
# Developing Flow Prescriptions for the Sacramento-San Joaquin Delta

William E. Fleenor William A. Bennett Peter B. Moyle Jay R. Lund









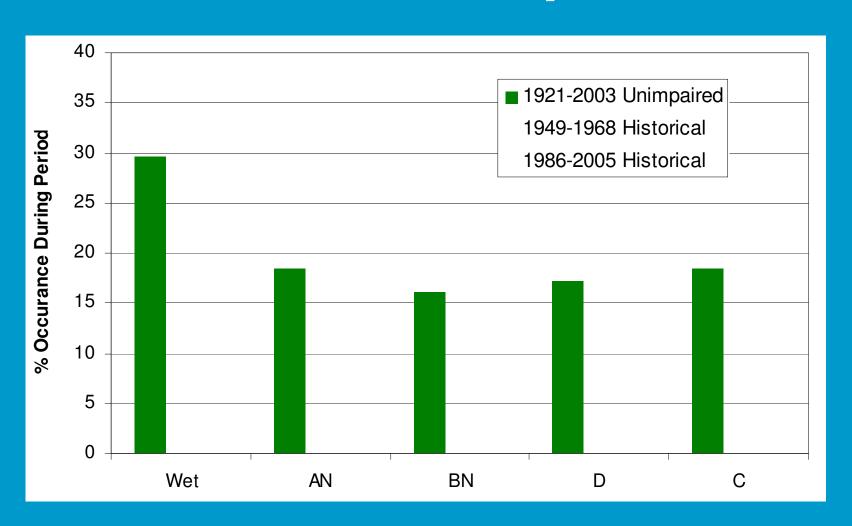


#### Hydrologic and Ecosystem Links

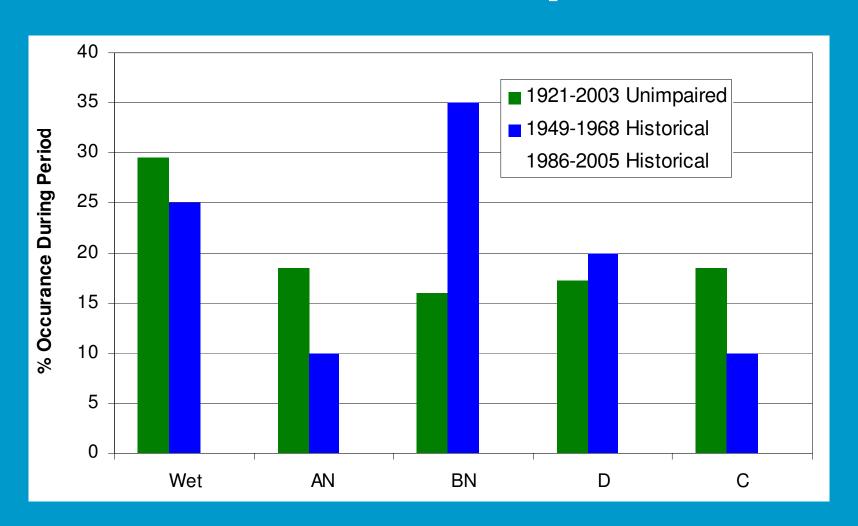
- Flow Regime is a Major Determinant of Physical Habitat
- Species Life Histories Strategies
   Responded to Natural Flow Variations
- Habitat Connectivity is Essential to Many Species
- Invasive Species are Promoted by Flow Alterations
- Bunn and Arthington 2002

# Approaches for Setting Flow Criteria in the Delta

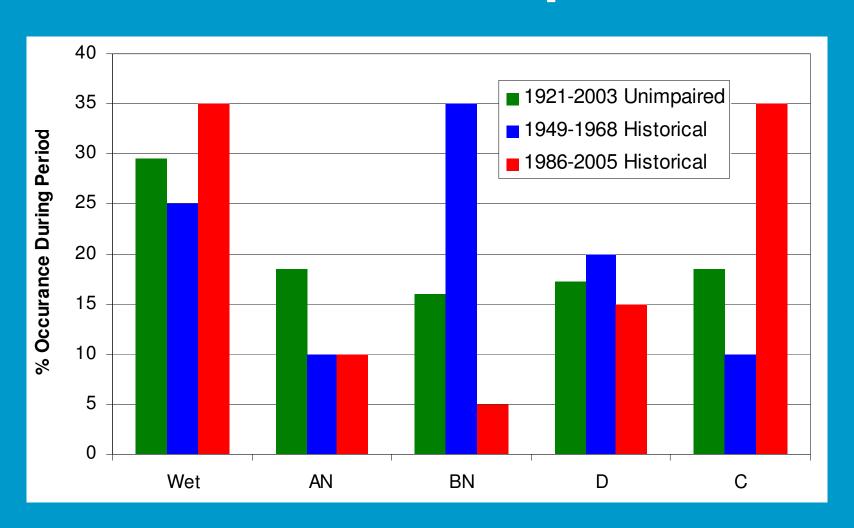
- Unimpaired Flows (1921-2003)
- Historical Flows when fish were 'doing better' (1949-1968)
- Statistical relationships between flow and native species abundance
- Accumulated Functional Flows based on recent scientific literature



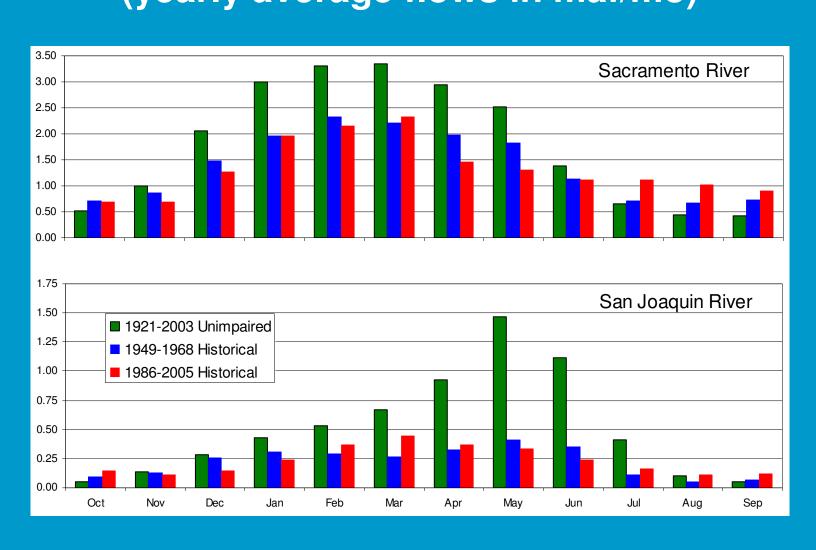




#### Unimpaired Flows (1921-2003)

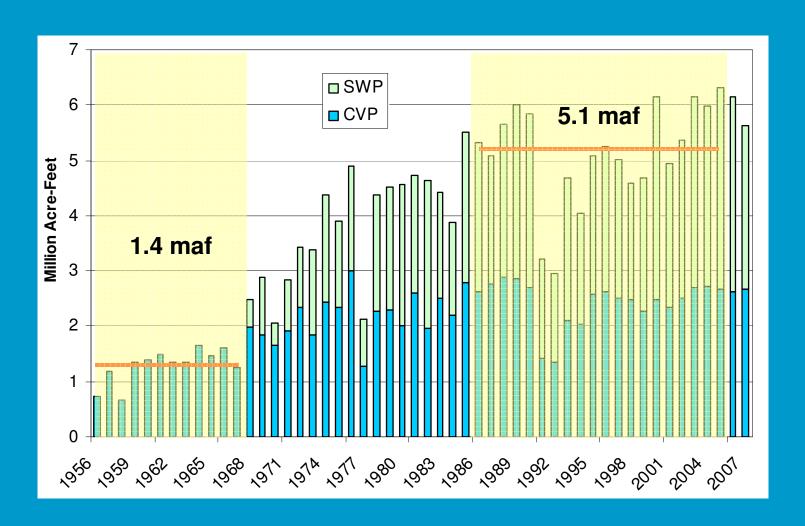
- Not historical 'natural' flows into the Delta
  - More rain and less snow today, with earlier snow melt
  - Upstream floodplains no longer attenuate flows
  - Groundwater base-flow has changed
  - Delta is channelized with little marsh or floodplain


## Water Year Comparison



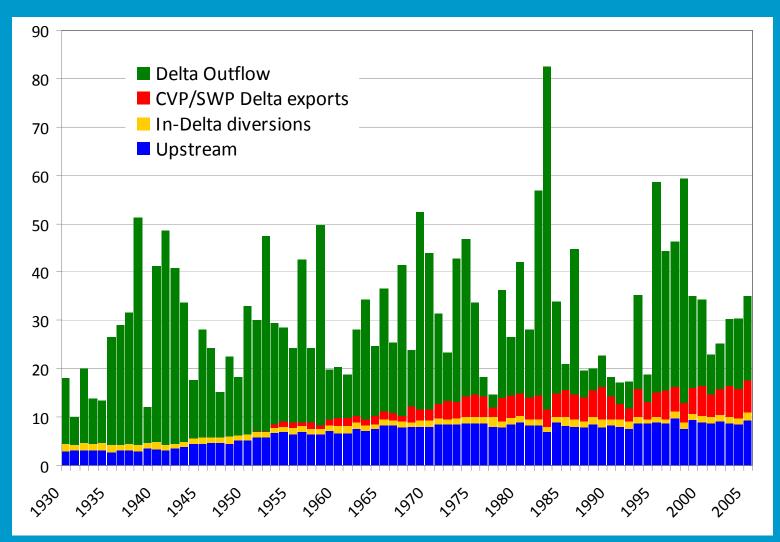

## Water Year Comparison



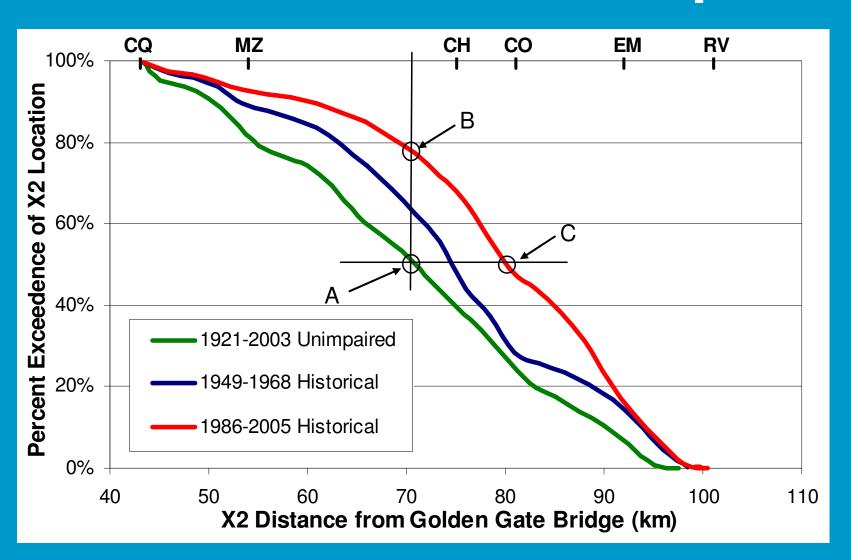

## Water Year Comparison



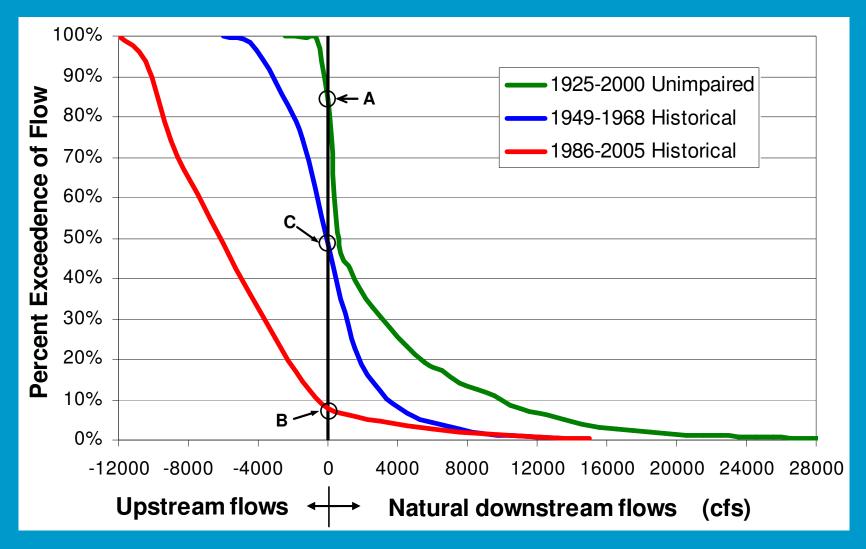
# Major Inflows to Delta (yearly average flows in maf/mo)




# **Exports from Delta (maf/yr)**




#### **Available Water Use**


(annual flows in maf/yr)



#### Statistical Relationships



#### Statistical Relationships



Sum of Old and Middle River Flows

#### Functional Flow Approach

(Fleenor et al. 2010 paper)

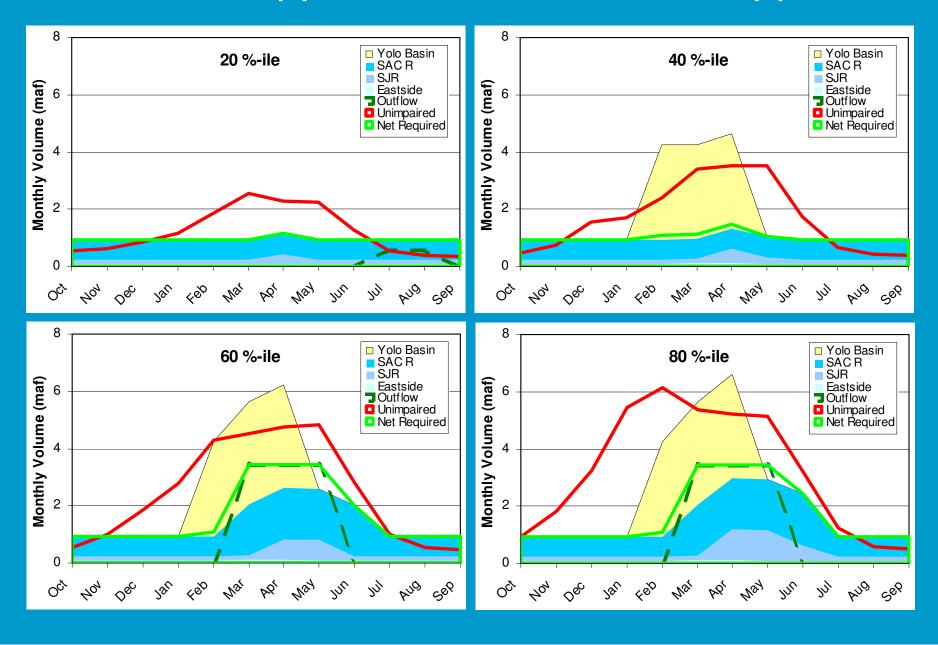
#### Steps:

- 1) Identify major ecosystem functions of flows
  - Identify flow locations
  - Fish passage and behavioral cues
  - Habitat support
  - etc.
- 2) Estimate flows needed for each function, by season and annual frequency
- 3) Accumulate flows (without double-counting)
- 4) Refine and finalize
- 5) Improve over time

#### Functional Flow Approach

| 7 8 | 9       | of 10  8 6      |
|-----|---------|-----------------|
|     |         |                 |
|     |         | 6               |
|     |         |                 |
|     |         | 6               |
|     |         | 6               |
|     |         | 1               |
| 1 1 | 1       | 10              |
|     |         | 2               |
|     |         | 4               |
|     |         | 6               |
|     |         | 8               |
|     |         | 10              |
| 1 1 | 1       | 10              |
| 1 1 | 1       | 10              |
|     |         | 8               |
| 1 1 | 1       | 9               |
|     |         | 5               |
| 1 1 |         | 3 ***           |
|     |         | 3               |
|     |         |                 |
|     |         |                 |
|     |         |                 |
|     | 1 1 1 1 | 1 1 1 1 1 1 1 1 |

<sup>\*, \*\*</sup> Yolo Basin flows require flows of 45,750 and 50,100 cfs with current understanding of the weir


<sup>\*\*\*</sup> Flow is specified during driest of 10 years while all others are for wettest years

#### Functional Flow Approach

#### Scientific support for each flow:

- 1a. & 1b. BDCP draft report 2008, Moyle et al. 2004; Sommer et al. 2004; Harrell and Sommer 2003; Harrell et al. 2009
- 1c. BDCP draft report 2008
- 2a. & 2b. Newman and Rice 2002, Williams 2006; Harrell *et al.* 2009, USFWS Exhibit 31 1987, Kjelson and Brandes 1989
- 2c. Harrell and Sommer 2003
- 2d. Newman and Rice 2002
- 3a. CDFG 2005, USFWS Exhibit 31 1987, Newman and Rice 2002, Williams 2006
- 3b. Lehman *et al.* 2004, Jassby and Van Nieuwenhuyse 2005, USFWS Exhibit 31 1987, Newman and Rice 2002, Williams 2006
- 3c. USFWS Exhibit 31 1987, Newman and Rice 2002, Williams 2006
- 4a. Henson et al. 2007
- 4b. Moyle *et al*. 2007
- 5a. Bennett 2005, Hobbs et al. 2005
- 5b. Hauenstein and Ramirez 1986
- 5c. Thompson 2005, Moyle personal comm.
- 6a. Bennett personal comm.

#### Percentile Application of Functional Approach



#### Implementing Functional Flows

- Listed flows need further consideration
  - Guidance needed to set functional flow levels
  - Seasonal steps may miss smaller scale responses
  - Some flow functions might conflict
- Are some important functions missing?
- How to work with experimental flows?
- Refine to integrate upstream uses
- Monitoring response is required
- Management flexibility is crucial

#### **Functional Flow Advantages**

- Organizes flow prescription around ecosystem functions
- Ties flows to ecosystem functions
- Systematic approach to establishing and updating flow prescriptions
- Focuses scientific controversies
- Identifies weak areas of knowledge
- Allows for experimental/adaptive management flows

| Category                    | Item | Function                                                          | Flow    | w Months Applied (10 = October) # Years |    |    |   |   |   |   |     |     |   |   |   |       |
|-----------------------------|------|-------------------------------------------------------------------|---------|-----------------------------------------|----|----|---|---|---|---|-----|-----|---|---|---|-------|
|                             |      |                                                                   | (cfs)   | 10                                      | 11 | 12 | 1 | 2 | 3 | 4 | 5   | 6   | 7 | 8 | 9 | of 10 |
| 1. Yolo<br>Bypass           | 1a   | juvenile salmon, adult splittail most years                       | 2,500*  |                                         |    |    |   | 1 | 1 | 1 |     |     |   |   |   | 8     |
|                             | 1b   | juvenile salmon, adult splittail pulses                           | 4,000** |                                         |    |    |   |   | 1 | 1 |     |     |   |   |   | 6     |
| 2. Sac<br>River             | 2a   | SR adult salmon                                                   | 10,000  | 1                                       | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   |   |   |   | 6     |
|                             | 2b   | Juvenile salmon migration – SR                                    | 25,000  |                                         |    |    |   |   | 1 | 1 | 1   | 1   |   |   |   | 6     |
|                             | 2c   | Adult sturgeon                                                    | 70,000  |                                         |    |    | 1 | 1 | 1 | 1 | 1   |     |   |   |   | 1     |
|                             | 2d   | Min flow past PC intake                                           | 10,000  | 1                                       | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   | 1 | 1 | 1 | 10    |
|                             | 3a   | SJR juvenile salmon wet                                           | 20,000  |                                         |    |    |   |   |   | 1 | 1   | 1   |   |   |   | 2     |
| 3. SJ                       |      | above normal                                                      | 15,000  |                                         |    |    |   |   |   | 1 | 1   | 1/2 |   |   |   | 4     |
| Valley                      |      | below normal                                                      | 10,000  |                                         |    |    |   |   |   | 1 | 1   |     |   |   |   | 6     |
|                             |      | dry                                                               | 7,000   |                                         |    |    |   |   |   | 1 | 1/2 |     |   |   |   | 8     |
|                             |      | critical                                                          | 5,000   |                                         |    |    |   |   |   | 1 |     |     |   |   |   | 10    |
|                             | 3b   | Stockton Ship Channel DO                                          | 2,000   | 1                                       |    |    |   |   |   |   |     |     | 1 | 1 | 1 | 10    |
|                             | 3c   | SJR adult salmon                                                  | 2,000   | 1                                       | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   | 1 | 1 | 1 | 10    |
| 4. Eastside<br>Streams      | 4a   | Mokelumne River flows                                             | 1,500   |                                         |    |    |   |   | 1 | 1 |     |     |   |   |   | 8     |
|                             | 4b   | Eastside Stream minimum flows                                     | 1,060   | 1                                       | 1  | 1  | 1 | 1 | 1 | 1 | 1   | 1   | 1 | 1 | 1 | 9     |
| 5. Net<br>Delta<br>Outflows | 5a   | Delta smelt flows                                                 | 48,000  |                                         |    |    |   |   | 1 | 1 | 1   |     |   |   |   | 5     |
|                             | 5b   | Egeria suppression by reducing outflows (Experimental Flow)       | 8,000   |                                         |    |    |   |   |   |   |     |     | 1 | 1 |   | 3 *** |
|                             | 5c   | Overbite clam suppression by increasing flows (Experimental Flow) | 120,000 |                                         |    |    |   | 1 | 1 | 1 |     |     |   |   |   | 3     |
| Other                       | 6a   | Suisun Marsh Flows                                                |         |                                         |    |    |   |   |   |   |     |     |   |   |   |       |
|                             | 6b   | Close or Limit exports                                            |         |                                         |    |    |   |   |   |   |     |     |   |   |   |       |
|                             | 7a   | Safety Factor                                                     | 20%     |                                         |    |    |   |   |   |   |     |     |   |   |   |       |

<sup>\*, \*\*</sup> Yolo Basin flows require flows of 45,750 and 50,100 cfs with current understanding of the weir

<sup>\*\*\*</sup> Flow is specified during driest of 10 years while all others are for wettest years