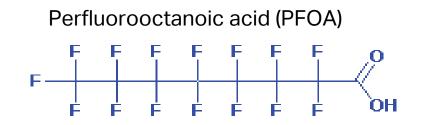
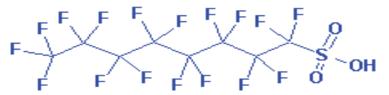
ΑΞΟΟΜ

Poly- and Perfluoroalkyl Substances (PFAS) in Water Resources Overview

Dr. Usha Vedagiri N Cal Risk Practice Leader/Manager AECOM, Oakland, CA


State Regional Water Quality Control BoardMay 31, 2018Oakland, California

PFAS – Why Do We Care?


* Because they are everywhere and there is concern about health effects

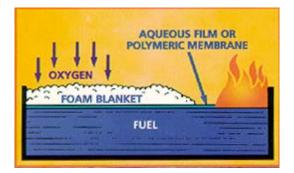
PFAS – What are they?

- Class of more than 3000 synthetic compounds formed from carbon chains of various lengths with fluorine attached to these chains (C2 to C12)
- Numerous industrial and consumer uses because they repel both water and grease
- Stable, soluble, non-volatile, mobile and bioaccumulative; some have identified health effects (longer chain lengths are more toxic)
- Carboxylate, Sulfonate, precursors, long-chain, short-chain...

Perfluorooctane sulfonic acid (PFOS)

PFOS and PFOA Properties

Chemical Properties	PCB (Aroclor 1260)	PFOA	PFOS	TCE	Benzene
Molecular Weight	357.7	414.07	538	131.5	78.11
Solubility	0.0027 mg/L @24°C	3400–9500 mg/L @25°C	519 mg/L @20°C	1100 mg/L @ 20°C	1780 mg/L @20°C
Vapor Pressure (25°C)	4.05x10⁻⁵ mmHg	0.5-10 mmHg	2.48x10 ⁻⁶ mmHg	77.5 mmHg	97 mmHg
Henry's Constant	4.6x10 ⁻³ atm- m ³ /mol	0.0908 atm-m³/mol	3.05 x10 ⁻⁶ atm- m³/mol	0.0103 atm- m³/mol	0.0056 atm- m ³ /mol
Organic Carbon Part. Coeff. (Log K _{oc})	4.8-6.8	2.06	2.57	2.42	2.15



Industrial Use – Aqueous Film Forming Foam (AFFF)

For petroleum fires, AFFFs develop a layered formation of foam (seals in the fire and extinguishes it) and water (cools the fire and prevents re-ignition).

Industrial Use - fluoropolymers, fluororepellents, fluorosurfactants

Consumer Products

Fast Food Packaging

Carpet Stain Resistant Sleeping bag

Ski wax

And many others.....

Date	Event
1930s	PFASs were accidentally discovered.
1940s – 1980s	Consumer products begin using PFASs (i.e. Teflon), Aqueous Film Forming Foam (AFFF) developed and used widely.
2000s	PFOS identified in biota globally (including remote regions), Stockholm POPs Convention. Some manufacturers begin replacing long-chain PFASs with short-chain PFASs.
2009	US EPA Provisional Health Advisories (400 pptr – PFOA, 200 pptr – PFOS).
2013-2015	National screening to determine if PFASs are in large scale drinking water treatment plants (US EPA - UCMR3 program).
2016	US EPA Drinking Water Lifetime Health Advisories PFOA and PFOS (70 pptr).
2017-Ongoing	Individual states developing their own groundwater/drinking water screening levels

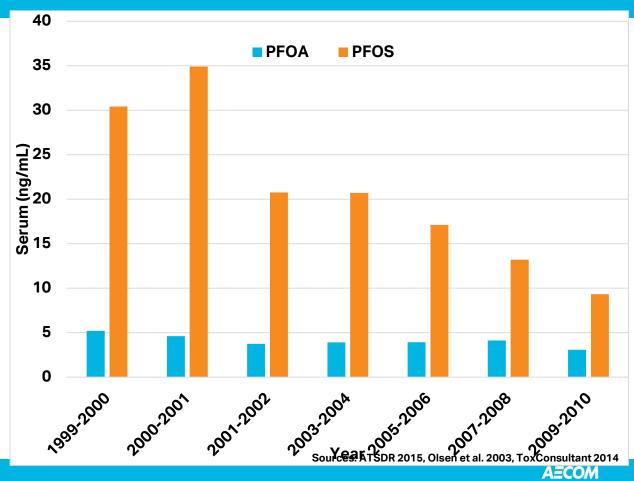
Potential Health Effects

Human (Occupational/General Public)

- USEPA: some evidence for testicular and bladder carcinogenicity (PFOA)
- Non-cancer effects (numerous)
 - Decreased birth weight and organ weights
 - Endocrine/thyroid effects
 - Changes in cholesterol/triglyceride levels

Ecological

- No published EPA position
- Low to moderate acute toxicity
- Chronic toxicity at low to high doses
 - Reduced biomass/body weight
 - Changes in liver/tumors
 - Larval emergence/shell growth changes
 - Hormonal/developmental changes



PFAS Trends in Blood Serum

- Preferential binding to proteins;
 - blood serum, kidney and liver accumulation
- Decreasing Trends in PFOA in Human Blood
 Serum 1999-2012
 - Geometric mean: from 5.2 ug/L to 2.1 ug/L
 - 95th percentile:
 11.9 ug/L to 5.7 ug/L
- Still in production and Use in some countries

PFAS Regulatory Status

* Chaotic and dynamic

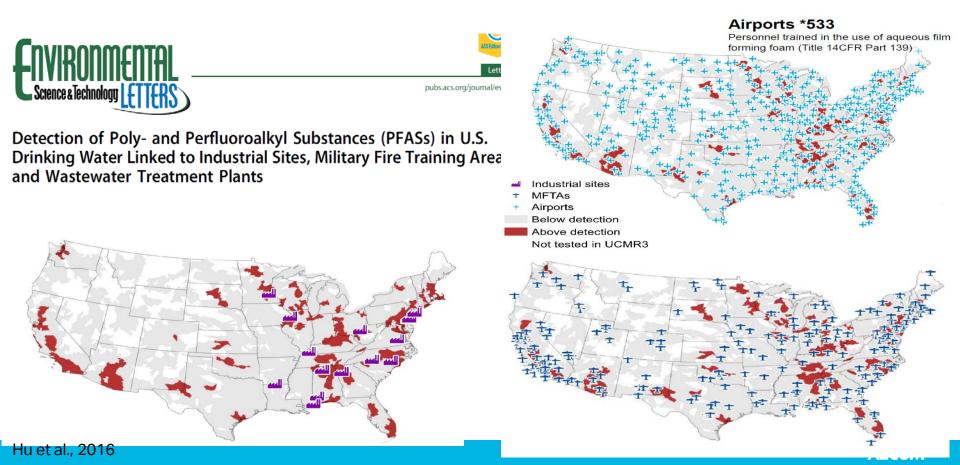
AECO

¹²/₁₂Current Regulatory Status – USEPA

- Reduction in Use
 - TSCA, Clean Air Act
- USEPA PFAS Summit (May 2018)
 - Will decide on MCLs, GW cleanup standards, Hazardous Substance Designation, CERCLA
- Safe Drinking Water Act (SDWA)
 - Unregulated Contaminant Monitoring Rule 3 (2012)
 - Lifetime Drinking Water Health Advisories (2016)
 - 0.07 µg/L (70 ppt)
- Superfund Program (CERCLA)
 - Screening levels for soil, tapwater, soil leaching to groundwater (PFBS, PFOA/PFOS)

¹³Current Regulatory Status – California/ Other States

- Safer Consumer Products Program
 - Consideration for listing (2018)
 - Carpets and rugs containing PFAS
- No state-wide requirements yet
- Included in Regional Monitoring Program
- Preliminary requests for inclusion in testing for emerging contaminants for some landfills
- Numerous other states have their own GW and Drinking Water values (AK, MI, MN, NH, NJ, TX, VT, etc.), some more stringent than EPA's 70 pptr advisory



AECON

Ambient PFAS Concentrations in the US and California

* Ubiquitous

¹⁵ 15**PFAS in the News**

AECOM

PFAS in Groundwater, Drinking Water, Surface Water

- Drinking Water (Hu et al 2016)
 - 36,149 drinking water samples from 2013-2015 UCMR data for 6 PFAS, utilities serving >10,000 people
 - Detected in 33 states, 75% of detections from 13 states including CA
 - PFOS ND-1,800 ng/L, PFOA ND- 349 ng/L
 o 6 million people exposed to PFAS above 70 ng/L DWHA
 - Detection frequency of all PFAS in drinking water
 - $\,\circ\,$ Sourced from groundwater 0.62%
 - \circ Sourced from surface water 0.31%
 - Types of PFAS
 - \circ Sourced from groundwater Long-chain PFAS
 - Sourced from surface water Short-chain PFAS

Blood Serum Studies in California

- National Average (2009-2010)
 - PFOS (mean 9.3 ppb), PFOA mean (3.1 ppb) (ATSDR 2015)
 - Declining trends
- California Biomonitoring Program
 - Southern California Firefighters (Dobraca et al 2015)

 Limited serum survey of 101 firefighters
 Most PFAS similar to national averages except PFDeA which was higher
 - California Teachers Study (2011)
 - Maternal and Infant Study (2011)
 - Detection Frequency close to 100% (esp. PFOS and PFOA)
 - PFOS levels (means 2-12 ppb) usually higher than PFOA (means 2-4 ppb)
 - <u>http://www.biomonitoring.ca.gov/results/chemical/154</u>

PFAS Data Quality in Sampling and Analysis

* Be very careful

PFAS Sampling

Page 19

PFAS Analysis – Sampling and Analytical Methods

- Specially-trained field crew needed
- High potential for cross-contamination (restrictions on clothing and equipment)
- EPA Modified Method 537 (Liquid Chromatography Tandem Mass Spectrometry)
- Lab SOPs are not identical
- Analysis
 - Initially PFOS and PFOA only
 - Then six PFAS from UCMR list
 - Now DoD sites do 24 PFAS
 - Can go up to 300 (Academic labs)

Human Health Risk Assessment

* Evolving

Relative Significance of Exposure Pathways

Less Significant

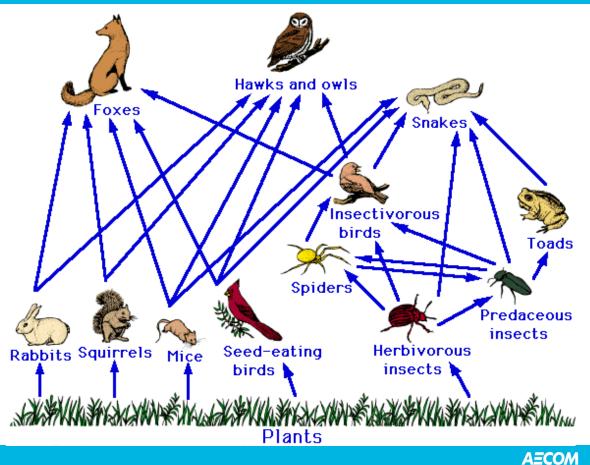
PFAS HHRA – Current Status

- Risk Drivers
 - \circ Cancer and noncancer toxicity values are evolving EPA and states
 - Drinking water screening levels are in parts per trillion range (14 70 ppt)
 - o Groundwater/Drinking water pathway
 - $\circ\,$ Non-cancer effects are the driver
 - Fish consumption also a concern
- Regulatory and community framework

 Educating the regulators and the community
 Community blood sampling

Groundwater/Drinking Water Actions

- When Health Advisories are exceeded
 - Public Water Supplies
 - o Public notification requirements
 - o Wells out of service
 - \circ Blending
 - o Provision of alternative water supplies
 - Contaminated Groundwater
 - o Site-specific risk assessment
 - o Default clean-up goals
 - o Fear of liability



Ecological Risk Assessment

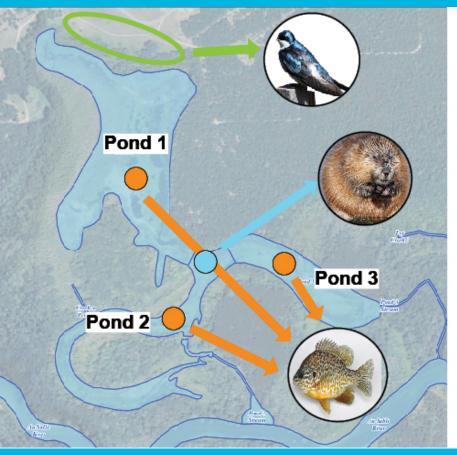
* Done when needed

Ecological Risk Assessment – Overview

- Multiple receptor types
- Multiple pathways
 - Direct exposure to soil, water, sediment
 - Food web exposure
- Bioaccumulation is a key issue but no uptake models yet

ERA – Screening and Site-Specific Evaluation

- No consensus-based screening levels, select our own site-appropriate values
- Can screen out sites with low level contamination


Medium	Screening Values	Basis
Surface Water (Aquatic Biota) (ng/L)	20 - 460,000	Direct toxicity
Surface Water (Avian Wildlife) (ng/L)	2 - 47	Food-web bioaccumulation
Fish Tissue (for predators) (mg/kg)	87	Food-web bioaccumulation

- Toxicity testing if screening levels are exceeded
 - Surface water testing with daphnids, fathead minnows, other species
 - Sediment testing with midge and amphipod tests, other species
- Bioaccumulation also needs to be considered

Site-Specific Data Collection at an Air Force Base

Muskrats

2 Muskrat Samples

Fish

- 43 Fish Filet Samples
- 20 Fish Liver Samples

Tree Swallows

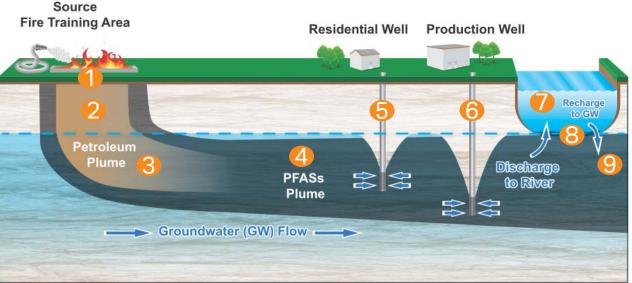
- 20 Tree Swallows Samples
- 4 Diet Samples (Stomach Content)

Surface Water

• 12 Surface Water Samples

Sediment

9 Sediment Samples



Are short-chain PFAS "better" than long-chain PFAS?

- Short-chain PFAS (<7C) replacing Long-Chain PFAS in many consumer and industrial products
 - Example Short-chain PFAS PFBS (4C), PFBA (4C), and PFHxA (6C)
 - o Are Short-Chain PFAS "better"?
 - Many unknowns and uncertainties, much more information needed

	Short-Chain PFAS	Long-chain PFAS
Blood Elimination half-life (mammals)	3 – 46 days	2 yrs – 9 yrs
Bioconcentration Factors (Water to Fish tissue)	<1	100's – 1,000's
Bioaccumulation Factors (Water+Diet to Fish tissue)	ND to Low	Bioaccumulative
Biomagnification Factors (BMF)	None noted	Do biomagnify
Toxicity (human and ecological), may depend on consideration of administered dose vs internal dose	Similar or lower (not necessarily non- toxic)	Low-moderate

Conceptual AFFF Site Model – Remediation Scenarios

Ex-Situ		In-Situ	
 GAC Modified zeolite Ion exchange resin Reverse osmosis Chemical or electro- coagulation Nano membrane filtration 	Separation	PlumeStopPhytoremediation	
 Incineration Advanced oxidation Electrochemical oxidation Sonolysis 	Destruction	 Chemical oxidation Chemical reduction Microbial degradation Fungal degradation Enzyme catalyzed oxidation 	

AECOM

What We Don't Know about PFAS

- There are numerous data gaps and uncertainties
- To name a few
 - Thousands of unevaluated PFAS compounds
 - Analytical methods development
 - Fate and transport parameters
 - Behavior and potential toxicity of precursors
 - Potential toxicity of long-chain and short—chain PFAS beyond the most commonlystudied compounds
 - Hazard assessment, toxicokinetics, toxicity assessment methods
 - Degradation potential
 - Effectiveness of remedial technologies in the field
 - And more...

Selected Resources for PFAS in Water

Hu et al. 2016. Detection of PFAS in US Drinking Water Linked to Industrial Sites, Military Fire Training Areas and Wastewater Treatment Plants. ES&T Lett, 2016, Oct 11, 3(10) 344-350

Interstate Technology and Regulatory Commission (ITRC). PFAS Fact Sheets. www.itrcweb.org

National Groundwater Association. 2018. Groundwater and PFAS: State of Knowledge and Practice. http://www.ngwa.org/Media-Center/news/Pages/Groundwater-and-PFAS-State-of-Knowledge.aspx

Ohio Valley Resources. Undated. Mapping PFAS Levels in Water. <u>http://ohiovalleyresource.org/2016/10/21/chemicals-found-water-means/</u>

San Francisco Estuary Institute (SFEI). PFAS in San Francisco Bay: Synthesis and Strategy. http://www.sfei.org/sites/default/files/events/Session%2004-%20A%20Sedlak%20PFAS.pdf

USEPA. PFAS website. <u>https://www.epa.gov/pfas</u>

Vedagiri et al. 2018. Ambient levels of PFOS and PFOA in the Multiple Environmental Media. J. Remed. 28(2):9-51 (Contact author for updated corrected pdf)

Questions?

Usha Vedagiri, Ph.D. AECOM usha.vedagiri@aecom.com 510-874-3123