitat

Actions and Adaptive Management:

- Juvenile Rearing/Migration
- Lack of suitable migratory cues

Adult Holding
Loss of fecundity

Adult Spawning

Research:

- Compression of the spawning window
- Adult Migration
 Negative sub-lethal effects
 - (indirect; e.g., reduced fecundity or mortality via disease)

Juvenile Rearing/Migration Compression of the rearing

and migration window

Example: Spring run Chinook Stressors

Highest Priority Actions to Address

- Interactions with hatchery fish
- Inadequate incubation conditions
- Lack of suitable rearing habitat
- Lack of suitable migratory conditions

High Priority Actions to Address

- Lack of suitable holding habitat
- Lack of juvenile migratory cues

High Priority Research needs

- Loss of fecundity
- Compression of spawning window
- Negative sub-lethal effects on adult migrants
- Compression of rearing & migration window

Priority 3 (Medium)

Actions and Adaptive Management:

Research:

Adult Spawning

Inadequate availability of high-quality habitat

Priority 4 (Low)

Actions and Adaptive Management:

None

Research:

Adult Migration

 Significant delay and/or failure to reach natal stream (direct effects)

Priority 5 (Lowest)

Actions and Adaptive Management: None

Research: Monitoring Baseline:

Juvenile Rearing/Migration

Lack of suitable over-summering habitat

Stressors Inform Actions

Ex: Distribution of rearing habitat needs through space & time

BRINGING TOGETHER

BIOLOGICAL OBJECTIVES

- Productivity
- Life history diversity

ENVIRONMENTAL OBJECTIVES

- Rearing Habitat Description
- Total Acreage Needed
 (ESHE Model)

STRESSOR

- Rearing Habitat Deficit
- Inadequate Distribution

5-mile Reach

Next Steps: Expand Geography

Expand SEP process to:

- Tuolumne River (> ~85% complete)
- Merced River (> ~85% complete)
- Lower San Joaquin River (> ~50% complete)

Thank You

