1	BEFORE THE
2	CALIFORNIA STATE WATER RESOURCES CONTROL BOARD
3	
4	CALIFORNIA WATERFIX WATER)
5	HEARING)
6	
7	JOE SERNA, JR. BUILDING
8	CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY
9	SIERRA ROOM
10	1001 I STREET
11	SECOND FLOOR
12	SACRAMENTO CALIFORNIA
13	PART 1 REBUTTAL
14	
15	
16	Thursday, May 4, 2017
17	9:00 A.M.
18	
19	VOLUME 39
20	Pages 1 - 233
21	
22	
23	Reported By: Deborah Fuqua, CSR No. 1248
24	
25	Computerized Transcription by ProCAT

1	MR. MIZELL: Thank you. With that, I will
2	introduce Mr. Leahigh, who will begin the
3	presentations, and they will coordinate amongst
4	themselves to progress through all of the witnesses.
5	CO-HEARING OFFICER DODUC: Thank you.
6	WITNESS LEAHIGH: Good morning, Hearing
7	Officers, Board Member, Board Staff. Again, John
8	Leahigh with the Department of Water Resources.
9	Appreciate the opportunity here for rebuttal testimony.
10	I would like to go over tell you the eight
11	topics that I that will be part of my rebuttal.
12	First of all, how the uncertainty relates to project
13	allocation decisions; how the majority of water for
14	State Water Project export is from sources other than
15	Lake Oroville; how the vast majority of releases from
16	Lake Oroville are non-discretionary; how export
17	capacity goes unused during periods when stored water
18	could be moved under existing conditions; how the
19	California WaterFix will allow for an increased
20	opportunity to capture excess flows as a substitute for
21	stored water; how challenges associated with the
22	exceptional droughts are completely independent of the
23	California WaterFix; how the California WaterFix would
24	not fundamentally change Delta hydrodynamics, if
25	anything, only increase the efficiency. And lastly,

1 how we would not expect a change in Term 91 periods 2 with the California WaterFix. 3 MR. MIZELL: And, Mr. Leahigh, if I can 4 interrupt shortly here. Are you going to be utilizing DWR-10 during 5 6 your talk? 7 WITNESS LEAHIGH: Yes, I will. MR. MIZELL: Okay. Mr. Hunt, if we could 8 9 bring up DWR-10, please. 10 WITNESS LEAHIGH: Thank you. So for the first 11 topic of how uncertainty and how it relates to project 12 allocation decisions -- hold on just a second. If I 13 can figure out how to -- this way. 14 MR. OCHENDUSZKO: Mr. Leahigh, if you could just identify when you want the next slide, Mr. Hunt 15 16 can help you out. 17 WITNESS LEAHIGH: Okay, sure. 18 Next slide, please. 19 So I'll start with -- this is just a list. 2.0 I'm not going to -- I'm going to go through it real 21 fast here. In terms of -- well, let me start with --22 so this first topic is in rebuttal to Mr. Bourez's 2.3 testimony as part of the Sacramento Valley Water Users' 24 case in chief, where he contended that his model is a 25 more realistic representation of what actual operations

1	would be under the California WaterFix by claiming
2	quote, "Operators have more information at their
3	disposal to make decisions," unquote.
4	While it's true that the operators do have
5	more information available to them, the real world is
6	much more complex and much more uncertain than what
7	Mr. Bourez simulates under his model runs.
8	So the list you have in front of you on the
9	slide is are a number of the factors and the
10	variables that are considered as part of the allocation
11	decision process current and projected storages,
12	forecasted runoff for the year, and that's not just
13	runoff into Lake Oroville but throughout the system.
14	That's the highest degree of uncertainty that exists
15	from year to year.
16	There will be the required Feather River
17	flows, Feather River settlement contract deliveries out
18	of Thermalito Afterbay, the anticipated depletions in
19	the system in the Valley and also in the Delta,
20	anticipated Delta outflow requirements and salinity
21	objectives.
22	Another area of large uncertainty is the
23	anticipated export restrictions of as they relate to
24	the biological opinions. And then also the delivery
25	patterns for the contractors south of the Delta.

1 Next slide, please. 2 So I talked about the area of most 3 uncertainty. That's the runoff forecast. And the 4 project receives these through Bulletin 120, which is a 5 runoff forecast based on the snow surveys, the monthly 6 snow surveys. 7 Got an example here from 2012. Early on in the spring, there's an enormous 8 9 amount of uncertainty in terms of the actual runoff 10 that we would expect to see in any given year. So the 11 example here in February, the difference between the 12 driest and the wettest forecast would be -- was 13 3.3 million acre-feet in that particular year, and 14 that's just for the inflow into Oroville alone. 15 As we step through the spring months, that 16 uncertainty begins to funnel down as we get more 17 knowledge in terms of the actual snowpack accumulation 18 and as we get through the majority of the rainy season. 19 But even by the -- by May, which is typically 2.0 when we provide our final allocation to our 21 contractors, the amount of uncertainty in this 22 particular example was still 665,000 acre-feet. So 2.3 although that's a great reduction from what that 24 uncertainty was earlier in the year, it's still a very 25 significant number.

And that's -- so, for example, that 665,000 1 acre-feet, if we release that for export, would 2 3 constitute a month and a half worth of exports. 4 So there's still going to be a significant amount of uncertainty in terms of our actual use of 5 6 Banks Pumping Plant for the summer, for example. 7 Also a large degree of uncertainty would be to 8 what extent the NMFS, the National Marine Fishery 9 Service, and United States Fish and Wildlife Service 10 biological opinions, to what extent those restrictions 11 will affect export capabilities in the winter and the 12 spring. 13 And that uncertainty, the difference in the 14 range, is up to 200,000 acre-feet per month, which is 15 something that's not known ahead of time. And also, 16 just the exact amount of water that would be necessary 17 to meet the D1641 requirements, especially the water 18 quality requirements, we have estimates of the water 19 supply necessary to meet those, but until we actually 2.0 operate through the summer, we won't absolutely know. 21 Next slide, please. 22 So because we don't want to over-promise on 2.3 our delivery capability to our customers, we use a 24 conservative estimate on the ranges of uncertainty. So 25 that would be, for example, on the drier end of the

1	range of the Bulletin 120 forecast for runoff. And in
2	addition, we will assume something other than the least
3	restrictive biological opinion case.
4	So these would be the Old and Middle River
5	limitation negative flow of the Old and Middle River
6	limitations.
7	And then of course, the projects operate as
8	I said, they operate the projects in realtime
9	conditions, and if, in most cases, additional water is
10	available to us in the summer, which is often the case
11	because we are using a conservative estimate, that
12	additional water could be pumped into San Luis
13	Reservoir, not necessarily allocated in that year but
14	held over for project purposes in the following year.
15	So MBK's modeling incorporates more foresight
16	than the operators truly possess in the real-world
17	operations. As I said, we use a conservative end of
18	the range for those uncertainties. And for that
19	reason, I believe the petitioner's modeling better
20	reflects the real-life operations and, therefore, does
21	a better job of simulating the real-world project
22	operations.
23	Next slide, please.
24	Actually, I'll go ahead and skip the next
25	couple slides and go to the graphic. Thank you.

So the next topic is how the majority of Water 1 2 Board SWP export is from sources other than Lake 3 Oroville. And this is in rebuttal to -- Mr. Nomallini, during the case in chief for Central Delta, asserted 4 that the projects should not export water during the 5 winter until it becomes clear that the current year 6 7 will not be dry. 8 Mr. Nomallini's implication that upstream 9 storages are being imprudently drafted early in the 10 year for export is based on a false premise that the 11 source of the project's exports is always from upstream 12 storage. In fact, the source of winter exports, even 13 in the driest years, is predominantly from surplus 14 flows that would end up as excess Delta outflow if not exported and put to beneficial use by the projects. 15 16 So these stacked bar charts that you see 17 before you are examples of three different year types. 18 So this is historical data that shows the primary 19 sources of water for export at the State Water Project 2.0 Delta export facilities. An example for a wet year is 21 2011. We've got 2012 as an example of kind of an 22 average year, and 2015 as an extreme critical --2.3 critically dry year. 24 You can see the lowest bar on these columns is 25 the flood control releases and unstored flow, which is

the source of water for export in many years. 1 And 2 predominantly in wet and dry years, it's the majority 3 of the source for the supply. Now, of course, in the 4 critically dry years, there's very little of it, but it makes up the majority of the source of the water for 5 6 export. 7 The blue bars represent water that was 8 released -- that was required to be released from Lake 9 Oroville and then, after serving that initial purpose, 10 is then picked up at the State Water Project exports. 11 The red bars indicate the volume of water that would be released explicitly for the purpose of export 12 by the State Water Project from Oroville. 13 14 So, again, what you can see is the vast majority of the water that's exported in the very wet 15 16 cases and the dry cases is not from stored -- is not 17 from water that's released -- stored water that's 18 released from Lake Oroville. In the average years, it 19 makes up a larger component of the total, but it's --20 still the majority of the supply is from 21 non-discretionary releases or other excess flows in the 22 system. 2.3 Next slide, please. In fact, you can go to the next graphic if you would. 24 Thanks. 25 So the next topic is along the same lines.

1	How is the vast majority of releases from Lake Oroville
2	how are those comprised? And so in a similar
3	assertion by California Sport Fishing Protection
4	Alliance in its case in chief, it was asserted that the
5	State Water Project releases too much storage in drier
6	years. Most release of stored water in every year is
7	released for purposes other than export. The projects
8	have no discretion in releasing the vast majority of
9	the water that we do. So again, here's the three years
10	of example: wet, normal, critically dry.
11	The first block there, the blue block, is
12	minimum required releases to the Feather River through
13	our FERC license through agreements with the Department
14	of Fish and Wildlife.
15	The next block, the purple block, would be
16	releases for flood control purposes in order to
17	maintain the required vacant storage in Lake Oroville
18	for flood protection.
19	The next block, the green block, would be
20	releases from Lake Oroville that are explicitly to meet
21	the Delta requirements. So this would include the flow
22	requirements, the salinity requirements.
23	The next block up is the orange block,
24	represents the releases out of the lake for afterbay
25	settlement contractor deliveries.

56

1	And the final piece, the red block, that's the
2	only portion that is released for the State Water
3	Project exports.
4	And again, you can see sort of the same
5	pattern. In the wetter years and the dry years,
6	there's very little of that discretionary release. It
7	does show up primarily in the average years, but it is
8	a small portion of the total. Most of that most of
9	those releases are for non-discretionary reasons.
10	Next slide, please.
11	So the next topic
12	Actually, if you would go directly to the next
13	graph. There we go. Thank you.
14	So the next topic is how export capacity goes
15	unused during periods when stored water would be moved
16	under existing conditions.
17	So as part of the case in chief again for
18	California Sports Fishing Protection Alliance, it was
19	asserted that the petitioner's modeling for State Water
20	Project operations should be expected to be more
21	aggressive in releasing additional stored water from
22	Lake Oroville for exports South of Delta during the
23	summer months because of the greater diversion
24	capability afford by the North Delta diversion.
25	In a similar manner, Mr. Bourez asserted that

1	modeling should be expected to show a greater use of
2	Central Valley project Joint Point of Diversion at the
3	State Water Project export facilities. These
4	assertions are not borne out by project policy or the
5	historical practice of limiting release of upstream
6	stored water in all but the wettest years.
7	So what you have in front of you, once again,
8	is a historical is historical data depicted in a
9	graphical form, and it is color-coded by year type. So
10	we have this is all of the years back to the year
11	2000, ending last year, with the wet years in blue,
12	above-normal and below-normal years in green, dry years
13	in orange, and critically dry years in red.
14	And this is the on the Y-axis are volumes
15	volume of acre-feet. And this is for the
16	three-month period July through September. And the
17	reason I picked these months is that they constitute
18	the three months where the majority of stored water
19	would be moved at the export facilities.
20	The dashed red line represents the full
21	permitted capacity for export during these three months
22	for both the Central Valley Project and the State Water
23	Project, so a little over 2 million acre-feet of
24	capacity under existing conditions.
25	The solid red line represents the actual use

1	of that capacity in each of these years. The dotted
2	red line represents the use of Joint Point of Diversion
3	by the Central Valley Project at the State's
4	facilities. So the dotted red line is actually a
5	subset of the solid red line.
6	And then the only other line on there is the
7	gray, which is the unmet demand during that during
8	each of these particular years.
9	So this is just a demonstration that the
10	reason we would not be utilizing the full capacity for
11	export is not because of a demand limitation. So you
12	can see in most of these years, there was unmet demand,
13	with the exception of the 2006.
14	So the point on this is, if you look at the
15	so the wetter years, 2011, 2006, and 2005, which was
16	actually a wet year on the San Joaquin Basin, those
17	were the only years where we utilized the full
18	permitted capacity of both projects. You can see in
19	all of the other years, the full capacity under
20	existing conditions was not utilized.
21	And to get back to those wetter years, as I
22	had represented in the previous bar charts, the source
23	of that water would have been excess flows that would
24	have been available even during the summer in those
25	wetter-type years.

So in all of the other years, this would have represented the movement of stored water from the upstream SWP and CVP reservoirs to the Project's export facilities in the Delta.

5 So the evidence does not support the assertion 6 by the protestants that the projects would be expected 7 to draft more storage out of upstream reservoirs due to 8 increased summer capacity afforded by the California 9 WaterFix when the projects are not fully utilizing all 10 the conveyance capacity that's available to us today 11 for that purpose.

12 In fact, the State Water Project moderates 13 releases of stored water. The first block of water 14 that we reserve upstream is to meet regulatory and 15 contractual obligations. The next portion of the 16 additional storage is managed for State Water Project 17 contractor deliveries in a way that balances between 18 maximizing average annual deliveries and for providing 19 some dry-year reliability.

And the strategy for obtaining this is that -that supply is that the higher the State Water Project allocation in any given year, the greater the storage that's left behind in Lake Oroville to guard against a dry year and to protect that dry-year allocation.

Next slide, please.

25

1 So that -- as part of this same rebuttal, that 2 leads to the next topic, which is how the California 3 WaterFix will allow for an increased opportunity to 4 capture excess flows as a substitute for stored water. So the petitioner's modeling which I'm going 5 6 to show in the next slide has increased the reliance on 7 unstored flow in many of the cases, and it's decreased 8 the reliance on stored releases. So this is completely 9 consistent with the strategy that I just discussed. 10 The MBK modeling, on the other hand, increased 11 reliance on both stored -- well, increased the use of both stored releases and unstored flow. So it's quite 12 more aggressive in the use of the stored water, and 13 14 this is inconsistent with that policy or strategy, if 15 you will. 16 Next slide, please. 17 So here are the results. This was presented 18 as part of the petitioner's modeling and, again, 19 color-coded by the different year types. 2.0 And under this particular case, we're comparing the no action alternative with H3. And what 21 22 you can see here is that it shows an increase in export 2.3 capabilities for the State Water Project under all the year types. And that's that -- the reason for that 24 25 increase, if you can see the breakdown of the sources

1	of water, is comes from the increased capabilities
2	of exporting excess unstored flows. And that's in the
3	primarily in the winter and the spring. It actually
4	shows somewhat of a decrease in the use of stored water
5	for export in each of these.
6	And that's entirely consistent with that
7	strategy that I just discussed where, in years where
8	we're able to give a higher allocation to our
9	contractors in order to balance that average annual
10	delivery with dry-year reliability, we will leave even
11	additional storage for carryover into the following
12	year to protect against those drier years.
13	So that's the effect that's captured here as
14	part of the petitioner's modeling.
15	Next slide, please.
16	In contrast, in MBK's modeling of the
17	California WaterFix now, this is a slightly
18	different. This is MBK-modeled Alternative 4A. So
19	it's a slightly different it's not it's not the
20	H3. But the point still holds here, in that as
21	consistent with the petitioner's modeling, there is
22	greater use of capture of unstored flow in the winter
23	and the spring.
24	But MBK takes it a step further and shows
25	additional stored water being released in the summer

California Reporting, LLC (510) 313-0610

1	months for export. And that's entirely inconsistent
2	with not only the strategy that I discussed but
3	historical practice if you look at based on the
4	other evidence that I provided.
5	So next slide, please.
6	So so and okay. So increased
7	opportunities to capture excess flows as a substitute
8	for stored water. So along this same theme with
9	California WaterFix, what the regime that's reflected
10	in this modeling essentially what it does is it
11	restores some of the capabilities that existed prior to
12	the implementation of the biological opinions in 2008
13	and 2009.
14	So it increases it restores some of that
15	ability to capture some of the spring runoff events for
16	beneficial use.
17	The so when the BiOps were applied in 2008
18	and 2009, they limited the amount of reverse flow for
19	the South Delta diversions. But with the use now of
20	the North Delta diversion, there would be an
21	opportunity to capture some of those excess flows in
22	the winter and the spring without while still
23	meeting those limitations in the South Delta.
24	So next slide, please.
25	So here is modeling results from DWR's

California Reporting, LLC (510) 313-0610

delivery reliability report. 1 These are from two 2 different reports, one from 2005 which predated the 3 biological opinions, and one from 2011 following the 4 biological opinions. But this shows that same change in general 5 6 pattern that I've been talking about where, prior to 7 the biological opinions, more of the supply for the 8 projects came from the winter and the spring -- or for 9 the State Water Project came from the winter and the 10 spring. And after the biological opinions in the 2011, 11 you can see higher exports in the summer months. 12 So the projects actually became more dependent 13 on stored water from upstream reservoirs after the 14 biological opinions. And what the California WaterFix 15 would allow for is restoration back more so to that 16 previous operating regime where we would rely more on 17 the unstored flows in the spring and the winter, and 18 actually become less reliant on the stored water during 19 the summer period. 20 Next slide, please. 21 So the next topic I wanted to cover is how 22 challenges associated with exceptional droughts are completely independent of the California WaterFix. 2.3 24 So a couple of the parties -- well, Mr. Shutes 25 and Ms. Paulsen, among others, asserted that it is

1	unreasonable for the California WaterFix to rely on
2	temporary urgency change petitions.
3	So TUCPs are rare and only implemented under
4	extreme conditions. Now, unfortunately, we have seen
5	some extreme conditions in recent years. And this was
6	part of my case in chief testimony.
7	With 2013, the lowest precipitation on record
8	for any calendar year, a hundred years going back, 2014
9	by far the warmest on record, over 4 degrees Fahrenheit
10	warmer than any year on record or I'm sorry than
11	the average.
12	2015 was the lowest snowpack; essentially no
13	snowpack in 2015, so these were extreme cases. And the
14	TUCPs were one were only one of several emergency
15	management actions that were taken to balance the
16	shortages among the various beneficial uses in those
17	years.
18	So although exceptional droughts and adverse
19	hydrologic changes associated with climate change do
20	present challenges, these are completely independent
21	from the proposed California WaterFix project.
22	Next slide, please.
23	So next I'd like to address how the California
24	WaterFix would not fundamentally change Delta
25	hydrodynamics and, if anything, will improve the

1	efficiency of those hydrodynamics.
2	Again, it might be easier if I go to the
3	graphic. If you could just scroll to there we go.
4	Thank you.
5	So Mr. Brodsky in the Save the California
6	Delta Alliance claimed that the operations of the
7	California WaterFix would represent a big change in the
8	way water would be flowing in the Delta. I continue to
9	argue as part of this rebuttal that the fundamental
10	hydrodynamics do not change.
11	So during wetter periods, which was part of my
12	case in chief, I showed the example where in big flow
13	years or big flow periods and certainly this year, as
14	an example, when there's very wet conditions, the North
15	Delta diversion would be skimming off the top of the
16	large Delta inflows and really have no appreciable
17	change to the Delta hydrodynamics.
18	What I'd like to focus more on this rebuttal
19	is the hydrodynamics in the drier periods in periods
20	where the Delta is in balanced conditions.
21	So under the graphic in front of you shows
22	the essentially the flow regimes in the Delta. On
23	the left would be the existing condition without the
24	California WaterFix, without the North Delta diversion.
25	We currently rely on Cross Channel flow.

1	That's through the Cross Channel. That's the whole
2	reason it was designed and constructed, was to bring
3	freshwater Sacramento River water into the Central
4	Delta. That is needed in order to meet the Delta
5	standards, to meet the Central Delta ag standards, to
6	meet the M and I water quality standards within the
7	Delta.
8	There's also a need for some level of reverse
9	net Old and Middle River flow, and that's to for
10	some of this fresher water to get into the M and I
11	export locations at Contra Costa Water District as well
12	as the M and I locations which are the project exports
13	themselves at from Clifton Court and Jones Pumping
14	Plant.
15	What you can also see here is at times there
16	is also a certain amount of reverse flow in the western
17	Delta. And that's due to not only the natural tidal
18	conditions during spring tides, for example, but it's
19	also from the diversions of all types in the interior
20	Delta. During periods when the projects are pumping
21	heavily in the South Delta and they must rely on a
22	larger amount of water from the upstream reservoirs,
23	this so this negative this reverse flow in the
24	western Delta becomes more pronounced with high South
25	Delta export.

1	In order to counteract this and this
2	negative flow in the western Delta brings salts in with
3	it. That's a mechanism for salt transport into the
4	interior. So in order to meet the standards, what the
5	projects are required to do is release additional water
6	from upstream reservoirs in order to provide additional
7	outflow to counter this negative western Delta flow.
8	This additional water for outflow is often
9	also referred to as "carriage water." Carriage water
10	represents an inefficient use of the upstream stored
11	water.
12	With the California WaterFix hydrodynamics
13	depicted on the right, we will continue to need the
14	cross-Delta flow as we do today that's not going to
15	change in order to meet the interior and M and I
16	water quality objectives.
17	However, the North Delta diversion in the
18	tunnels will allow for some amount of the project
19	exports to go directly to the south to the Banks
20	Pumping Plant and Jones Pumping Plant, and this would,
21	therefore, not require this would result in less
22	South Delta pumping which would also result in less
23	negative West Delta reverse flow, which would have less
24	of a detriment in terms of the salinity coming to the
25	Delta. And, therefore, it would also require much less

1	carriage water.
2	And so that would actually result in less
3	water being released from project upstream storages,
4	which would represent a more efficient movement of
5	water from the projects to their customers south of the
6	Delta.
7	So next slide, please.
8	So the last topic is so Mr. Bourez in his
9	testimony contended that the frequency and duration of
10	Term 91 periods would increase with the proposed
11	WaterFix. Term 91 is a condition determined by the
12	State Water Resources Control Board when supplemental
13	project supplies are needed to meet in-basin uses.
14	Next slide, please.
15	So as part of this proposed project, in-basin
16	uses are not expected to change with the California
17	WaterFix. And, if anything, as I've just laid out in
18	the hydrodynamics section, the amount of stored water
19	to meet the Bay-Delta standards would not be expected
20	to increase. If anything, because of the increased
21	efficiency, we would see decreases in the amount of
22	stored water to move the same amount of export.
23	Therefore, the frequency of Term 91, I would
24	not expect that to change whatsoever as part of the
25	proposed California WaterFix.

1	And so that concludes my rebuttal. Thank you.
2	CO-HEARING OFFICER DODUC: Thank you,
3	Mr. Leahigh.
4	Next? And before you begin, I would like to
5	take a lunch break at some point, near around noon. So
6	I'll leave it to you to determine the best time for
7	there to be a break in your testimony between you and
8	the next witnesses.
9	Unless, Mr. Mizell, you believe all your
10	witnesses can be done within the next 90 minutes or so?
11	MR. MIZELL: No, I think we will need to take
12	a break. And maybe if Mr. Munevar can look for one of
13	the transitions between your presentation and
14	Ms. Parker's presentation.
15	CO-HEARING OFFICER DODUC: All right.
16	WITNESS MUNEVAR: Okay.
17	CO-HEARING OFFICER DODUC: And also while we
18	still have Ms. Spaletta here, at some point we'd like
19	to get some clarification on your objections. So we'll
20	ask you to come up at that point.
21	Mr. Munevar?
22	WITNESS MUNEVAR: Well, good morning, Hearing
23	Officer, Members of the Board, Board Staff. Thank you
24	for allowing me to present my rebuttal testimony. My
25	name is Armin Munevar, and I've previously testified in