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Estimating the influence of
temperature on the survival of
chinook salmon smolts
(Oncorhynchus tshawytscha)
migrating through the Sacramento -
San Joaquin River Delita of California

Peter Fritz Baker, Terence P. Speed, and Franklin K. Ligon

Abstract: Data from the U.S. Fish and Wildlife Service are used to investigate the relationship
belween water temperature and survival of hatchery-raised fall-run chinook salman {Oncorhynchus
tshawvischa) smolts migrating through the Sacramento — San Joaquin Delta of California. A formal
statistical model is presented for the release of smelts marked with coded-wire tags (CWTs}) in the
lower Sacramento River and the subsequent recovery of marked smolts in midwater trawls in the
Delia. This model treats survival as a logistic function of water temperature, and the release and
recovery of different CWT groups as independent mark-recapture experiments. Iteratively rewcighted
least squares is used (o fit the model to the data. and simulation is used to establish confidence
intervals for the fitted parameters. A 95% confidence interval for the upper incipieat lethai
temperature, tnferred from the trawl data by this method, is 23.01 = 1,08°C This is in good
agreement with published experimental results obtained under controlled conditions (24.3 £ 0.1 and
25.¢ + 0.1°C for chinook salmon acclimatized to 10 and 20°C, respectively): this agreement has
implications for the applicability ot laboratory findings to natural systems.

Résumé : Des données du U.S. Fish and Wildlife Service sont utilisées pour I’étude du lien entre
la température de 1'eau et la survie de saumoneaux quinnat (Oncorhynchus tshawyischa) de
remonte automnale élevées en pisciculture, migrant par le delta des riviéres Sacramento et

San Joaquim, en Californie. Un mod2le statistique conforme est présenté pour la libération des
saumonecaux munis d'une micromarque magnétisée codée (MMC) dans le cours inférieur de

la Sacramento et la récupération subséquente dans le deita, au moyen de chaluts pélagiques. Ce
modéle considére la survie comme une fonction logistique de la température de 1'eau et de la
libération et la récupération subséquente de différents groupes de MMC comme des expériences
distinctes de marquage et de recapture. La méthode des moindres carrés respondérés itérativement
est utilisée pour ajuster le modéle aux données et on utilise la simulation pour établir des
intervalles de confiance pour les paramétres ajustés. La température 1étale supérieure initiale
déduite des données recueillies au moyen du relevé au chalut, grice & cette méthode, se situe

4 23,01 = 1,08°C, avec un niveau de confiance de 95%. Cette valeur correspond aux résultats
publiés d’expériences, obtenus dans des conditions contrblées, donnant respectivement 24,3 = 0,1
et 25,1 £ 0,1°C, pour le quinnat acclimaté 4 10 et 20°C. Cette correspondance ouvre des
possibilités quant & I’applicabilité aux systémes naturels des résultats obtenus en laboratoire.

[Traduit par la Rédaction]

Introduction _ .
Ecological Study Program, has conducted trawls for chinook

For many years, the U.S. Fish and Wildlife Service salmon (Oncorhynchus tshawytscha) smolts near Chipps

(USFWS). in coeperation with the California Department [sland in the Sacramento — San Joaguin Delta of California

of Fish and Game {CDFQG) through the Inter-Agency during the main periods of smolt outmigration (USFWS5S
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1983-1992). The data arising from the Chipps Island trawls
are used by USFWS and others to address a variety of
questions about California’s chinook salmon, such as smolt
abundance, timing of outmigration, migration rates, and
survival (Stevens et al. 1984; USFWS 1987; Kjelson et al.
19893.

An important part of these data consists of the recoveries
of hatchery-reared fall-run smolts bearing coded-wire tags
(CWTs) from a series of releases by USFWS and CDFG
since 1978. These releases are made at a number of loca-
tions in the lower Sacramento River and northern delta
specifically to provide information about smolt survival
in the delta.

The usual treatment of these data has been as follows:
an estimate is made of the survivorship associated with
each individual release, the estimates are plotted against
proposed explanatory variables (water temperature, smolt
size, etc.). and a hypothesized survival curve is fitted
through these points. Disagreements over the interpreta-
tion of the data have turned on the method used to esti-
mate the individual survivorships and the functional form
of the curve to be fitted (Kjelson et al. 1989; Baker et al.
1992).

This approach is reasonable and straightforward. It also
has some limitations: it does not provide objective ways of
assessing the extent to which a proposed survival fune-
tion is consistent with the data, and it does not produce
confidence bounds on fitted parameters that might be used
to make informed policy decisions. Questions about good-
ness of fit and statistical uncertainty can only be formulated
properly in the context of statistical models.

In this paper, we restrict our attention to the problem
of estimating smolt survival as a function of water tem-
perature, from traw] recoveries of CWT-marked smolts
released at a single location. We show that a biologically
reasonable model fits the data well enough to permit quan-
titative assessments of the uncertainty in the fitted param-
eters. The fitted values are shown to agree well with the
results of laboratory studies.

Data

In this paper, r denotes the number of smolt release groups.
For the ith release, 1 < i < r, n; is the number of smolts
released, m; is the number of smolts recovered, p; is the
trawl effort, and T is the water temperature at Ryde at the
time of release, in degrees Celsius.

The data vsed in the models are those from the
15 releases in the lower Sacramento River at Ryde from
1983 through 1990 that are listed in Table 1. These data
were assembled from USFWS (1983-1992) and Johnson
and Longwill (1991). The smolts were ali fall-run chinook
salmon, reared at the Feather River Hatchery and released
at Ryde in May or June. The average weight of these smolts
ranged in different years from 5.15 to 9.40 g. Peak trawl
recoveries at Chipps Island ranged from 2 to 5 d after
release at Ryde.

Ryde is about 48 km upstream of Chipps Island,
just below the last major distributary branching of the
Sacramento River as it enters the delta. From each of the
other release locations, there are alternate routes to Chipps
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Island and a variety of conditions to be found along the
different routes. Smolts released at Ryde have only one
direct route to Chipps Island (a second route, aroung
Sherman Island via Three Mile Slough, is probably of
minor importance), and survival along this route is likely
to be less affected by factors other than water tempera-
ture than is survival through most other parts of the Delta,
For this reason, the Ryde releases are commonly recog-
nized as the most natural ones to consider when tempera-
ture is the primary variable of interest (Kjelson et al. 1989),
Figure 1 shows the region of the deita under discussion.

What we are calling trawl effort is defined in USFWS
reports as the ratio of the time spent in actual trawling to
the total time interval covered by the surveys, multiplied by
the ratio of the net width to the channel width. Aithough the
USFWS reports do not always report the trawl effort, it
is possible to recover it from the information that is
reported. We will use the trawl effort as an estimate of
the probability of capture; this assumption will be examined
briefly later in this paper. The USFWS itself scrupulously
refers to this quantity as simply an expansion factor, and w0
values calculated from it as survival indices.

The base model

All of our models begin with the assumption that the
different CWT releases can be treated as independent mark—
recapture experiments. For our first model, we treat each
individual release as a binomial experiment, whose param-
eter is broken down into two components: the probability
of survival from Ryde to Chipps Island, which we will
take to be a logistic function $(T}) of water temperature T,
and the probability of capture at Chipps Island, the known
constant p,. The parameters to be fitted are the location
and scale parameters b,, b, of the logistic function &.

This corresponds to the likelihood function

r
L=]]m;
1
where

;= wim | n, b, p) = [:::_)(picbi)'"i (1- pid; YT

(1] .
¢j =\¢(T;) = 1 + e_b' "bZTE

This is a generalized linear model with canonical link
function, in the terminology of McCullagh and Nelder
(1989). A model of this kind is completely specified by
its mean and the dependence of the variance on the mean.
In this case:

Eim; 1= pid;n;

2] .
Vim,]1= Elm,}- — E[m,}’

The maximum likelihood estimate for (&, b,) is easily
found from Eq. 2 by the algorithm of iteratively reweighted
least squares.
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Table 1. Data for the release and recovery of selected coded-wire-tag groups of chinook salmon smolts released in the

Sacramento River at Ryde, Calif. (From USFWS 1983-1992.)

Temperature Trawl
Coded-wire-tag Date of Average (°C). No. released, No. recovered, effort,
i No(s). release weight (g) T, n, m; P:
i 06-62-23 5120483 5.89 16.1 92 693 95 0.000 833 24
2 06-42--09
06-62-29 6/13/84 5.15 18.9 59 998 37 0.000 880 98
3 06-62-35 5/11/85 5.82 18.9 107 161 88 0.001 066 49
4 06-62-48 5/30/86 5.34 23.3 101 320 74 0.001 123 63
5 06-62-55 4/29/87 5.79 19.4 51103 46 0.001 058 99
6 06-62-58 5/2/87 6.21 17.8 51 008 47 0.001 071 42
7 06-31-01 5/3/88 8.40 17.2 52 741 106 0.002 138 11
8 06-31-02 5/6/88 8.56 16.1 53 238 146 0.002 142 50
9 06-62-63 6/22/88 8.25 239 53 961 46 0.002 131 17
10 06-31-03 6/25/88 8.72 233 53 942 39 0.002 126 47
11 06-31-12 5/3/89 7.00 16,7 51 046 65 0.001 070 05
12 06-31-07 6/2/89 9.40 19.4 50 601 26 0.001 070 47
13 06-01-14-01-02 6/16/89 7.83 228 51 134 8 0.000 977 82
14 06-31-20 5/9190 5.04 20.6 51 878 87 0.001 036 47
15 06-31-22 5/31/90 6.87 18.3 50 837 67 0.001 057 73
A biologically natural alternative to the parameterization
(b, b,) of the survival curve is (LT50, a), where LT50 is Elm;]= pib;n;

the temperature at which the predicted survival is 0.50,
and a is the slope of the survival function at T = LT50.
We will report results in both forms.

For the data in Table 1, maximum likelihood estima-
tion gives b, = 15.89, b, = —0.6873. Equivalently, LT50 =
23.12, o = —0.1718.

The Pearson x” for the fit is 104.5 with 13 degrees of
freedom. The log-likelihood ratio statistic D, which is also
approximately distributed as a ¥” statistic with 13 degrees
of freedom, is 103.4. Both of these values are very highly
significant, indicating that the base model does not fit very
well.

Table 2 shows the expected and observed numbers of
trawl captures, with Pearson and deviance residuals. The
residuals are plotted against water temperature in Fig. 2.
Because there is no clear trend in the residuals, we do not
attribute the lack of fit to a fundamental defect in the
model structure, such as an inadequate choice of the func-
tional form for ¢. That is, the model’s handling of tem-
perature is acceptable, but the model is not flexibie enough
to account for all of the noise in the data from factors not
included.

Overdispersion

The overdispersion of the data with respect to the base
model is not necessarily a fatal defect; in fact, overdis-
persion is so common in models such as this that its absence
waould be more remarkable than its presence (cf. McCullagh
and Nelder 1989, section 4.5.1).

A conventional way to deal with overdispersion in a
situation hke this is to simply inflate the variance by some
constant ¢”. In this case, one would replace Eq. 2 by

(3] 1
Vim;]= UZ(E{"T,- 1-—Elm, ]ZJ
n;

The maximum-likelihood estimate for (b, b,) is not affected
at all by the mtroductlon of the dispersion parameter o7, s0
we are free to give o’ whatever value we want. In partic-
ular, we could force the model to have an acceptable chi-
square fit simply by setting 6% = x%df, where x* is the fit of
the original model.

The main criticism one can make of this procedure is that
it seems rather arbitrary. If a model does not fit the data, the
model assumptions are inadequate in some way, and should
at least be reexamined. After all, the fitted values of the
model parameters will not be meaningful if the model
itself has no relation to reality, regardless of how we assign
confidence levels.

In fact, there is an extensive literature on the subject,
which basically justifies using the unadorned model to
estimate parameters like &, and &,, and dealing with over-
dispersion as indicated above (see references in McCullagh
and Nelder 1989; Burnham et al. 1987). Nevertheless, we
prefer to tailor our approach to the specifics of our situation.

There are many possible sources of overdispersion in
these experiments: the probability of survival surely depends
on factors other than water temperature; fish from differ-
ent release groups have different histories; and fish from the
same release group recovered in different trawls have dif-
ferent histories. However, we believe that the most impor-
tant uncertainty is in the capture probabilities p,. It is clear
from the nature of the experiment that these numbers could
be in error by very large amounts. It is easy to imagine
that smolts could have a preference for regions of the

LAk
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Fig. 1. Study area in the north-central region of the Sacramento - San Foaquin Delta, California.

Port Chicago

channel cross section that are especially likely or unlikely
to be sampled in a particular trawl, or that they travel past
Chipps Island in clumps that might or might not coincide
with a trawl pass.

Furthermore, the data from some of the individual
releases clearly point to errors in the capture probability esti-
mates. In the first of the two 1990 releases, 51 878 smolts
were released, of which 87 were recovered; even if the
survival were 100%, the probability of recovering as many
as 87 smolts, assuming that the probability of capture was
really 0.001036, would be on the order of 1073,

On the other hand, there is evidence that the recovery
probability estimates are not systematically too high or
too low. Fish from the CWT groups released at Ryde are
also recovered in the ocean fishery as adults; information

Sacramento P

about these recoveries is available through the Pacific
States Marine Fisheries Commission. These recoveries can
be used to generate estimates of delta smolt survival.

The CWT groups are recovered as 2-, 3-, 4-, and
5-year-olds (the nominal ages of fall-run chinook salmon
are based or the calendar years in which spawning took
place). By comparing the ocean recovery rates of 2 year
olds from the Ryde groups with the ocean recovery rates for
2 year olds from groups of similar smolts released near
Chipps Island at about the same time, it is easy to obtain
estimates of survival (S) from Ryde to Chipps Island from
individual releases. In fact, the closest release site to Chipps
Island is Port Chicago, about 8 km downstream, so that
what is being estimated is survival from Ryde to Port
Chicago:
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Table 2. Comparison of the trawl recoveries predicted

by the fitted base model for the Ryde release groups

with the corresponding actual trawl recoveries.

Expected Actual Pearson Deviance

i recoveries recoveries  residuals residuals
1 77 95 2.10 2.02
2 50 37 —-1.86 —1.95
3 108 88 —1.96 —2.03
4 53 74 2.91 2.74
3 50 46 —0.58 -0.59
6 53 47 -0.86 —0.88
7 111 106 ~0.46 —-0.46
8 113 146 3.09 2.96
9 43 46 Q.50 0.50
10 53 39 -1.95 —2.05
11 54 65 1.50 1.45
12 50 26 —-3.41 —~3.76
13 28 8 —-3.78 —~4.46
14 46 87 6.07 5.39
15 52 67 2.11 2.01

_ j'nRyde /nRydc
ooean mpe | ipe
where ng,, is the number released at Ryde, np is the num-
ber released at the Port Chicago, and mg, 4. and mp are
the corresponding numbers recovered as 2 year olds in the
ocean. These can be compared with simple estimates of
survival from Ryde to Chipps Island for the same releases:
Siawt = m/n;p; where n;, m;, and p; are as defined earlier
(cf. USFWS 1987).

Survival from Chipps Island to Port Chicago should be
high, because the distance between them is fairly smalil,
5O that S, .0 Siaw ar€ essentially estimates of the same
quantity. As there is no reason to expect both estimates
to be biased in the same direction and to the same extent,
each serves as a check on the other. Formal analysis con-
firms the impression of Fig. 3, that the hypothesis S, =
Syawt Cannot be rejected at the 95% confidence level. We
interpret this as evidence that the p; can be used as estimates
of the expected values of the true recovery probabilities
(although the co-occurrences of ocean-based estimates
greater than 1 with trawl-based estimates greater than
I remains puzzling).

More information on the relationship between the trawl-
recovery and ocean-recovery estimates can be obtained
from the authors.

The relaxed model, the quasilikelihood
estimator, and simulation

We modify the base model {(Eq. 1) to allow for uncertainty
in the capture probabilities by assuming that the capture
probability P in the ith release is itself a random variable
with mean p; and variance p°p?. Here p? is taken to be the
same for all release groups. (Because the capture proba-
bilities are necessarily non-negative, and we expect the
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Fig. 2. Pearson (open circles) and deviance (solid circles)
residuals for the fitted base model, plotted against water
ternperature.
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errors in the p, to be large, a multiplicative error structure
seems called for; this leads to the assumption that the coef-
ficient of variation, rather than the variance itself, is con-
stant from release to release.) This gives

W(’"f'”g,d)gp,-) =Iol[”:: ](Pd);)mi (- P¢',‘ )ni—m,- f;(P) dP

(4] .
¢;=¢(7})=W

where f; is the density for P. We will call this the relaxed
model.

Because we have not specified the distribution f,, this is
not yet a well-defined likelihood. No matter what distrib-
ution we use, however, we will always have

Elm;] = psbiny;
3] -1 1
Vim;1= Elm;}+ ("f p? - -—)E[m,-]2
n; i
equivalently,

Elm;1= E[m;|P = p;],

Vimi VimlP=p] n-1 3
7 = 3 -+ p .
Elm;] E{m;|P = p;} n;

If the 7, were in a suitable exponential family, this would
be all the information necessary to find the maximum-
likelihood estimate for (&,, by) by iteratively reweighted
least squares. This algorithm is in any case a perfectly
legitimate estimator, that one would expect to inherit some
of the properties of a genuine maximum-likelihood




860

Fig. 3. Two methods of estimating smolt survival from
Ryde to Chipps Island. The diagonal line (trawl-based

survival = ocean-based survival) is provided for
reference.
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estimator. We will refer to this as the quasilikelihood
estimator, for reasons to be discussed in the next section.

We are interested not only in the parameter estimates
themselves, but in statistical properties of the estimator
such as bias and variance. The conventional way to assign
confidence intervals to the parameter estimates is by the
§-method. In the case of generalized linear models fitted by
iteratively reweighted least squares, the covariance matrix
emerges naturally from the aigorlthm when a model that
is not necessarily of this form is fitted by the 1terat1vcly
reweighted least-squares algorithm, the algorithm gives
the covariance matrix asymptotically. In either case, the
estimators are approximately unbiased and asymptotically
normal (McCullagh and Nelder 1989).

However, maximum-likelihood estimators can be very far
from either unbiased or normal when the number of sam-
ples is not large. In any case, these compromises are entirely
unnecessary. For any particular choice of f,, the proper-
ties of the quasilikelihood estimator can be determined to
any desired accuracy by simulation.

We will consider two simple examples, the uniform
distribution:

Lo P pkcw
fP)=2w’

0 otherwise
¥

where

W=Pi\[3p_2

and the triangular distribution

. 1 1
ﬁ-(P)=TJ[1‘E'P F "')‘

0 otherwise

if 1P — pl< w
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where

hpi@

The largest value of p” consistent with the uniform distri-
bution is one-third, and the largest value consistent with the
triangular distribution is one-sixth. Notice that the uni-
form distribution has the largest variance of any unimodal
distribution symmetric about p,, and so sets an upper limit
on the amount of extra variation that can be reasonably
attributed to uncertainty in p,. Confidence estimates based
on this distribution should therefore be conservative.

We have defined a model (or at least a family of models)
and a fitting procedure. It still remains to choose a value
for p>. We have no good basis for selecting a value a priori.
Not only do we lack a suitable understanding of the trawl
capture process, but the parameter is absorbing extra vari-
ation associated with ¢ and with the approximation of the
traw] recovery as a snmplc binomial process. There are
methods for fitting p? formally as a model parameter
(McCullagh and Nelder 1989), but for 2 data set of this
size we find it more appropriate to simply pick a value
that results in a reasonable model fit. We have followed
the usual practice of forcing the Pearson x’-statistic of the
fit to equal the degrees of freedom (Williams 1982).

For the data in Table |, thc fitting procedure descnbcd
above produced the estimate p* = 0.1503. Thls value for p?
seems plausible to us. It is close to the p” for the maxi-
mally broad trlangular distribution, and comfortably within
the range of p’-values that are consistent with the deriva-
tion of the model.

For this value of p?, the fitted parameters are b, = 15.56,
by, = —0.6765, so that LTS50 = 23.01 and « = —0 1691.

Confidence intervals and bias for b, b,, LT50, and
a were estimated by simulation: the model (4) was used
with both the uniform and triangular distributions for f to
generate 5000 data sets each, assuming the values for p?, b,,
and b, given above. Each simulated data set was flttcd
to the modeti (holding p” constant), yielding 10 000 pairs
(buo bao)-

The mean, standard deviation, and bias of these data,
and some order statistics, are shown in Table 3. Standard
formulas show that the mean and standard deviation are
determined by the simulation to within 2% at the 95%
confidence level. The quasilikelihood estimator for ET50 is
seen 10 be essentially unbiased, confirming the natural-
ness of this quantity as a model parameter. The shortest
95% confidence intervals were 21.96°C < LT50 < 24.10°C
for the uniform distribution and 22.59°C < LT50 < 23.41°C
for the triangular distribution. The corresponding sym-
metric 95% intervals were 21.93°C < LT50 < 24.08°C and
22.60°C < LT50 < 23.42°C, respectively.

The results of the simulation are shown more vividly
in Fig. 4. For each model, one point has been plotted at
a randomly chosen temperature on each of the 5000 fit-
ted survival curves, to give some feeling for the shapes
of the confidence surfaces.

The quasilikelihood-generating model

Our goal in this section is to clarify just what the quasi-
likelihood estimator of the preceding section is maximizing.
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Table 3. Statistical properties of the quasilikelihood
estimators, determined by simulation with respect to two
models of capture probability.

Canonical parameters Natural parameters

b, b, LT50 a
Fitted 15.56 —0.6765 23.01 —-0.1691
Uniform
Mean [8.65 —0.8080 23.06 —0.2020
SD 10.18 0.4356 0.57 0.1089
Bias 3.08 —0.1315 0.05 -0.0329
Pl 5.72 —2.6166 21.64 —0.6542
P2.5 7.40 —-2.0770 21.95 —-0.5193
Qi 13.09 —0.8957 22.85 —-0.2239
Median 15.80 ~0.6880 23.03 —-0.1720
Q3 20.70 —0.5722 23.26 ~0.1430
P97.5 47.97 —0.3168 2410 —0.0792
P99 60.60 —0.,2352 24.63 —0.0588
Triangular
Mean 16.80 —0.7291 23.01 —{}.i1823
SD 5.06 0.2163 .21 0.0541
Bias 1.23 —0.0526 0.01 -0.0132
P1 10.09 —-1.5716 22.47 —0.3929
P2.5 10.75 —1.310} 22.57 —-0.3275
Ql 13.62 —{1.8028 22.88 -0.2007
Median 15.62 —{.6810 23.02 ~0.1703
Q3 18.54 —0.594] 23.16 —{.1485
P97.5 30.32 —0.4690 23.40 ~0.1172
P99 36.23 —0.4414 23.48 —0.1103

From a practical point of view, the question is moot, in
that the simulaticns described there establish completely rig-
orous confidence regions for the estimated parameters.
This section can be skipped by readers who are primarily
interested in the biological results.

Quasilikelihood theory was developed to deal with sit-
uations in which one has some (usually empirical) infor-
matior: about the relationship between the expected value
and variance of a quantity, over a series of similar exper-
iments, but not about the statistical mechanisms that give
rise to this relation and, therefore, nc way to construct a
likelihood function. In such a situation, one can construct
a function called a quasilikelihood, which turns out to
have many of the properties of a true likelihood function
arising from a generalized linear model. In particular, the
method of iteratively reweighted least squares can be used
to maximize the quasilikelihood, and much of the asymp-
totic theory of maxitmum likelihood estimation carries over
to maximum quasilikelihood (McCullagh and Nelder 1989).

QOur case is rather different, in that we have the defi-
nite model (4) in mind, which is only incomplete in that we
are trying to avoid committing ourselves to a particular
form for the functions f.

If there were 2 suitable exponential family distribution
having the same mean and variance as Eq. 4, the quasi-
likelihood estimate would be exactly the maximum likeli-
hood estimate for this distribution. Unfortunately, it is not
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Fig. 4. Distributions of quasilikelihood estimates of smolt
survival from Ryde to Chipps Island, for the fitted model,
assuming that the probability of capture is drawn from
(a) the uniform distribution and (b) the triangular
distribution.

1.00

0.90 1
0.80 -
0.70 |
0.60 -
0.50 4

Survival

0.40
0.30 4 (@) Uniform
0.20 - T
0.10 -

Survival

0.30 {  (b) Triangular =

0.20 1 v
Q.10

0.00 T T L T T T T 1
6 17 18 19 20 21 22 23 A4

Temperature (°C)

hard to show that no such distribution exists. The obstacle
here turns out to be the requirement that the distribution is
supported on the integers from 0 to n. If this condition is
relaxed 0 require only that the distribution be supported on
non-negative integers, there is a {unique) exponential fam-
ily distribution with the desired properties:

nly; . e
[ m }('Y,'P;tf)‘-) "A-vpibi) A s

]

forO<yy; <l

6] wlmin, b, p) = B ptn,

fory; =0
m;!
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{—-n,.l‘y,--rm‘-—l

iy

)(-'Y,-p,-tb‘. L=y ) Y

forvy, <0

where y; =1 — (n, — 1)p”.

Except for a constant factor, this tumns out to be identical
to the quasilikelihood function constructed from Eq. 5, so
that it reasonable to call Eq. 6 the quasilikelihood generating
model.

Because the number of smolts in each release (= 10%,
10%) is very much larger than the typical number recovered
(= 10', 10%), it would have been quite reasonable to model
the underlying survival-capture process as a Poisson
process. After all, the binomial model is also only an
approximation (for example, smolts from one release are
actually recovered over several trawls), and it would be
difficult to argue convincingly that it is a better one than the
Poisson in this case. If we imitate the development of the
previous section, beginning from the Poisson model, things
work out pretty much as before. The mean and variance

functions of the relaxed model become
17] E{'ni l = p:‘(bin'i
Vim | = Elm; ]+ {)21‘5[.'1z,-]2

and the quasilikelihood-generating distribution takes the
form:

m
= o)™ e,
;!

forv; =0

[8] '“'(m,' '”;', 43,'1 P;)

=y tm -1 .
=[ | m ](-Yipi‘b:)m' (=, pipyy /7,
i
fory, <0
where vy, = —n,p* (s0 the first case of Eq. 6 never arises).

These equations are identical to Egs. 5 and 6 except for
obviously negligible terms of order Iin,.

The second (negative binomial) distribution of Eq. 8,
however, can also be exhibited as the model that results
from the Poisson base model when the parameter p, is
replaced by a gamma variate with mean p; and variance
p"pf. That is, the quasilikelihood estimate is indeed a
maximum-likelihcod estimate for a perfectly natural model.
Our only reason for preferring the language of quasilike-
lihood is that the maximum-likelihood interpretation depends
very delicately on making the right approximations.

Discussion

We have shown that a simple and natural model of smolt
survival can be fit to the data. This model predicts mean
smolt survival at a given temperature to about 10% at the
95% confidence level (cf. Fig. 4).

Taking the most conservative error bounds, we have
estimated that chinook salmon released at Ryde and migrat-
ing to Chipps Island experience 50% mortality at 23.0]1 +
1.08°C. It is interesting to compare this estimate of survival
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under natural conditions with the results of laboratory
studies.

Laboratory studies of the direct effects of high tem-
peratures on animal survival have been conducted in two
different ways: the method of abrupt transfer and the
method of slow heating (Kilgour and McCauley 1986),
These result in somewhat different measures of lethality. For
our purposes we will regard the upper incipient lethal tem.-
perature (UILT) found in abrupt transfer experiments as
comparable with the LT50 of the fitted model. We wil]
regard the temperatures at which given fractions of the
sample are lost in slow heating experiments as comparable
with the temperatures at which these same losses are pre-
dicted by the model. In both kinds of experiments, the
results depend on the temperature 1o which the animals
were acclimatized.,

The classic abrupt transfer experiments involving chincok
salmon are those of Brett (1952):

Breu ($952) Fitted

Acclimation
(°C) 10 15 20 24 —
UILT 24.320.1 25.0+0.1 251401 25.10.1 23.01+1.08

We regard this as a reasonable agreement.

The temperatures predicted by the fitted model to result
in 10, 50, and 90% mortality are also consistent with the
results of several slow-heating experiments reproduced in
the survey of Houston (1982):

Houston (1982) Fitted
Acclimation
cC) 10 10 B 13 18 20 —
10% loss 229 205 230 195 200 238 19.76
30% loss — — 235 — — 247 2301

90% toss 245 235 238 23.0 235 248 26.26

The laboratory studies cited above examine the effects
of temperature alone. In the natural environment, how-
ever, it may be difficult or impossible to separate the direct
effects of temperature from indirect effects on the ability of
salmon to survive other threats, such as predation and dis-
ease. It is reasonable to inquire about the magnitude of
these indirect effects.

The UILTs found by Brett for salmon acclimatized to
15°C and above are about 2°C higher than the LT50 found
here. In addition, the range of temperatures at which sig-
nificant temperature-related mortality occurs is greater in
the fitted model than in any of the laboratory studies
teferred to above. Both of these observations would be
consistent with the presence of significant indirect effects
of temperature on survival in the delta. If the possibility of
differences in temperature tolerance between Central Valley
salmon stocks and the more northerly stocks used in the lab-
oratory studies is considered, there may be even more
room for indirect temperature effects. On the other hand, the
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model makes no provision for possible sources of mortal-
ity independent of temperature. If mortality from such
sources could be accounted for separately, the LT50 asso-
ciated with the remaining mortality would probably be
higher.

Our analysis shows that direct effects of high tempera-
ture are sufficient to explain a large part of the smolt mor-
tality actually observed in the delta. In particular, the
observed LT50 of 23.01 + 1.08°C is remarkably consis-
tent with the resuits of controlled experiments. This reaf-
firms the relevance of laboratory findings to natural systems.
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