# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

# Appendix A <br> Cooling Water Intake Study Plan 

September 1, 2000

Attachment 1-Model Parameterization, May 11, 2001

Attachment 2-Example ETM Calculation, June 26, 2001

# Morro Bay Power Plant Modernization Project Cooling Water Intake Study Plan 

September 1, 2000

Prepared for:
Duke Energy Morro Bay LLC
$6553^{\text {rd }}$ Street
Oakland, CA 94607

Tenera
Environmental Services

One Market, Spear Tower, Suite 1850, San Francisco, CA 94105 (415) 536-4744, FAX (415) 536-4714

3427-A Miguelito Court, San Luis Obispo, CA 93401
(805) 541-0310, FAX: (805) 541-0421

## Table of Contents

1.0 INTRODUCTION ..... 1
1.1 Previous Cooling Water Intake Studies ..... 2
1.2 Other Studies. ..... 2
1.3 Additional Information ..... 3
2.0 Entrainment And Source Water Studies. ..... 1
2.1 Study Purpose and Design ..... 1
2.2 Entrainment Sampling ..... 1
2.2.1 Entrainment Sampling Frequency ..... 2
2.2.2 Sampling Sufficiency ..... 5
2.3 Source Water Sampling ..... 6
2.3.1 Source Water Sampling Frequency ..... 7
2.4 Laboratory Processing and Data Handling ..... 8
3.0 IMPINGEMENT STUDY ..... 1
3.1 Study Purpose ..... 1
3.1.1 Current Cooling Water System Design Features ..... 1
3.1.2 Impingement Study Methods ..... 3
3.1.2 Methods For Estimating Impingement Impacts. ..... 4
4.0 Introduction to Sampling Plan and Modeling Evaluation ..... 1
4.1 Technical Work Group ..... 1
4.2 Modeling Approaches ..... 2
5.0 Estimating MBPP EntRainment Effects. ..... 1
5.1. Demographic Approaches ..... 1
5.1.1 Adult Equivalent Loss (AEL) ..... 4
5.1.2 Fecundity Hindcasting (FH) ..... 6
5.2 Empirical Transport Model (ETM) ..... 8
6.0 PRELIMINARY FINDINGS ..... 1
6.1 Entrainment and Source Water ..... 1
6.2 Impingement ..... 1
7.0 IMPACT ASSESSMENT .............................................................................................................. 1
8.0 LITERATURE CITED ................................................................................................................ 1

## List of Appendices

Appendix A: Estimating Total Annual Entrainment
Appendix B: Derivation of the Variance and Estimated Variance of $E$
Appendix C: Estimating Porportional Entrainment and the ETM Calculations
Appendix D: Delta Method for Estimating Variance

## LISt OF TABLES

Table 2-1. Frequency of Collections for Morro Bay Power Plant Sampling Stations 1 through 5, June 1999 - Present....................................................................................................................... 7

Table 3-1. Morro Bay Power Plant Impingement Study Sample Processing Criteria ............................... 4
Table 5-1. Data Requirements and Outputs for Three Approaches Proposed to Estimate Effects of Cooling Water Withdrawals at MBPP. 2

Table 5-2. Advantages and Disadvantages of the Three Approaches Proposed to Estimate Effects in the MBPP 316(b) Assessment. ...................................................................................... 3

## List of Figures

figure 2-1. Morro Bay sampling stations.
Figure 2-2. Mean (dotted line), maximum and minimum (dashed upper and lower lines) cumulative number of species from 1,000 iterations of data collected over 18 entrainment surveys.
Figure 6-1. Percent composition of entrained larval fishes at Morro Bay Power Plant (Station 2-MBPP Intake) Surveys 1 through 14, 20, and 24...................................................................... 2

Figure 6-2. Percent composition of larval fishes collected at source water stations 1, 3, and 4 (Surveys 1 through 5).

Figure 6-3. Percent composition of larval fishes collected at source water Station 5 (Surveys 1 through 5). ..................................................................................................................................... 4

Figure 6-4a. Percent composition of impinged fishes at Morro Bay Power Plant Units 1 and 2 (September 9, 1999 through July 7, 2000).

Figure 6-4b. Percent composition of impinged fishes at Morro Bay Power Plant Units 3 and 4 (September 9, 1999 through July 7, 2000).

Figure 6-5a. Percent composition of impinged invertebrates at Morro Bay Power Plant Units 1 and 2 (September 9, 1999 through July 7, 2000). .7

Figure 6-5b. Percent composition of impinged invertebrates at Morro Bay Power Plant Units 3 and 4 (September 9, 1999 through July 7, 2000). 8

### 1.0 INTRODUCTION

Duke Energy Morro Bay, LLC is proposing to repower and modernize the existing Morro Bay Power Plant (MBPP) by replacing older steam-turbine generators with combined-cycle combustion turbine generators. The project is located within the existing MBPP, 13 miles northwest of the city of San Luis Obispo in San Luis Obispo County, in an area that includes industrial facilities, commercial facilities, residences, and recreational beaches.

The project involves installation of two combined-cycle units and the retirement of existing Units 1 through 4. The project will utilize the existing seawater intake structure and discharge line for Units 1 through 4. With the installation of the new units, the design volume of intake cooling water and intake approach velocities will be significantly lower than the present facility design. Following completion of final facility designs, a table will be prepared summarizing cooling water intake system (CWIS) design and operating parameters necessary for the evaluation of the new CWIS entrainment and impingement effects.

Field studies are proposed to provide information to support the renewal of Duke Energy Morro Bay LLC's NPDES permit, to characterize the existing habitat in the vicinity of the MBPP, and to allow for a current assessment of compliance with intake "best technology available" (BTA) using federal 316(b) guidance (USEPA, 1976).

Three studies have been proposed to address the questions regarding entrainment and impingement effects: (1) an entrainment study (sampling in front of the intake), (2) a source water study (sampling at a station in the entrance to Morro Bay, sampling at two stations in the back bay area of Morro Bay, and sampling at an offshore station downcoast of the entrance to Morro Bay in Estero Bay), and (3) an impingement study.

To assess the potential impact of the project on the source water and receiving water aquatic resources, site-specific information is being collected on the composition and abundance of all fishes and selected macroinvertebrates that are entrained and impinged. Entrainment data will be used to estimate the entrainment by the intakes and estimate proportional entrainment of source water larval fishes and cancer crabs. Impingement data include the species composition, abundance, lengths, and weights of all impinged fishes, decapod crabs, cephalopod mollusks, and sea urchins. Impingement rates, biomass estimates, and length frequency analyses will be determined from these data.

In response to concerns expressed by the California Department of Fish and Game (CDFG), the megalopal stage of all species of cancer crabs and the European green crab (Carcinus maenas) will be identified and enumerated from all processed plankton samples.

### 1.1 Previous Cooling Water Intake Studies

Section 316(b) of the CWA (PL 92-500 and 95-217) requires that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact. To comply with this requirement, Pacific Gas and Electric Company (PG\&E) submitted a 316(b) study plan in the mid-1970s. The study plan, based on state and federal 316(b) guidelines, was reviewed by several government agencies, including staffs of the Regional Water Quality Control Board (RWQCB), State Water Resources Control Board, CDFG, and the United States Environmental Protection Agency (USEPA). The RWQCB decided that site-specific studies documenting the numbers of organisms entrained or impinged were not required for the Morro Bay Power Plant. The RWQCB staff concluded that results of extensive entrainment studies that were to be conducted at the Moss Landing Power Plant were sufficient to provide a basis for extrapolation to MBPP. In addition, a weekly impingement monitoring study was conducted between July 1977 and December 1978 (PG\&E, 1982) to further evaluate the MBPP cooling water intake system. Although no entrainment studies were conducted at this site, entrained organisms were expected to include the planktonic eggs and larvae of fishes and invertebrates of species that spawn in open coastal waters and Morro Bay, such as flatfishes, gobies, rockfishes, shiner perch, and cancer crabs.

### 1.2 Other Studies

Several studies on juvenile and adult fishes have been conducted in the vicinity of the Morro Bay Power Plant. Complete summaries of the methods and results of these studies will be included in the MBPP's Application for Certification (AFC) that will be submitted to the California Energy Commission. Studies were conducted in Morro Bay beginning in January 1986 through December 1970 to document the fish species that utilize Morro Bay and to determine the spatial distributions and seasonal differences of the fish community within the estuary (Fierstine et al., 1973). A large synoptic study of the MBPP thermal discharge from Units 1 through 4 was conducted in 1971-1972 (PG\&E, 1973). As part of this thermal effects study, the fish populations in Estero Bay were surveyed to address questions about thermal effects on their distributions. Quarterly bag seine sampling was conducted in Morro Bay in November 1974, May and August 1975, and February 1976 to assess diel (24-hour) and seasonal variations in species abundance, composition, and diversity within the shallow water fish community of the
bay (Horn, 1980). The CDFG presently conducts monthly or semimonthly otter trawl surveys of the Morro Bay estuary to monitor the abundance of adult and juvenile fish species important to the area's commercial and recreational fisheries. These surveys began in April 1992.

The species composition and abundance of Morro Bay fishes have remained relatively constant. Three previous studies of adult fishes at Morro Bay showed similar composition and abundance over a decade of sampling. Horn (1980) found a total of 11,627 fishes represented by 21 species that were captured in 36 seine hauls. Three species, topsmelt (Atherinops affinis), shiner perch (Cymatogaster aggregata), and Pacific staghorn sculpin (Leptocottus armatus) comprised 82 percent of the number of individuals caught. All three of these species were common in Fierstine et al.'s (1973) studies of Morro Bay fish populations. Topsmelt and shiner perch were also two of the top five species collected in PG\&E's (1982) impingement studies. Other species common among these studies were plainfin midshipmen (Porichthys notatus) (missing in Horn's studies) and northern anchovy (Engraulis mordax). Fierstine et al. (1973) reported that 12 of the species he caught, which he considered resident species, occurred in at least 6 or more of their survey months. Another 26 species, which they reasoned were seasonal or occasional visitors, were collected in a single month.

### 1.3 Additional Information

Morro Bay supports an active fishing industry; commercial fishing boats deliver their catch to the Port of Morro Bay, party boats operate from the harbor, and recreational fishing occurs in the area. The CDFG maintains a database of all commercial landings in the state. The location where fishes have been caught is required on each landing receipt. Several sport fishing surveys have been conducted targeting the fishing efforts and success including creel surveys by Pacific States Marine Fisheries Commission (PSMFC) and CDFG. Both agencies also conduct ongoing studies of local party boat fleet catches. Complete summaries of these data will be included in the MBPP's Application for Certification (AFC) that will be submitted to the California Energy Commission.

### 2.0 Entrainment And Source Water Studies

### 2.1 Study Purpose and Design

The purpose of the MBPP entrainment and source water studies is to supplement the evaluation of the potential impacts on populations of larval fishes and cancer crab megalops associated with modernizing the MBPP. The studies were designed to address the following questions:

- What are the species composition and abundance of larval fishes and cancer crabs entrained by the MBPP?
- What are the estimates of local species composition and abundance of entrainable larval fishes and cancer crabs in Morro Bay?
- What are the potential impacts of the power plant's cooling water system on larval fishes and cancer crabs?

Field data on the composition and abundance of potentially entrained larval fishes and cancer crab megalops will provide an estimate of the total number and types of these organisms passing through the power plant's cooling water intake system. Additionally, data collected on source water stocks of entrainable fish larvae and megalopal cancer crabs will allow for estimation of fractional losses due to entrainment. The entrainment data will be used, assuming 100 percent entrainment mortality, with data collected from the source water to assess the potential impact to fishery and cancer crab resources.

Individuals of introduced European green crab will also be identified and enumerated from all processed plankton samples addressing concerns about its abundance raised by the CDFG. Impact assessment will not be done for European green crabs.

### 2.2 Entrainment Sampling

This study was designed to quantify the composition and abundance of entrained larval fishes and cancer and European green crab (Carcinus maenas) megalops at MBPP. Planktonic fish eggs will not be sorted from samples. Although many marine fish eggs are described, the taxonomy remains difficult and is very time consuming.

Samples from in front of the MBPP intake (Station 2; Figure 2-1) are collected by towing a bongo frame with two 0.71 m -diameter openings each equipped with $335-\mu \mathrm{m}$ mesh plankton nets and codends. The water volume filtered is measured by calibrated flowmeters mounted in the openings of the nets. Samples are collected over a continuous 24 -hour period, with each period divided into six, 4-hour sampling cycles. The MBPP entrainment sampling will occur weekly until a consecutive year of data is collected. Two replicated tow samples using paired bongo nets are collected during each cycle. The samples in the bongo net are combined for a single tow replicate. The samples collected in the bongo net are combined for a single tow replicate. Samples are collected at a station located directly off of the intake structure (Station 2; Figure 21). Sample collection methods are similar to those developed and used by the California Cooperative Oceanic and Fisheries Investigation (CalCOFI) in their larval fish studies (Smith and Richardson, 1977). The bongo nets are lowered as close to the bottom as possible, based on a depth reading from an echosounder mounted on the boat. Once the nets are as close to the bottom as possible, the boat is moved forward and the nets retrieved at an oblique angle (winch cable at a 45 degree angle). The winch retrieval speed is maintained at approximately $1 \mathrm{ft} / \mathrm{sec}$, after the correct angle on the tow line is achieved.

The target combined volume of water filtered by both nets is approximately $40 \mathrm{~m}^{3}\left(20 \mathrm{~m}^{3} / \mathrm{net}\right)$. The sample volume is checked when the nets reached the surface. If the sample volume is approximately double ( $80 \mathrm{~m}^{3}$ total), indicating possible flowmeter failure, the sample is voided and the tow repeated. If the target volume is not collected, the oblique tow method is repeated until the targeted volume is reached. The nets are then retrieved from the water, and all of the sample is rinsed into the codends.

The contents of both nets are combined into one sample immediately after collection. The sample is placed into a labeled jar and is preserved in ethanol (ETOH). Preservation in ETOH will allow specimen identifications to be genetically validated, checked for age, and measured for growth studies should the need arise. Each sample is given a serial number based on the location, date, time, and depth of collection. In addition, that information is logged onto a sequentially numbered data sheet. The sample's serial number is used to track it through laboratory processing, data analyses, and reporting.

### 2.2.1 Entrainment Sampling Frequency

Entrainment surveys were scheduled to occur weekly and were collected at Station 2 (Figure 2-1) once per week from June 21, 1999 through August 9, 1999. Tidewater goby, a federally listed endangered species, were collected in Survey 2 (June 28, 1999) and were identified and confirmed in early August 1999. The U.S. Fish and Wildlife Service (USFWS) and the CDFG were immediately notified regarding the collection of tidewater gobies. Source water and
entrainment sampling was suspended, at their direction, because we did not possess a permit to allow for the destructive sampling of the tidewater goby. A USFWS Endangered Species Recovery Permit Application to allow for the collection of the goby was filed.


Figure 2-1. Morro Bay sampling stations.

We received a permit on December 2, 1999 and sampling resumed December 14, 1999 and will continue until on or about December 14, 2000. Table 2-1 summarizes the sampling frequency by station from June 1999 through the present.

### 2.2.2 Sampling Sufficiency

Species accumulation curves were calculated to assess the adequacy of a sampling effort (Krebs, 1989). A species accumulation curve depicts the number of new species (species not encountered before) collected during repeated sampling efforts. It is in effect a running tally of the number of species collected. The tally is cumulative so each species is counted only once. Generally, the slope of a species accumulation curve is steepest during early sampling efforts when new species are frequently encountered. As sampling continues fewer new species are collected so the slope of the curve tends toward zero. This trend may be confounded when computing a species accumulation curve over time, due to the reproductive cycles of species within the community. The species accumulation curves was computed from the mean, maximum, and minimum number of species sampled from 1,000 random iterations of the data to help account for seasonal differences in reproductive cycles among species. The accumulation of species during entrainment sampling from processed samples from June 1999 through May 2000 followed the expected patterns with rapid accumulation during the early sampling efforts that decreased with continued sampling (Figure 2-2).


Figure 2-2. Mean (dotted line), maximum and minimum (dashed upper and lower lines) cumulative number of species from 1,000 iterations of data collected over 18 entrainment surveys.

### 2.3 Source Water Sampling

This study was designed to characterize the source water composition, abundance, and distribution of larval fishes and the megalopal stages of cancer and European green crabs. The data collected will aid in providing estimates of fractional loss as well as to help define boundaries of source populations.

Samples are collected at the following four source water stations (Stations 1, 3, 4, and 5; Figure $2-1$; Station 2 is the entrainment station):

- Station 1 - In the entrance to Morro Bay.
- Station 2 - Intake (entrainment station, collected weekly).
- Station 3 - Off of the municipal boat launch ramp.
- Station 4 - Further south in the back bay.
- Station 5 - Located in Estero Bay approximately 2.5 nautical miles ( 2.9 statute miles) down coast of the entrance to Morro Bay.

Sampling of the source water stations consists of oblique tows using the same methods previously described in Section 2.1.1. All source water samples will be processed.

Table 2-1. Frequency of Collections for Morro Bay Power Plant Sampling Stations 1 through 5, June 1999 - Present.

| Frequency of Collection | Dates | Number of Samples Collected per Survey |  |  |  |  |  | Total Samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Station 1 |  | Daytime High Tide |  |  | Daytime Low Tide |  |  |  |
| Monthly | Jun-Jul 1999* | 2 |  |  | 2 |  |  | 4 |
|  | Dec 1999-Jan 2000 | 2 |  |  | 2 |  |  | 4 |
|  | Time PST | 0800 | 1200 | 1600 | 2000 | 2400 | 0400 |  |
|  | Feb 2000-present | 2 | 2 | 2 | 2 | 2 | 2 | 12 |
| Station 2 |  | 1000 | 1400 | 1800 | 2200 | 0200 | 0600 |  |
| Weekly | Jun-Aug 9, 1999* | 2 | 2 | 2 | 2 | 2 | 2 | 12 |
|  | $\text { Dec 14, } 1999 \text { - }$ <br> present | 2 | 2 | 2 | 2 | 2 | 2 | 12 |
| Station 3 |  | Daytime High Tide |  |  | Daytime Low Tide |  |  |  |
| Monthly | Jun-Jul 1999* | 2 |  |  | 2 |  |  | 4 |
|  | Dec 1999-Jan 2000 | 2 |  |  | 2 |  |  | 4 |
|  | Time PST | 0800 | 1200 | 1600 | 2000 | 2400 | 0400 |  |
|  | Feb 2000 - present | 2 | 2 | 2 | 2 | 2 | 2 | 12 |
| Station 4 |  | Daytime High Tide |  |  | Daytime Low Tide |  |  |  |
| Monthly | Jun-Jul 1999* | 2 |  |  | 2 |  |  | 4 |
|  | Dec 1999-Jan 2000 | 2 |  |  | 2 |  |  | 4 |
|  | Time PST | 0800 | 1200 | 1600 | 2000 | 2400 | 0400 |  |
|  | Feb 2000-present | 2 | 2 | 2 | 2 | 2 | 2 | 12 |
| Station 5 |  | Daytime High Tide |  |  | Daytime Low Tide |  |  |  |
| Monthly | Jun-Jul 1999* | 2 |  |  | 2 |  |  | 4 |
|  | Dec 1999-Jan 2000 | 2 |  |  | 2 |  |  | 4 |
|  | Time PST | 0800 | 1200 | 1600 | 2000 | 2400 | 0400 |  |
|  | Feb 2000-present | 2 | 2 | 2 | 2 | 2 | 2 | 12 |

See Figure 2-1 for station locations.

* Sampling was suspended from August 9 through December 13, 1999 owing to the need for an incidental take permit for the protected tidewater goby.


### 2.3.1 Source Water Sampling Frequency

Monthly source water surveys began in June 1999. Following the July 1999 source water survey, sampling was suspended due to the need for an incidental take permit for the protected tidewater goby larvae found in the samples (see Section 2.2.1). Monthly source water sampling was
reinstated in December 2000. Source water surveys were initially collected twice per day (Surveys 1-4; June, July, and December 1999 and January 2000); samples were collected during daylight high and low tides. In February 2000, sample collection for source water surveys was increased to cover a 24 -hour period. The 24 -hour sampling period is divided into six 4 -hour cycles. Two samples are collected per cycle at each of the source water stations.

### 2.4 Laboratory Processing and Data Handling

Laboratory processing removes all larval fishes and the megalopal stages of Cancer spp. and European green crabs (Carcinus maenas) from the samples. Larval fishes and all cancer and European green crab megalops are identified to the lowest taxonomic level possible by Tenera's in-house taxonomists. In addition, the lifestage of fish larvae are identified on the data sheet. A laboratory quality control (QC) program for all levels of laboratory sorting and taxonomic identification is applied to all samples. The QC program also incorporates the use of outside taxonomic experts and DNA analysis to provide taxonomic QC and resolve taxonomic uncertainties.

Laboratory data sheets are coded with species or taxon codes. These codes are verified with species/taxon lists and signed off by the data manager. The data are entered into a computer database for analysis.

### 3.0 Impingement Study

### 3.1 Study Purpose

Fishes and selected macroinvertebrates impinged at the MBPP intakes are currently sampled to assess the potential population-level impacts of impingement effects associated with the existing intake structures, flow rates, and volumes resulting from the modernization project. The assessment will specifically address the following questions:

- What are the species composition and abundance of juvenile and adult fishes and macroinvertebrates impinged by the MBPP?
- What are the abundance and distribution of source water species of impingeable fishes and selected macroinvertebrates in Morro Bay?
- What are the potential impacts of the power plant's cooling water system on juvenile and adult fishes and selected macroinvertebrates?

Field data on the composition and abundance of impinged fishes and selected macroinvertebrates will provide an estimate of the total number and types of these organisms impinged on the traveling screens of the MBPP. These data, assuming 100 percent impingement mortality, will be used to estimate impingement losses.

### 3.1.1 Current Cooling Water System Design Features

Two separate shoreline intake structures, one for Units 1 and 2 and one for Units 3 and 4, withdraw cooling water from the northern shore of Morro Bay. The shoreline intake structures for MBPP house the bar racks, vertical traveling screens, and chlorinators. Circulating water pumps serving the individual units are located about $30 \mathrm{ft}(10 \mathrm{~m})$ behind the screen structure. Each unit is equipped with two circulating water pumps, which discharge into separate pressure conduits, each supplying one half of a unit's steam condenser. Seawater entering the intake structure first passes through the bar racks that are designed to prevent the entry of large objects into the cooling water system. These bar racks are spaced 4 in . 10.2 cm ) on center and are located about $20 \mathrm{ft}(6 \mathrm{~m})$ in front of the vertical traveling screens.

From the bar racks, water flows into the pump forebays, where the vertical traveling screens are housed. The screens, fabricated with $3 / 8-\mathrm{in}$. ( 0.95 cm ) mesh, retain objects small enough to pass
through the bar racks but larger than $3 / 8$ inch. There are four vertical traveling screens for Units 1 and 2 and six traveling screens for Units 3 and 4. Each of the traveling screens is approximately 10 ft wide and extends from the upper decking of the intake structure to its bottom. Debris, fishes, and invertebrates retained by the traveling screens are removed during periodic screen rotation and washing. Screen washes can be initiated by timed cycles (typically every four hours, rinsing for a total of 15 min .), by manual operation (typically a continuous wash which may be necessary during periods of heavy algae and surfgrass accumulation), or by automatic activation initiated when a water level differential exceeds a predetermined maximum.

During screen washing, high-pressure nozzles ( $90-95 \mathrm{psi}$ ) wash debris and impinged organisms from the traveling screens. This material is washed from the traveling screens into sloping sluiceways that empty into two refuse sumps (one per unit group). Impinged material from all the units is returned to Estero Bay by a large-diameter pump that empties into the discharge conduit of Units 1 and 2. During impingement collections periods, the material rinsed into the sluiceways is carried by water flow into $1 / 4-\mathrm{in}$. $(0.64 \mathrm{~cm})$ mesh-lined collection baskets located above the refuse sump pumps.

### 3.1.2 Impingement Study Methods

Impingement sampling occurs over a 24 -hour period one day per week. Each sampling period is divided into six 4 -hour cycles. Before each weekly sampling effort, all of the screens are rotated and washed clean of all impinged debris and organisms. The sluiceways and collection baskets are cleaned before the start of each sampling effort. The operating status of the circulating water pumps is recorded every eight hours during the collection. The Units 1 and 2 traveling screens typically remain stationary for a period of 3 hours and 40 minutes, then they are rotated and rinsed for 20 minutes. The Units 3 and 4 traveling screens typically remain stationary for a period of 3 hours and 45 minutes, then they are rotated and rinsed for 15 minutes. The impinged material flows into one of two collection baskets. The debris and organisms rinsed from the Units 1 and 2 traveling screens is kept separate from the material from the Units 3 and 4 traveling screens.

All fishes and selected macroinvertebrates collected at the end of each 4-hour cycle are identified and counted. Table 3-1 shows the various taxonomic categories that are collected and the laboratory processing criteria that apply to the organism groups. Standard length (Osteichthys) and total length (Chrondrichthys) and the weight of all impinged fishes were recorded. Any mutilated or fragments of fishes that are collected are identified, if possible, but their lengths and weights are not recorded. Carapace width, mantle length, and test diameter are measured for crabs, cephalopod mollusks, and sea urchins, respectively. The amount of impinged debris is recorded. All data are recorded on data sheets, verified, and subsequently entered into a computer database.

A quality control (QC) program is implemented to ensure the correct identification, enumeration, length and weight measurements of the organisms recorded on the data sheet. Impingement cycles are randomly chosen for onsite QC re-sort to verify that all the organisms were removed from the impinged material.

Occasionally, there is such a large amount of debris collected on the traveling screens that the screens are continuously rotated and rinsed. Sample collection is suspended during those times because it is not safe to install and remove the collection baskets.

A log containing hourly observations of the operating status (on or off) of the circulating water pumps for the entire study period is obtained from the power plant. The data from these logs are is used to estimate the amount of cooling water withdrawn by the plant to compute impingement rates.

Table 3-1. Morro Bay Power Plant Impingement Study Sample Processing Criteria

| Abundance Noted as <br> Total Present/ Count <br> Absent | Length | Weight | Condition <br> of Specimen | Sex | Organism Type/Comments |
| :---: | :---: | :---: | :---: | :---: | :--- |
| X | X | X | X | X | Chrondrichthys (sharks, skates, <br> rays) Total length measured. |
| X | X | X | X | X | Osteichthys (bony fishes) <br> Standard length measured. |
| X | X | X | X | X | Decapod crabs Carapace width <br> measured. |
| X | X | X | X | Cephalopod molluscs (octopus <br> and squid) Mantle length <br> measured. |  |
| X | X | - | Sea urchins <br> Test diameter measured. |  |  |

Note: - Length measurements will be made to the nearest 1.0 mm .

- Weight measurements will be made to the nearest 0.1 gram.
- Condition will be reported as alive, dead, mutilated, or fragmented.


### 3.1.2 Methods For Estimating Impingement Impacts

Impingement source water impacts can be evaluated using various estimates of source water populations: 1) CDFG catch block data, 2) CDFG party boat statistics, and 3) CDFG bimonthly otter trawl data for bottom dwelling fishes. Impingement rates and biomass estimates will be calculated from actual numbers of organisms impinged and compared to estimates of source water abundance and biomass. Data from the 24-hour collections each week are multiplied by seven to estimate the total number of organisms impinged in a week. The same method is used to calculate the weekly and annual biomass. Plant circulating water pump operating records supply the data for the volume of water pumped each week used to estimate weekly impingement rates.

### 4.0 Introduction to Sampling Plan and Modeling Evaluation

The purpose of this section is to describe three biological resource assessment methods that will be used to determine the effects of entrainment caused by the Morro Bay Power Plant (MBPP) intake system. Models and approaches, such as those described in this study plan, have been employed to estimate intake effects and to assess impacts at other power plants (e.g., Horst, 1975; Boreman et al., 1978, 1981; Goodyear, 1978; Parker and DeMartini, 1989; Summers, 1989; Cowan et al., 1993; VanWinkle et al., 1993; Saila et al., 1997). As advised in the USEPA (1977) draft document entitled Guidance for Evaluating the Adverse Impact of Cooling Water Intake Structures on the Aquatic Environment: Section 316(b) Public Law 92-500,
"...The overall goal of conducting intake studies [316(b) demonstration studies] should be to obtain sufficient information on environmental impact to aid in determining whether the technology selected by the company is the best available to minimize adverse environmental impact. In the case of existing plants, this goal will be accomplished by providing reliable quantitative estimates of the damage that is or may be occurring and projecting the long-range effect of such damage to the extent reasonably possible."

Information from one or more of the approaches evaluated in this report will, in conjunction with other sources of resource management and ecological information, provide an assessment of adverse environmental impact.

### 4.1 Technical Work Group

The Central Coast Regional Water Quality Control Board (RWQCB) assembled a team of experts to assist the Board's staff in their review of the design and implementation of the 316(b) intake studies at MBPP. This team, the Technical Work Group (TWG), meets periodically to discuss topics relevant to ongoing efforts at MBPP including assessing entrainment and impingement effects. All of the data collected from sampling activities in these studies will be included in the final report. Results of an earlier impingement study at MBPP (PG\&E, 1982) combined with the results of the ongoing MBPP impingement sampling and results from the ongoing MBPP entrainment and source water sampling have been used to create a preliminary list of potential target taxa. While sample collection to estimate power plant effects cannot be focused on any particular taxon, the final assessment of MBPP impact will be conducted for taxa from these target groups. These final assessment taxa will be chosen by the TWG based on
criteria including statistical properties of the data and the availability of required life-history information. Generally, the most abundant and studied taxa form the basis of impact evaluation.

### 4.2 Modeling Approaches

Considerable effort among regulatory agencies and the scientific community has been expended on the evaluation of power plant intake effects over the past three decades. These efforts have helped to establish the context for the modeling approaches proposed to estimate entrainment and impingement effects at MBPP. The variety of approaches developed reflects the many differences in power plant locations and resource settings. MacCall et al. (1983), in their review of the various approaches, divided them into those that offer a judgment on the presence or absence of impact and those that describe the sensitivity of populations to varying operational conditions.

Impact assessment approaches considered in this evaluation include:

- estimated total annual entrainment described by John Skalski, University of Washington (Appendix A),
- proportional entrainment (PE), which is similar to that described by MacCall et al. (1983), used by Parker and DeMartini (1989), and described by Dave Mayer, Tenera Environmental and John Skalski, University of Washington (Appendix C),
- adult-equivalent loss (AEL) (Horst, 1975; Goodyear, 1978), and
- fecundity hindcasting $(F H)$ proposed by Alec MacCall, NOAA/NMFS, which also is related to the adult-equivalent loss approach.

These approaches can be placed under the umbrella of two general models: the empirical transport model (ETM; Boreman et al., 1978) (PE as an input); and the equivalent adult model (EAM; Horst, 1975; Goodyear, 1978) including adult equivalent loss (AEL) and fecundityhindcasting (i.e., the demographic approaches). The $P E$ can also be interpreted as "conditional fishing mortality" as defined by Ricker (1975).

Early forms of adult/recruitment relationships have evolved to more complex present-day forms of individual-based modeling. For example, large-scale research efforts have been expended on striped bass, Morone saxatilis (Cowan et al., 1993; Van Winkle et al., 1993). The resulting models are species- and site-specific, incorporating precise descriptions of life histories, growth, survivorship, as well as ecological, water quality, and trophic conditions. Such detailed
information is not available for species potentially impacted by MBPP. Therefore, a more empirically based modeling approach is proposed for this 316(b) study.

The first step in estimating the effects of entrainment losses in the MBPP intake structure is to estimate the concentrations of organisms being entrained. The methods for achieving these estimates have been described in detail in Section 2.0. Briefly, entrainment concentrations are estimated from bongo-net plankton samples collected at a station positioned directly in front of the MBPP intake structure. These concentration estimates represent the "damage that is or may be occurring" (USEPA, 1977) as the result of MBPP's cooling water intake. The second step in this process is to place these data in a context that allows "projecting the long range effects" (i.e., the impact assessment; USEPA, 1977).

Several methods for estimating impacts, including ETM, will be applied to MBPP intake effects. The application of several models to estimate power plant effects is not unique (Murdoch et al., 1989; PSE\&G, 1993). Adult-equivalent loss is an accepted method that has been applied in other 316(b) demonstrations (PSE\&G, 1993) and will be applied at MBPP as well; the FH presented in this document is analogous to $A E L$. The advantage of these latter two approaches is that they translate larval losses into adult fishes that are familiar units to fishery managers.

Population boundaries of the species affected by MBPP cooling water intake vary with each species' life history according to location and residence time of the species’ various life stages. These boundaries will be defined by working assumptions determined through discussions with the TWG, hydrodynamists, and other fishery and resource managers. Approximately 70 percent of the bay is exchanged tidally each day (Tetra Tech, 1999). While the $P E$ method can be expanded upon, it may be employed to avoid the potential difficulty of estimating population or stock boundaries by estimating a relative loss of individuals from an agreed upon source water area (e.g., the study area proposed for the $P E$ sampling below). Estimating $P E$ also presents the advantage of comparing larval losses directly to larval supplies without the need for life stage mortality estimates to convert larval losses to equivalent adults. The $P E$ fractional loss of larvae yields a direct estimate of conditional entrainment mortality on the entrained taxa.

An important issue that will arise when "estimating long range effects" is density-dependence (sometimes called compensation) of the vital rates of impacted organisms. Density-dependence is not confined to acting through mortality; growth and fecundity may also be density-dependent. Some entrainment studies have assumed that compensation is not acting between entrainment and the time when adult recruitment would have taken place, and further, that this specific assumption resulted in conservative estimates of projected adult losses (Saila et al., 1997). Others, such as Parker and DeMartini (1989), did not include compensatory mortality in estimates of equivalent adult losses, because of a lack of consensus on how to include it in the
models and, more importantly, uncertainty about how compensation would operate on the populations under study. The uncertainty arises from a lack of understanding about the effect of compensation on which vital processes (fecundity, somatic growth, mortality) and which life stages are being affected. In particular, Nisbet et al. (1996) showed that neglecting compensation does not always lead to conservative long-term estimates of equivalent adult losses. Due to the uncertainty of achieving consensus on evaluation of compensation, the presently planned approach to impact assessment will not incorporate a compensation factor. However, not withstanding the special cases described by Nisbet et al. (1996), we believe that not including a compensation factor generally produces a conservative estimate of adult equivalent losses.

### 5.0 Estimating MBPP Entrainment Effects

Larval sampling at the cooling water intake will provide periodic estimates of daily as well as annual larval entrainment at the MBPP. Estimates of entrainment loss, in conjunction with demographic data collected from the fisheries literature, will permit modeling of adult equivalent loss $(A E L)$ and fecundity hindcasting $(F H)$. Additional sampling at the potential source populations of larvae in Morro Bay and Estero Bay provides the information needed to estimate the probability of annual fractional losses of entrained larvae using the Empirical Transport Model (ETM). Considering the guidelines established in the EPA draft document (EPA, 1977) and given the constraints of the data and available demographic information for the larvae entrained, the TWG will determine which taxa within these groups will be included in more detailed analyses of entrainment effects when sufficient data have been collected. The data requirements, assumptions, outputs, advantages, and disadvantages of these approaches are summarized in Tables 5-1 and 5-2. In the MBPP 316(b) study, we will use each approach (i.e., $A E L, F H$, and $E T M$ ) as appropriate for each taxon to assess effects of entrainment losses.

### 5.1. Demographic Approaches

Adult equivalent loss models evolved from impact assessments that compared power plant losses to commercial fisheries harvests and/or estimates of the abundance of adults. In the case of adult fishes impinged by intake screens, the comparison was relatively straightforward. To compare the numbers of impinged sub-adults and juveniles and entrained larval fishes to adults, it was necessary to convert all these losses to adult equivalents. Horst (1975) provided an early example of the equivalent adult model ( $E A M$ ) to convert numbers of entrained early life stages of fishes to their hypothetical adult equivalency. Goodyear (1978) extended the method to include the extrapolation of impinged juvenile losses to equivalent adults.

Demographic approaches, exemplified by the $E A M$, produce an absolute measure of loss beginning with simple numerical inventories of entrained or impinged individuals and increasing in complexity when the inventory results are extrapolated to estimate numbers of adult fishes or biomass. We will use two different but related demographic approaches in assessing entrainment effects at MBPP: $A E L$, which expresses effects as absolute losses of numbers of adults, and $F H$, which estimates the number of adult females whose reproductive output has been eliminated by entrainment of larvae.

Table 5-1. Data Requirements and Outputs for Three Approaches Proposed to Estimate Effects of Cooling Water Withdrawals at MBPP.

| Approach | Data Required | Assumptions | Output |
| :---: | :---: | :---: | :---: |
| Proportional Entrainment (PE) | - Taxon-specific estimates of entrainment losses. <br> - Comparable life stage estimates of taxon's abundance (concentration) in source water. | - Source water samples are representative of the composition and abundance of larvae in the study area. <br> - Entrainment samples are representative of the organisms entrained in the cooling water. | - Estimated fraction of larval concentration removed from the source water by entrainment. |
| Adult Equivalent Loss $(A E L)$ | - Taxon-specific estimates of entrainment and impingement losses. <br> - Age-specific mortality schedules for selected taxa from entrainmentimpingement to some predetermined life stage (e.g., recruitment). <br> - Fishery resource abundance estimates for relative impact assessments. | - Age-specific mortality rates are constant for the population. <br> - Population at longterm equilibrium for relative impact assessments (not required for calculations). <br> - Entrainment samples are representative of the organisms entrained in the cooling water. | - Number of animals that would have survived to adulthood had they not been entrained or impinged by the intake. |
| Fecundity Hindcast (FH) | - Taxon-specific estimates of entrainment and impingement losses. <br> - Species- and age-specific adult fecundity. <br> - Age-specific mortality schedules for selected taxa from parturition/hatch to entrainment/ impingement. | - Age-specific mortality rates are constant for the population. <br> - Population at longterm equilibrium for relative impact assessments (not required for calculations). <br> - Entrainment samples are representative of the organisms entrained in the cooling water. | - Number of sexually mature females represented by the losses of reproductive output due to entrainment and/or impingement. |

Table 5-2. Advantages and Disadvantages of the Three Approaches Proposed to Estimate Effects in the MBPP 316(b) Assessment.

| Approach | Advantages | Disadvantages |
| :---: | :---: | :---: |
| Proportional <br> Entrainment <br> (PE) | - Empirical estimate of $P E$ compares larvae entrained to larvae in the source water. <br> - Age- and species-specific survivorship data not required. <br> - Can be converted to proportional habitat losses. | - Scaling intake effects up to population level impacts, but may be problematic. <br> - Estero Bay taxa (e.g., Genyonemus lineatus). Open ocean not adequately sampled in present design. |
| Adult Equivalent Loss <br> (AEL) | - Entrainment/impingement losses are expressed as adults facilitating the interpretation of population-level impacts. <br> - Common usage in 316(b) studies. | - Difficult to interpret for entrained organisms in broad taxonomic categories (e.g., Gobiidae) containing multiple life-histories. <br> - Age- and species-specific mortality data are little known or unavailable for many organisms that are entrained/impinged by the intakes. <br> - Local adult population sizes not well described by fishery catch data for mixed species (e.g., Sebastes spp., Pleuronectidae, etc). |
| Fecundity Hindcast $(F H)$ | - Entrainment/impingement losses are expressed as adults facilitating the interpretation of population-level impacts. | - Age- and species-specific mortality data are little known or unavailable for many organisms that are entrained/impinged by the intakes. <br> - Local adult population sizes not well described by fishery catch data for mixed species (e.g., Sebastes spp, Pleuronectidae, etc). <br> - Scaling intake effects up to population level impacts may be problematic. <br> - Age- and species-specific fecundity data have not been previously reported for many organisms that are entrained/impinged by intakes. |

Age-specific survival and fecundity rates are required for $A E L$ and $F H$. Adult-equivalent loss estimates require survivorship estimates from the age at entrainment to adult recruitment; FH requires egg and larval survivorship until entrainment. Furthermore, to make estimation practical, the affected population is assumed to be stable and stationary, and age-specific survival and fecundity rates are assumed to be constant over time. Each of these approaches provides estimates of adult fish loss which may still need to be placed into context regarding standing fish stocks.

Species-specific survivorship information (e.g., age-specific mortality) from egg or larvae to adulthood is limited for many of the taxa likely to be considered in this assessment. Thus, in many cases, these rates must be inferred from the literature along with their measures of uncertainty. Uncertainty surrounding published demographic parameters is seldom known and rarely reported, but the likelihood that it is very large should be considered when interpreting results from the demographic approaches for estimating entrainment effects. For some wellstudied species (e.g., the northern anchovy, Engraulis mordax), portions of their early mortality schedules and fecundity have been reported (e.g., Parker, 1980; Zweifel and Smith, 1981; Hewitt, 1982; Hewitt and Methot, 1982; Hewitt and Brewer, 1983; Lo 1983, 1985, 1986; McGurk, 1986). Because the accuracy of the estimated entrainment effects from $A E L$ and $F H$ will depend on the accuracy of age-specific mortality and fecundity estimates, lack of demographic information may limit the utility of these approaches.

The precursor to the $A E L$ and $F H$ calculations is an estimate of total annual larval entrainment. Estimates of larval entrainment at MBPP will be based on periodic tow samples with total annual entrainment expressed as

$$
\begin{equation*}
\hat{E}_{T}=\hat{E}_{1-2} \tag{1}
\end{equation*}
$$

where $\hat{E}_{T}$ is the estimate of total entrainment and $\hat{E}_{1-2}$ is the weekly entrainment sampling (Appendix A). Estimates of total entrainment are based on two-stage sampling designs, with days within periods and replicate tows within days. The within-day sampling is based on a stratified random sampling scheme with four temporal strata corresponding to tidal flows (Appendix A). For periods when $24-\mathrm{hr}$ source water sampling occurred, temporal strata may also correspond to day and night conditions.

### 5.1.1 Adult Equivalent Loss (AEL)

The $A E L$ approach uses estimates of the abundance of the entrained or impinged organisms (i.e., $\hat{E}_{T}$ ) to project the loss of equivalent numbers of adults based on mortality schedules and age-atrecruitment. The primary advantage of this approach is that it translates power plant-induced
early life-stage mortality into numbers of adult fishes that are familiar units to resource managers. Adult equivalent loss does not require source water estimates of larval abundance in assessing effects. This latter advantage may be offset by the need to gather age-specific mortality rates to predict adult losses and the need for information on the adult population of interest for estimating population-level effects (i.e., fractional losses). However, the need for age-specific mortality estimates can be reduced by various forms of approximation as show by Saila et al. (1997). They describe an $A E L$ and apply it to six years of entrainment and two years of impingement data for winter flounder Pleuronectes americanus, red hake Urophycis chuss, and pollock Pollachius virens at the Seabrook Station, in New Hampshire, and contrast these with equivalent adult losses of winter flounder at Pilgrim Station, another coastal power plant. Their model assumes an adult population at equilibrium, a stable age distribution, a constant male:female ratio, and an absence of density-dependent (i.e., compensatory) mortality between entrainment and recruitment to the adults.

Starting with the number of age class $i$ larvae entrained $\left(\hat{E}_{i}\right)$, it is conceptually easy to convert these numbers to an equivalent number of adults $\operatorname{lost}(A \hat{E} L)$ at some specified age class from the formula:

$$
\begin{equation*}
A \hat{E} L=\sum_{i=1}^{n} \hat{E}_{i} S_{i} \tag{2}
\end{equation*}
$$

where

$$
n=\text { number of age classes; }
$$

$\hat{E}_{i}=$ estimated number of larvae lost in age class $i$; and
$S_{i}=$ survival probability for the $i$ th class to adulthood (Goodyear, 1978).
Age-specific survival rates from larval stage to recruitment into the fishery must be included in this assessment method. For some commercial species, natural survival rates are known after the fish recruit into the commercial fishery. For the earlier years of development, this information is not well-known and may be lacking for noncommercial species.

The information on survival probabilities in Equation (2) will likely be unknown, in which case a simplified $A E L$ expression can be written as

$$
\begin{equation*}
A \hat{E} L=\hat{E}_{T} \cdot \hat{S}_{A} \tag{3}
\end{equation*}
$$

where

$$
\hat{S}_{A}=\text { survival from the average age of larval entrainment to adulthood. }
$$

The exact variance for Equation (2) can be expressed as

$$
\operatorname{Var}(A \hat{E} L)=E_{T}^{2} \cdot \operatorname{Var}\left(\hat{E}_{T}\right)+S_{A}^{2} \cdot \operatorname{Var}\left(\hat{S}_{A}\right)+\operatorname{Var}\left(\hat{E}_{T}\right) \cdot \operatorname{Var}\left(\hat{S}_{A}\right) .
$$

An alternative expression of adult-equivalent loss would be to standardize $A \hat{E} L$ by the size of the adult population of interest to estimate the relative magnitude of the equivalent adult loss such that,

$$
\begin{equation*}
R A \hat{E} L=\frac{A \hat{E} L}{\hat{P}} \tag{4}
\end{equation*}
$$

where $\hat{P}=$ estimated size of the adult population of interest. Information on the number of adults in the source population may be limited for many species and thereby limit the utility of Equation (4).

### 5.1.2 Fecundity Hindcasting (FH)

The FH approach compares larval entrainment losses with adult fecundity to estimate the amount of adult female reproductive output eliminated by entrainment and thereby hindcasts the numbers of adult females effectively removed from the reproductively active population. The accuracy of these estimates of effects, as with those of the $A E L$ above, are dependent upon accurate estimates of age-specific mortality from the egg and early larval stages to entrainment. If it can be assumed that the adult population has been stable at some current level of exploitation and that the male:female ratio is constant and 50:50, then fecundity and mortality are integrated into an estimate of loss by converting entrained larvae back into females (i.e., hindcasting).

A potential advantage of $F H$ is that survivorship need only be estimated for a relatively short period of the larval stage (i.e., egg to larval entrainment). The method requires age-specific mortality rates and fecundities to estimate entrainment effects and some knowledge of the abundance of adults to assess the fractional losses these effects represent. This method assumes that the loss of a single female's reproductive potential is equivalent to the loss of an adult fish which may be inaccurate.

In the $F H$ approach, the total of larval entrainment for a species $\left(\hat{E}_{T}\right)$ will be projected backward to estimate the number of breeding females required to provide the numbers of larvae seen in the entrainment samples. The estimated number of breeding females $(\hat{F} H)$ whose fecundity is equal to the total loss of entrained larvae would be calculated as follows:

$$
\begin{equation*}
\hat{F} H=\frac{1}{\hat{F}_{T}} \sum_{j=1}^{w} \frac{\hat{E}_{j}}{S_{j}} \tag{5}
\end{equation*}
$$

where
$w=$ number of weeks the larvae are vulnerable to entrainment;
$\hat{E}_{j}=$ estimated total entrainment for the $j$ th week $(j=1, \ldots, w)$;
$S_{j}=$ survival rate from eggs to larvae of the stage present in the $j$ th week $(j=1, \ldots, w)$;
$\hat{\bar{F}}_{T}=$ average total lifetime fecundity for females, equivalent to the average number of eggs spawned per female over their reproductive years.
The two key input parameters in Equation (5) are fecundity $\hat{\bar{F}}_{T}$ and very early survival rates $\left(S_{j}\right)$ from spawning to week $j$ of the survey. Descriptions of these parameters may be limited for many species and are a possible limitation of the method. Typically, the information for the finegrained age structure of the Equation (5) will not be available, and the $F H$ calculations will be reduced to

$$
\begin{equation*}
\hat{F} H=\frac{\hat{E}_{T}}{\hat{\bar{F}}_{T} \hat{S}_{L}} \tag{6}
\end{equation*}
$$

where

$$
S_{L}=\text { survival from egg to the average age of larval entrainment. }
$$

The variance for the $F H$ calculations [Equation (6)] is

$$
\begin{equation*}
\operatorname{Var}(\hat{F} H) \doteq(F H)^{2}\left[C V\left(\hat{E}_{T}\right)^{2}+C V\left(\hat{\bar{F}}_{T}\right)^{2}+C V\left(\hat{S}_{L}\right)^{2}\right] \tag{7}
\end{equation*}
$$

where, in general,

$$
C V(\hat{\theta})^{2}=\frac{\operatorname{Var}(\hat{\theta})}{\hat{\theta}^{2}}
$$

An alternative interpretation of $F H$ is possible by expressing the estimate in terms of the relative size of the adult fish stock in the source populations where

$$
\begin{equation*}
R \hat{F} H=\frac{\hat{F} H}{\hat{P}_{F}} \tag{8}
\end{equation*}
$$

where $\hat{P}_{F}=$ an estimate of the abundance of breeding adult females in the area of interest. Here, the fecundity hindcasting estimate $(R \hat{F} H)$ is the proportion of the breeding adults whose fecundity was lost due to entrainment by MBPP.

### 5.2 Empirical Transport Model (ETM)

The empirical transport model (ETM) has been proposed by the U.S. Fish and Wildlife Service to estimate mortality rates resulting from cooling water withdrawals at power plants (Boreman et al., 1978, 1981). Variations of this model have been discussed in MacCall et al. (1983) and used to assess impacts (Parker and DeMartini, 1989). The ETM has been used to assess impacts at the Salem Nuclear Generating Station in Delaware Bay, New Jersey (PSE\&G, 1993) as well as other power stations along the East Coast. The ETM approach was also used at Diablo Canyon Power Plant in California. We will employ a method similar to that described by MacCall et al. (1983) and used by Parker and DeMaritini (1989) while under contract to the Marine Review Committee in their final report to the California Coastal Commission (Murdoch et al., 1989) for San Onofre Nuclear Generating Station on the coast of southern California. Empirical transport modeling permits the estimation of annual conditional mortality due to entrainment while accounting for the spatial and temporal variability in distribution and vulnerability of each life stage to power plant withdrawals. The generalized form of ETM incorporates many time-, space-, and age-specific estimates of mortality as well as information regarding spawning periodicity and duration, most of which are limited or unknown for the marine taxa being investigated.

The purpose of the ETM calculations is to estimate the probability of mortality of larvae associated with power plant entrainment. The calculations require not only the abundance of larvae entrained but also the abundance of the larval populations at risk of entrainment. The sampling at the cooling water intakes is used to estimate entrained numbers. At MBPP we propose, based on the entrainment of both oceanic and bay species, to define the larval source population the larval source population as those larvae in Morro Bay and Estero Bay.

On any one sampling day, the conditional entrainment mortality can be expressed as

$$
\begin{equation*}
P M_{i j}=\frac{E_{i j}^{T}}{R_{i j}} \tag{9}
\end{equation*}
$$

where
$E_{i j}^{T}=$ total numbers of larvae entrained on the $j$ th day $\left(j=1, \ldots, d_{i}\right)$ of the $i$ th temporal sampling stratum $(i=1, \ldots, L)$;

$$
\begin{aligned}
& R_{i j}=\text { numbers of larvae at risk of entrainment, i.e., abundance of larvae in Morro Bay } \\
& (\mathrm{MB}) \text {, and Estero Bay (EB). }
\end{aligned}
$$

In turn, the abundance of entrained larvae can be expressed as the sum of the entrainment numbers at Units 1 and 2 where

$$
\begin{equation*}
E_{i j}^{T}=E_{i j}^{1-2} \tag{10}
\end{equation*}
$$

and $E_{i j}^{1-2}$ is the entrainment abundance at Units 1 and 2 on the $j$ th sampling day. With the larval source populations a priori defined, the abundance of larvae at risk can then be directly expressed as

$$
\begin{equation*}
R_{i j}=V_{M B} \cdot \bar{D}_{M B i j}+V_{E B} \cdot \bar{D}_{E B i j} \tag{11}
\end{equation*}
$$

where $V$ denotes the water volume and $\bar{D}$, the average larval density in a source population during the $i j$ th sampling day. The volume of Morro Bay $\left(\mathrm{V}_{\mathrm{MB}}\right)$ is the combined static and daily tidal prism volumes. Both the volume of Morro Bay and its tidal prism will be based on volumes using mean high (MHW) and low tide (MLW) datum and the most current bathymetric information in available literature as might be confirmed by additional field observations. The volume of Morro Bay ( $\mathrm{V}_{\mathrm{MB}}$ ) will be used heuristically as a first order approximation of the minimum source water volume of Estero Bay ( $\mathrm{V}_{\mathrm{EB}}$ ) larvae at risk to MBPP entrainment. The volume of Morro Bay ( $5,375,394,600$ gallons) is calculated as the total daily tidal exchange volume (tidal prism) plus non-tidal volume. A detailed description of the calculation of this volume can be found in MBPP Project AFC Section 6.5. Using the modernized facility's design intake rate of $330,000 \mathrm{gpm}(491,832,000$ gallons/tidal day), the daily power plant CWS withdrawal is 9.1 percent of the Morro Bay daily tidal and static volume. The effects of the winter freshwater outflow are not included in the estimated Morro Bay volume, but would increase the effective daily volume and reduce the fraction withdrawn by the new facility. The approximation makes the conservative assumption that there is no larger volume of larval supply of species found in Estero Bay than could be contained in the smaller volume of Morro Bay. The approximation however provides a fair estimate source larval supply for Morro Bay species collected in Estero Bay.

Combining Equations (9-11), the probability of entrainment for a larvae in the four tidal or six temporal source populations during the $i j$ th sampling day can be estimated (Appendix C) by

$$
\begin{equation*}
\hat{P} M_{i j}=\frac{\left(\hat{E}_{i j}^{T}\right)}{\left(V_{M B} \cdot \hat{\bar{D}}_{M B i j}+V_{E B} \cdot \hat{\bar{D}}_{E B i j}\right)} . \tag{12}
\end{equation*}
$$

The ETM model uses the periodic estimates of $\hat{P} M_{i j}$ to estimate the annual probability of entrainment mortality.

How the ETM calculations incorporate the individual estimates of $\hat{P} M_{i j}$ depends on the nature of the entrainment process and on the nature of the spawning and hatching sequence of the fish and cancer crab species. Model formulation will differ whether there is a single synchronous breeding or whether there is multiple overlapping breeding by the fish or cancer crab species. In the case of a single synchronous breeding, the ETM can be formulated as

$$
\begin{equation*}
\hat{P} M=1-\prod_{i=1}^{L} \prod_{j=1}^{d_{i}}\left(1-\hat{P} M_{i j}\right)^{D_{i j}^{\prime}} \tag{13}
\end{equation*}
$$

where $D_{i j}^{\prime}=$ number of days represented by the $i j$ th sampling period. In Equation (13), the estimated entrainment mortality probability $\hat{P} M_{i j}$ is assumed to be representative of the daily mortality during the $D_{i j}$ period of time.

In the case where there are multiple non-overlapping spawnings, the ETM calculations can be formulated as

$$
\begin{equation*}
\hat{P} M=1-\sum_{i=1}^{L} \sum_{j=1}^{d_{i}} f_{i j}\left(1-P_{M_{i j}}\right)^{D_{i j}^{\prime}} \tag{14}
\end{equation*}
$$

where $f_{i j}=$ fraction of the spawning that occurred during the $i j$ th sampling period. Equation (14) assumes the population-wide probability of entrainment is the essence of the ETM approach of MacCall et al. (1983). If this population is stable and stationary, then $P \hat{P} E$ is also an indicator of the effects on the fully recruited age classes when no compensatory natural mortality is assumed.

### 6.0 PRELIMINARY FINDINGS

### 6.1 Entrainment and Source Water

Unidentified gobies, unidentified blennies, Pacific staghorn sculpin, northern lampfish, blackeye goby, and jacksmelt comprised nearly 90 percent of the fishes collected during weekly entrainment surveys. The percent composition of these species is shown in Figure 6-1.
Unidentified gobies also accounted for a majority ( 90.4 percent) of the number of larval fishes collected at the Morro Bay source water stations (Stations 1, 3, and 4). The percent composition of the most abundant fishes collected from the Morro Bay source water stations is shown in Figure 6-2. Unidentified gobies and northern lampfish comprised 67 percent of the total number fishes collected at the Estero Bay source water station (Station 5). The percent composition of the species collected from the Estero Bay source water station is shown in Figure 6-3. A summary of the mean survey concentrations of the larval fish taxa identified from entrainment and source water surveys can be found in the MBPP 316(b) Fourth Quarterly Report dated July 31, 2000 (Tenera Environmental, 2000).

### 6.2 Impingement

Eleven species comprised nearly 90 percent of the fishes impinged at Units 1 and 2 from September 9, 1999 through July 6, 2000. Northern anchovy, plainfin midshipman, speckled sanddab, English sole, Pacific staghorn sculpin, and topsmelt accounted for nearly 79 percent of the total. Ten species comprised approximately 85 percent of the fishes impinged at Units 3 and 4. Topsmelt, plainfin midshipman, northern anchovy, and speckled sanddab accounted for 68 percent of the total. The percent composition of fishes for Units 1 and 2 and Units 3 and 4 is shown in Figures 6-4a and 6-4b, respectively. Results of the impingement surveys conducted from inception through July 6, 2000 are presented in the MBPP 316(b) Fourth Quarterly Report dated July 31, 2000 (Tenera Environmental, 2000).

[^0]

Data are preliminary because quality control checks are not complete.
Figure 6-1. Percent composition of entrained larval fishes at Morro Bay Power Plant (Station 2—MBPP Intake) Surveys 1 through 14, 20, and 24.

Note: Total does not add to 100 percent because of rounding.

Percent Composition of Fishes at Morro Bay (Stations 1, 3 and 4)


Data are preliminary because quality control checks are not complete.
Figure 6-2. Percent composition of larval fishes collected at source water stations 1, 3, and 4 (Surveys 1 through 5).


Data are preliminary because quality control checks are not complete.
Figure 6-3. Percent composition of larval fishes collected at source water Station 5 (Surveys 1 through 5).

Nine species and unidentified cancer crabs impinged at Units 1 and 2 (from the macroinvertebrate group of concern) comprised nearly 90 percent of the group total. This group of macroinvertebrates included four crab species (Portunus xantusii, Cancer jordani, Cancer antennarius, and Pugettia producta) and unidentified cancer crabs, three shrimp species (Crangon nigricauda, Crangon nigromaculata, and Penaeus californiensis), Strongylocentrotus purpuratus (purple sea urchins), and Loligo opalescens (squid). Twelve species and unidentified cancer crabs (from the macroinvertebrate group of concern) impinged at Units 3 and 4 comprised nearly 90 percent of the group total. Included in this group were seven crab species (Portunus xantusii, Cancer jordani, Cancer antennarius, Pugettia richii, Pugettia producta, Loxorhynchus crispatus, and Pachygrapsus crassipes) and unidentified cancer crabs, three shrimp species (Crangon nigricauda, Crangon nigromaculata, and Penaeus californiensis), Strongylocentrotus purpuratus (purple sea urchins), and Loligo opalescens (squid). The percent composition of invertebrates for Units 1 and 2 and Units 3 and 4 is shown in Figures 6-5a and 6-5b, respectively.
(a)

Percent Composition of Total Number of Impinged Fishes at Units 1 and 2


Data are preliminary because quality control checks are not complete.
Figure 6-4a. Percent composition of impinged fishes at Morro Bay Power Plant Units 1 and 2 (September 9, 1999 through July 7, 2000).
(b)

Percent Composition of Total Number of Impinged Fishes at
Units 3 and 4


Data are preliminary because quality control checks are not complete.
Figure 6-4b. Percent composition of impinged fishes at Morro Bay Power Plant Units 3 and 4 (September 9, 1999 through July 7, 2000).
(a)

## Percent Composition of Total Number of Impinged Invertebrates at Units 1 and 2



Data are preliminary because quality control checks are not complete.
Figure 6-5a. Percent composition of impinged invertebrates at Morro Bay Power Plant Units 1 and 2 (September 9, 1999 through July 7, 2000).

Note: Total does not add to 100 percent because of rounding.
(b)

Percent Composition of Total Number of Impinged Invertebrates at Units $\mathbf{3}$ and 4


Data are preliminary because quality control checks are not complete.
Figure 6-5b. Percent composition of impinged invertebrates at Morro Bay Power Plant Units 3 and 4 (September 9, 1999 through July 7, 2000).

### 7.0 ImPACT Assessment

Assessment of the population impacts of the MBPP's cooling water intake effects logically requires that the fractional losses represented by proportional entrainment or the number of reproductive females or equivalent adults be contrasted to the size of the at-risk resource. The theoretical number of adults that would have survived from larvae lost by entrainment or larger fishes by impingement is compared to the estimated number of individuals in the species population at risk. Knowing the fractional extent of these potential losses to a species' population provides the basis for determining the significance losses due to MBPP intake operations and technology. The theory and practice of 316 (b) assessment is essentially the same as used in fisheries management to protect against any long-term decline in an exploited fish stock. In essence the fisheries manager must know the rate of harvest (entrainment and impingement), the size of the harvested population (number of larvae at risk to entrainment), and the reproductive capacity of the population including overproduction in compensation of high early life stage mortality.

Preliminary results of MBPP entrainment sampling indicate that the majority of entrained larvae are in the Family Gobiidae and cannot be identified to species. Population-level impact assessment must be species specific. However, this family of fish contains no species of any particular recreational or commercial value. Impacts of MBPP intake effects on species of entrained larvae that can be assessed according to the amount of available life history and demographic information. Northern anchovy, which are expected in the fall and late winter surveys, represent the best of species, in terms of impact assessment information. In general, very little information is available on the identifiable entrained species of gobies, such as the bay goby Lepidigobius lepidus, blackeye goby Coryphopterus nicholsi, and longjaw mudsucker Gillichthys mirabilis.

Our impact assessment of MBPP intake effects on entrained organisms will be limited by a general lack of species life history information. The extent and uncertainty of life history information, such as fecundity or life stage survivorship, about an entrained species takes the form of uncertainty in estimates of the extent of population level changes. Estimates of the extent of any entrainment impacts on resource populations are further limited by the quality and quantity of information available on taxa populations or harvested stocks. Both of the factors-species-specific life history and demographic information - contribute to the overall uncertainty in our estimates of long-term population trends. However, populations trends can be successfully forecasted with the use of working assumptions, many employed in fisheries management practices, that overcome some of the data and information gaps. While the importance of these
data gaps is anticipated in the forthcoming MBPP intake impact assessment, a number of solutions are available depending upon the specific taxa entrained during the ongoing studies. To date, we have found that gobies are the most abundant family of larval fishes and unidentified gobies the largest taxa. Impact analysis cannot be performed on these unidentified gobies without knowledge of the species' life histories and demographics. Other remaining species of the most abundant larvae collected so far, such as Pacific staghorn sculpin, northern lampfish, and blackeye goby, will present information gaps. However, knowing the species identity of these entrained larvae enables the use of a number of working assumptions to address the gaps.

The range and variance estimates of life history parameters and population estimates create uncertainty in our assessments of intake effects for potential population level impacts. The available literature will be thoroughly researched for life history information to reduce the level of uncertainty by all possible and practical methods. While using the best information available in our impact assessment, we will also use sensitivity analysis to evaluate the degree of uncertainty in our estimates of entrainment effects and population impacts. The uncertainty of our estimates will be examined by the effects of varying values of input parameters on resulting computations. Results will provide insight into the possibility of improving our estimates with additional information. The sensitivity analyses will not only show the effects that the range of life history parameters can have on our estimates of entrainment effects, but they will also demonstrate the effect of sampling variance on the absolute ranges of our estimates. Annual estimates of $F H, A E L$, and $E T M$ entrainment effects will be employed to estimate population level impacts. A range of annual ETM variance will be estimated using PEs $\left(P_{S}\right)$ computed from previous source water larval fish surveys. The procedure will facilitate inter-annual variance estimates of population-level-impacts.

Values for the $P_{S}$ parameter used for input to the ETM model will have large effects on our impact estimates of entrainment effects. For anchovy values of $P_{S}$, we will use CalCOFI sampling regions presented in Lo (1985). These regions are used in the fisheries management of the central subpopulation of the anchovy that ranges from San Francisco, California to Punta Baja, Baja California (PFMC, 1990). For species that are not harvested or actively managed areas of potential impact will be defined based on duration of larval stages and ocean current speeds. The areal extent of larvae at risk will be determined by multiplying the number of days that a species' larvae are planktonic by current speeds in kilometers per day. This estimated distance traveled by the average larvae will be multiplied by the average depth over the reach of the species' travel, generally north to south along the coast, to determine the volume of the species' area at risk. This volume multiplied by the species' average larval concentration provides estimates of the species larval standing stocks required in ETM evaluations.

The sensitivity analyses for these species' areas at risk will demonstrate the effect that annual variations in current speed has on the size of this parameter and its contribution to the uncertainty in our estimates. The definition and selection of values for $P_{S}$ for these and other species will be refined through further analysis of oceanographic data on the identity and movement (current velocity) of local water masses as might affect larval transport. Life history, habitat and demographic data on entrained species and taxa groups will be gathered over the next few months from CDFG and other sources, and discussions with the TWG members.

### 8.0 Literature Cited

Boreman, J., C.P. Goodyear, and S.W. Christensen. 1978. An empirical transport model for evaluating entrainment of aquatic organism by power plants. United States Fish and Wildlife Service. FWS/OBS-78/90, Ann Arbor, MI.

Boreman, J., C.P. Goodyear, and S.W. Christensen. 1981. An empirical methodology for estimating entrainment losses at power plants sited on estuaries. Trans. Amer. Fish. Soc. 110:253-260.
Cowan, J.H., K.A. Rose, E.S. Rutherford, and E.D. Houde. 1993. Individual-based model of young-of-the-year striped bass population dynamics. II. Factors affecting recruitment in the Potomac River, Maryland. Trans. Am. Fish. Soc. 122: 439-458.
Fierstine, H.L., K.F. Kline, and G.R. Garman. 1973. Fishes collected in Morro Bay between January 1968 and December 1970. California Fish and Game Bulletin. 59(1): 73-88.
Goodyear, C.P. 1978. Entrainment impact estimates using the equivalent adult approach. United States Fish and Wildlife Service, FWS/OBS-78/65, Ann Arbor, MI.
Hewitt, R.D. 1982. Spatial pattern and survival of anchovy larvae: implications of adult reproductive strategy. Ph.D. Thesis, Univ. of California, San Diego. 207 p.
Hewitt, R.D., and G.D. Brewer. 1983. Nearshore production of young anchovy. CalCOFI Rept. 24:235244.

Hewitt, R.D., and R.D. Methot. 1982. Distributions and mortality of northern anchovy larvae in 1978 and 1979. CalCOFI Rept. 23:226-245.

Horn, M.H. 1980. Diel and seasonal variation in abundance and diversity of shallow water fish populations in Morro Bay, California. California Fish and Game Bulletin. 78(3): 759-770.

Horst, T.J. 1975. The assessment of impact due to entrainment of ichthyoplankton. In: S.B. Saila (ed.) Fisheries and Energy Production: A symposium. Lexington Books, D.C. Heath and Company, Lexington, MA. p. 107-118.
Krebs, C.J. 1989. Ecological Methodology. Harper and Row, New York. 65 pp.
Lo, N.C.H. 1983. Re-estimation of three parameters associated with anchovy egg and larval abundance: Temperature dependent hatching time; yolk-sac growth rate; and egg and larval retention in mesh nets. U.S. Dept. of Comm., NOAA NMFS SWFC-31, 38 p.
Lo, N.C.H. 1985. Egg production of the central stock of northern anchovy 1951-1983. Fish. Bull. 88:137150.

Lo, N.C.H. 1986. Modeling life-stage-specific instantaneous mortality rates, an application to northern anchovy, Engraulis mordax, eggs and larvae. Fish. Bull. 84(2): 395-407.
MacCall, A.D., K.R. Parker, R. Leithiser, and B. Jessee. 1983. Power plant impact assessment: A simple fishery production model approach. Fish. Bull. 81(3): 613-619.
McGurk, M.D. 1986. Natural mortality of marine pelagic fish eggs and larvae: role of spatial patchiness. Mar. Ecol. Prog. Ser. 34:227-242.

Murdoch, W.W., R.C. Fay, and B.J. Mechalas. 1989. Final Report of the Marine Review Committee to the California Coastal Commission, MRC Doc. No. 89-02, 346 p.

Nisbet, R.M., W.W. Murdoch, and A. Stewart-Oaten. 1996. Consequences for adult fish stocks of human-induced mortality of immatures. Pgs. 257-277 In: Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats. Schmitt, R.J., and C.W. Osenberg (editors). 401 pp.

Pacific Fishery Management Council (PFMC). 1990. Sixth Amendment to the Northern Anchovy Fishery Management Plan. Portland, Oregon. 68 pp.

Pacific Gas \& Electric Company (PG\&E). 1973. An evaluation of the effect of cooling water discharges on the beneficial uses of receiving waters at Morro Bay Power Plant. PG\&E, San Francisco, CA.
Pacific Gas \& Electric Company (PG\&E). 1982. Impingement Studies at Morro Bay Power Plant. PG\&E, Department of Engineering Research, San Ramon, CA.

Parker, K.R. 1980. A direct method for estimating northern anchovy, Engraulis mordax, spawning biomass. Fish. Bull., U.S. 78:541-544.

Parker, K.R. and E. DeMartini. 1989. D. Adult-equivalent loss. Technical Report to the California Coastal Commission, Marine Review Committee, Inc. 56 p.
Public Service Electric and Gas Company. 1993. Appendix I—Modeling. Permit No. NJ0005622. Prepared by Lawler, Matusky, and Skelly Engineers, Pearl River, NY. Comments on NJPDES Draft. 82 p.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Board. Can. Bull. 91.382 p.

Saila, S.B., E. Lorda, J.D. Miller, R.A. Sher, and W.H. Howell. 1997. Equivalent adult losses of fish eggs, larvae and juveniles at Seabrook Station with use of fuzzy logic to represent parametric uncertainty. N. Amer. J. Fish. Man. 17(4): 811-825.

Smith, P.E. and S.L. Richardson. 1977. Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Tech. Paper 175: 1-100.
Summers, K.J. 1989. Simulating the indirect effects of power plant entrainment losses on an estuarine ecosystem. Ecol. Model. 49:31-47.
Tenera Environmental. 2000. Morro Bay Power Plant 316(b) Fourth Quarterly Report. Prepared for Duke Energy North America, Morro Bay LLC.
Tetra Tech, Inc. 1999. Morro Bay National Estuary Program Hydrodynamic Circulation Model. Final Report. Lafayette, CA.
U.S. Environmental Protection Agency (USEPA). 1976. Development Document for Best Technology Available for the Location, Design, Construction, and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact. EPA-440/1-76/015a. 263 pp.
U.S. Environmental Protection Agency (USEPA). 1977. Guidance for evaluating the adverse impact of cooling water intake structures on the aquatic environment: Section 316(b) P.L. 92-500. 58 p.
Van Winkle, W., K.A. Rose, and R.C. Chambers. 1993. Individual-based approach to fish population dynamics: an overview. Trans. Am. Fish Soc. 122: 397-403.

Zweifel, J.R., and P.E. Smith. 1981. Estimates of abundance and mortality of larval anchovies (19511975). Rapp. P.-v. Reun. Cons. int. Explor. Mer. 178:248-259.

## Appendix A

## Estimating Total Annual Entrainment

An estimate of total annual larval entrainment at an intake source can be expressed as

$$
\begin{equation*}
\hat{E}=\sum_{i=1}^{L}\left[\frac{D_{i}}{d_{i}} \sum_{j=1}^{d_{i}}\left[\sum_{k=1}^{6} \frac{V_{i j k}}{2} \sum_{l=1}^{2} x_{i j k l}\right]\right] \tag{A1}
\end{equation*}
$$

where
$x_{i j k l}=$ measured density of larvae in the $l$ th tow $(l=1,2)$ within the $k$ th cycle $(k=1, \ldots, 6)$ on the $j$ th day $\left(j=1, \ldots, D_{i}\right)$ in the $i$ th stratum $(i=1, \ldots, L)$;
$V_{i j k}=$ total water intake during the $k$ th cycle $(k=1, \ldots, 6)$ from the $j$ th day $\left(j=1, \ldots, D_{i}\right)$ in the $i$ th stratum $(i=1, \ldots, L)$;
$D_{i}=$ number of sampling days in the $i$ th stratum of which $d_{i}$ are sampled (nominally $d_{i}=2$ ).

Here, a temporal stratum will be defined as a 2- or 4-week period (i.e., depending on time of year) where in 2 days are selected for sampling. Equation (A1) can also be expressed in terms of a volume-adjusted estimate where

$$
\begin{equation*}
\hat{E}=\sum_{i=1}^{L}\left[\frac{V_{T i}}{V_{i}} \sum_{j=1}^{d_{i}}\left[\sum_{k=1}^{6} \frac{V_{i j k}}{2} \sum_{l=1}^{2} x_{i j k l}\right]\right] \tag{A2}
\end{equation*}
$$

and where

$$
\begin{aligned}
& V_{i}=\sum_{j=1}^{d_{i}} \sum_{k=1}^{6} V_{i j k} \\
& V_{T i}=\sum_{j=1}^{D_{i}} \sum_{k=1}^{6} V_{i j k}
\end{aligned}
$$

Nominally, $d_{i}$ will be 2 days for all temporal stratum. The variance of $\hat{E}$ [i.e., Equation (A2)] can be expressed as

$$
\begin{equation*}
\operatorname{Var}(\hat{E} \mid E)=\sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[\frac{d_{i}^{2}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}}{d_{i}}+\frac{d_{i}}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{6} V_{i j k}^{2} \frac{S_{x_{j j k l}}^{2}}{2}\right]\right\} \tag{A3}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{x_{i j l l}}^{2} & =\frac{\sum_{l=1}^{N_{i j k}}\left(x_{i j k l}-\bar{X}_{i j k}\right)^{2}}{\left(N_{i j k}-1\right)} ; \\
\bar{X}_{i j k} & =\frac{\sum_{l=1}^{N_{i j k}} x_{i j k l}}{N_{i j k}} ;
\end{aligned}
$$

$N_{i j k}=$ total number of tows possible during the $k$ th cycle $(k=1, \ldots, 6)$ of the $j$ th day $\left(j=1, \ldots, d_{i}\right)$ in the $i$ th $(i=1, \ldots, L)$ stratum;
and where

$$
S_{E_{i j}}^{2}=\frac{\sum_{j=1}^{D_{i}}\left(E_{i j}-\bar{E}_{i}\right)^{2}}{\left(D_{i}-1\right)}
$$

$E_{i j}=$ total entrainment during the $j$ th day $\left(j=1, \ldots, D_{i}\right)$ in the $i$ th stratum $(i=1, \ldots, L) ;$

$$
\bar{E}_{i}=\frac{\sum_{j=1}^{D_{i}} E_{i j}}{D_{i}}
$$

Variance (A3) is based on the assumption that $d_{i}$ are a random sample from $D_{i}$ days in the $i$ th stratum $(i=1, \ldots, L)$. The variance also assumes the 2 tow volumes are a random sample of the intake water during the $k$ th cycle $(k=1, \ldots, 6)$ of the $j$ th day $\left(j=1, \ldots, d_{i}\right)$. An unbiased variance estimator can be expressed (Appendix A) as

$$
\begin{equation*}
\operatorname{Var}(\hat{E} \mid E)=\sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}+\frac{d_{i}}{D_{i}} \sum_{j=1}^{d_{i}} \sum_{k=1}^{6} V_{i j k}^{2} \frac{V_{i j k}^{2} S_{x_{i j k l}}^{2}}{2}\right]\right\} \tag{A4}
\end{equation*}
$$

and where

$$
\begin{aligned}
s_{\hat{E}_{i j}}^{2} & =\frac{\sum_{j=1}^{d_{i}}\left(\hat{E}_{i j}-\hat{\bar{E}}_{i}\right)^{2}}{\left(d_{i}-1\right)}, \\
\hat{\bar{E}}_{i} & =\frac{\sum_{j=1}^{d_{i}} \hat{E}_{i j}}{d_{i}}
\end{aligned}
$$

and further

$$
\begin{aligned}
s_{x_{i j k l}}^{2} & =\frac{\sum_{l=1}^{2}\left(x_{i j k l}-\bar{x}_{i j k}\right)^{2}}{(2-1)}, \\
\bar{x}_{i j k} & =\frac{\sum_{l=1}^{2} x_{i j k l}}{2} .
\end{aligned}
$$

The estimator for total annual entrainment for the Morro Bay Power Plant $\left(\hat{E}_{T}\right)$ can then be written as

$$
\hat{E}_{T}=\hat{E}_{1-2}
$$

where $\hat{E}_{1-2}$ is the estimate of total annual entrainment at Units 1 and 2 based on repeated use of Equation (2). The variance for the estimator of total annual power plant entrainment can then be written as

$$
\begin{equation*}
\operatorname{Vâr}\left(\hat{E}_{T} \mid E_{T}\right)=\operatorname{Vâr}\left(\hat{E}_{1-2} \mid E_{1-2}\right) \tag{A5}
\end{equation*}
$$

Estimates of $E_{T}$ will be used in $F H$ and $A E L$ calculations to estimate annual effects of entrainment on fish and cancer crab stocks.

## Appendix B

## Derivation of the Variance and Estimated Variance of $\hat{E}$

## Variance of $\hat{E}$

The variance of $\hat{E}$ can be derived by taking the variance in stages by first conditioning on the choice of $d_{i}$ days, then taking expectation over all selections of $d_{i}$ of $D_{i}$ days within the temporal stratum.

$$
\begin{align*}
\operatorname{Var}(\hat{E})= & E_{d_{i}}\left[\operatorname{Var}\left(\hat{E} \mid d_{i}\right)\right]+\operatorname{Var}_{d_{i}}\left[E\left(\hat{E} \mid d_{i}\right)\right] \\
& =E_{d_{i}}\left[\operatorname{Var}\left(\sum_{i=1}^{L}\left(\frac{V_{T i}}{V_{i}}\right)_{j=2}^{d_{i}} \frac{V_{i j k}}{2} \sum_{l=1}^{2} x_{i j k l}\right)\right] \\
& +\operatorname{Var}_{d_{i}}\left[E\left(\sum_{i=1}^{L}\left(\frac{V_{T i}}{V_{i}}\right)_{j=1}^{d_{i}}\left[\sum_{k=1}^{4} \frac{V_{i j k}}{2} \sum_{l=1}^{2} x_{i j k l}\right]\right)\right] \\
& =E_{d_{i}}\left[\sum_{i=1}^{L}\left(\frac{V_{T i}}{V_{i}}\right)^{2} \sum_{j=1}^{d_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k l}}^{2}}{2}\right]+\operatorname{Var}_{d_{i}}\left[\sum_{i=1}^{L}\left(\frac{V_{T i}}{V_{i}}\right) \sum_{j=1}^{d_{i}} E_{i j}\right]  \tag{B1}\\
& =\sum_{i=1}^{L}\left(\frac{V_{T i}}{V_{i}}\right)^{2} \frac{d_{i}}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j l l}}^{2}}{2}+\sum_{i=1}^{L}\left[\left(\frac{V_{T i}}{V_{i}}\right)^{2} \frac{d_{i}^{2}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}}{d_{i}}\right] \\
& =\sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[\frac{d_{i}^{2}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}}{d_{i}}+\frac{d_{i}}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{4} V_{i j k}^{2} \frac{\left.\left(1-\frac{2}{N_{i j}}\right) S_{x_{i j k l}}^{2}\right]}{2}\right]\right\}
\end{align*}
$$

where

$$
\begin{aligned}
& S_{E_{i j}}^{2}=\frac{\sum_{j=1}^{D_{i}}\left(E_{i j}-\bar{E}_{i}\right)^{2}}{\left(D_{i}-1\right)}, \\
& \bar{E}_{i}=\frac{\sum_{j=1}^{D_{i}} E_{i j}}{D_{i}},
\end{aligned}
$$

and where

$$
\begin{aligned}
S_{x_{i j l l}}^{2} & =\frac{\sum_{l=1}^{N_{i j}}\left(x_{i j k l}-\bar{X}_{i j k}\right)^{2}}{\left(N_{i j}-1\right)}, \\
X_{i j k} & =\frac{\sum_{l=1}^{N_{i j k l}} x_{i j k l}}{N_{i j k l}},
\end{aligned}
$$

and furthermore

$$
\begin{aligned}
& E_{i j}=\sum_{k=1}^{4} \sum_{l=1}^{N_{i j k l}} x_{i j k l}=\text { total entrainment for the } j \text { th day }(j=1, \ldots, D) \text { in the } i \text { th stratum } \\
&(i=1, \ldots, L)
\end{aligned}
$$

The finite population correction [i.e., $\left(1-\frac{2}{N_{i j k}}\right)$ ] will be nearly one in all cases and can be ignored.

## Estimated Variance of $\hat{E}$

The variance for $\hat{E}$ is

$$
\begin{equation*}
\operatorname{Var}(\hat{E} \mid E)=\sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}+\frac{d_{i}}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{4} V_{i j k}^{2} \frac{\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k l}}^{2}}{2}\right]\right\} \tag{B2}
\end{equation*}
$$

The term

$$
\frac{d_{i}}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{4} V_{i j k}^{2} \frac{\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k l}^{2}}^{2}}{2}
$$

in Equation (B2) can be unbiasedly estimated by the quantity

$$
\begin{equation*}
\sum_{j=1}^{d_{i}} \sum_{k=1}^{4} V_{i j k}^{2} \frac{\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k l}}^{2}}{2} \tag{B3}
\end{equation*}
$$

when

$$
s_{x_{i j k l}}^{2}=\frac{\sum_{l=1}^{2}\left(x_{i j k l}-\bar{x}_{i j k}\right)^{2}}{(2-1)} .
$$

However,

$$
E\left(s_{\hat{E}_{i j}}^{2}\right) \neq S_{E_{i j}}^{2} .
$$

Instead,

$$
\operatorname{Var}\left(\hat{E}_{i j}\right)=\operatorname{Var}\left(\sum_{k=1}^{4} \frac{V_{i j k}}{2} \sum_{l=1}^{2} x_{i j k l}\right)
$$

taking the variance in stages

$$
\begin{aligned}
\operatorname{Var}\left(\hat{E}_{i j}\right) & =E_{d_{i}}\left[\operatorname{Var}\left(\hat{E}_{i j} \mid d_{i}\right)\right]+\operatorname{Var}_{d_{i}}\left[\operatorname{Var}\left(\hat{E}_{i j} \mid d_{i}\right)\right] \\
& =E_{d_{i}}\left[\operatorname { V a r } \left(\sum_{k=1}^{4} \frac{\left.\left.V_{i j k}\left|\sum_{l=1}^{2} x_{i j k l}\right| d_{i}\right)\right]+\operatorname{Var}_{d_{i}}\left[\operatorname{Var}\left(\sum_{k=1}^{4} \frac{V_{i j k}}{2}\left|\sum_{l=1}^{2} x_{i j k l}\right| d_{i}\right)\right]}{}\right.\right. \\
& =E_{d_{i}}\left[\sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k l}}^{2}}{2}\right]+\operatorname{Var}_{d_{i}}\left[E_{i j}\right] \\
& =\left[\frac{1}{D_{i}} \sum_{j=1}^{D_{i}} \sum_{k=1}^{4}\left[\frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k l}}^{2}}{2}\right]+S_{E_{i j}}^{2} .\right.
\end{aligned}
$$

Hence,

$$
\begin{equation*}
E\left[d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) s_{\hat{E}_{i j}}^{2}\right]=d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) S_{E_{i j}}^{2}+\frac{d_{i}}{D_{i}}\left(1-\frac{d_{i}}{D_{i}}\right) \sum_{j=1}^{D_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j}}\right) S_{x_{i j k}}^{2}}{2} \tag{B4}
\end{equation*}
$$

which has a positive bias of

$$
\begin{equation*}
\frac{d_{i}}{D_{i}}\left(1-\frac{d_{i}}{D_{i}}\right) \sum_{j=1}^{D} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k}}^{2}}{2} \tag{B5}
\end{equation*}
$$

In turn, the bias (B5) can be estimated by the quantity

$$
\begin{equation*}
\left(1-\frac{d_{i}}{D_{i}}\right) \sum_{j=1}^{d_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k}}^{2}}{2} \tag{B6}
\end{equation*}
$$

An estimator of $\operatorname{Var}(\hat{E} \mid E)_{\text {can then be expressed by taking into account Equations (B3-B6) as }}$

$$
\begin{aligned}
\operatorname{Var} r(\hat{E} \mid E)= & \sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) s_{E_{i j}}^{2}-\left(1-\frac{d_{i}}{D_{i}}\right) \sum_{j=1}^{d_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k}}^{2}}{2}\right]\right. \\
& \left.+\sum_{j=1}^{d_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k}}^{2}}{2}\right\} \\
& =\sum_{i=1}^{L}\left\{\left(\frac{V_{T i}}{V_{i}}\right)^{2}\left[d_{i}\left(1-\frac{d_{i}}{D_{i}}\right) s_{E_{i j}}^{2}+\frac{d_{i}}{D_{i}} \sum_{j=1}^{d_{i}} \sum_{k=1}^{4} \frac{V_{i j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k}}^{2}}{2}\right]\right\}
\end{aligned}
$$

## Appendix C

## Estimating Proportional Entrainment and the ETM Calculations

The empirical transport model (ETM) is used to estimate the total annual mortality probability for larvae from power plant entrainment. The annual estimate is based on periodic daily
probabilities of entrainment mortality. The calculations will assume all larvae entrained die.

The daily probability of entrainment can be defined as
$P_{M_{i j}}=\frac{\text { abundance of entrained larvae }_{\mathrm{ij}}}{\text { abundance of larvae in source population }_{\mathrm{ij}}}$
$=$ probability of entrainment on the $j$ th day $\left(j=1, \ldots, d_{i}\right)$ of the $i$ th temporal stratum $(i=1, \ldots, L)$.

In turn, the daily probability can be estimated and expressed as

$$
\begin{equation*}
P_{M_{i j}}=\frac{\hat{E}_{i j}^{T}}{\hat{R}_{i j}} \tag{C1}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{E}_{i j}^{T}= & \text { estimated abundance of larvae entrained on the } j \text { th day }\left(j=1, \ldots, d_{i}\right) \text { of the } i \text { th } \\
& \text { stratum }(i=1, \ldots, L) ;
\end{aligned}
$$

$\hat{R}_{i j}=$ estimated abundance of larvae at risk of entrainment from the source populations on the $j$ th day $\left(j=1, \ldots, d_{i}\right)$ of the $i$ th stratum $(i=1, \ldots, L)$.

## Estimating Daily Entrainment

The estimate of total daily entrainment $\left(E_{i j}^{T}\right)$ at Units 1 and 2 can be written as

$$
\begin{equation*}
\hat{E}_{i j}^{T} \tag{C2}
\end{equation*}
$$

The estimate of MBPP entrainment can be expressed as

$$
\begin{equation*}
\hat{E}_{i j}=\sum_{k=1}^{4} \frac{V_{j k}}{2} \sum_{l=1}^{2} x_{i j k l} \tag{C3}
\end{equation*}
$$

with associated variance

$$
\begin{equation*}
\operatorname{Var}\left(\hat{E}_{i j} \mid E_{i j}\right)=\sum_{k=1}^{4} \frac{V_{j k}^{2}\left(1-\frac{2}{N_{i j k}}\right) S_{x_{i j k ;}}^{2}}{2} \tag{C4}
\end{equation*}
$$

which can be estimated by

$$
\begin{equation*}
\operatorname{Va}\left(\hat{E}_{i j} \mid E_{i j}\right)=\sum_{k=1}^{4} V_{j k}^{2} \frac{\left(1-\frac{2}{N_{i j k}}\right) s_{x_{i j k l}}^{2}}{2} . \tag{C5}
\end{equation*}
$$

Typically, the finite population correction [i.e., $\left(1-\frac{2}{N_{i j k}}\right)$ ] can be ignored for $N_{i j k}$ is exceedingly large.

## Estimating Daily Numbers of Larvae at Risk

With the well-defined and agreed-upon sources of Morro Bay (MB) and Estero Bay (EB) larvae, the daily abundance of larvae at risk can be estimated by

$$
\begin{equation*}
\hat{R}_{i j}=V_{M B} \cdot \hat{\bar{D}}_{M B_{i j}}+V_{E B} \cdot \hat{\bar{D}}_{E B_{i j}} \tag{C6}
\end{equation*}
$$

where $V$ denotes daily exchanged and static volumes at Morro Bay (MB) or static volume of Estero Bay (EB), and $\hat{\bar{D}}$ denotes an estimate of average density in each respective source water bodies. The variance of Expression (C6) can be written as

$$
\begin{equation*}
\operatorname{Var}\left(\hat{R}_{i j} \mid R_{i j}\right)=V_{M B}^{2} \cdot \operatorname{Var}\left(\hat{\bar{D}}_{M B_{i j}} \mid \hat{\bar{D}}_{M B_{i j}}\right)+V_{E B}^{2} \cdot \operatorname{Var}\left(\hat{\bar{D}}_{E B_{i j}} \mid \hat{\bar{D}}_{E B_{i j}}\right) \tag{C7}
\end{equation*}
$$

The individual variances within Formula (C7) describe temporal-spatial variance in density within a source population during the day of sampling. Three source water locations are sampled in Morro Bay not including the MBPP and one location is sampled in the Estero Bay. Ideally, tow samples would be collected probablistically through time and space during a sampling day at a potential source population. However, practical limitations of sampling these distances required a fixed time and location sampling scheme.

## Variance for Daily Estimate of $P M_{i j}$

The variance for the daily estimate of $\hat{P} M_{i j}$ can be expressed as

$$
\operatorname{Var}\left(\hat{P} M_{i j} \mid P M_{i j}\right) \doteq \operatorname{Var}\left(\left.\frac{\hat{E}_{i j}}{\hat{R}_{i j}} \right\rvert\, E_{i j}, R_{i j}\right)
$$

which by the Delta method can be approximated by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{P} M_{i j} \mid P M_{i j}\right) \doteq\left(\frac{E_{i j}}{R_{i j}}\right)^{2}\left[\frac{\operatorname{Var}\left(\hat{E}_{i j} \mid E_{i j}\right)}{E_{i j}^{2}}+\frac{\operatorname{Var}\left(\hat{R}_{i j} \mid R_{i j}\right)}{R_{i j}^{2}}\right] \tag{C8}
\end{equation*}
$$

and can be estimated by

$$
\operatorname{Var}\left(\hat{P} M_{i j} \mid P M_{i j}\right)=\left(\hat{P} M_{i j}\right)^{2}\left[\hat{C} V\left(\hat{E}_{i j} \mid E_{i j}\right)^{2}+\hat{C} V\left(\hat{R}_{i j} \mid R_{i j}\right)^{2}\right]
$$

where
$\hat{C} V(\hat{\theta} \mid \theta)=\frac{\operatorname{Var}(\hat{\theta} \mid \theta)}{\hat{\theta}^{2}}$.

## ETM Calculations

By combining Equations (C1), (C2), and (C6), the estimate of daily entrainment mortality can be written as

$$
\begin{align*}
\hat{P}_{M_{i j}} & =\frac{\hat{E}_{i j}^{T}}{\left(V_{M B} \cdot \hat{\bar{D}}_{M B_{i j}}+V_{E B} \cdot \hat{\bar{D}}_{E B_{i j}}\right)}  \tag{C9}\\
& =\frac{\hat{E}_{i j}}{\hat{R}_{i j}}
\end{align*}
$$

If the species has a single spawning period per year, then the estimate of total annual entrainment mortality can be expressed by

$$
\begin{equation*}
\hat{P} M=1-\prod_{i=1}^{L} \prod_{j=1}^{d_{i}}\left(1-\hat{P} M_{i j}\right)^{D_{i j}^{\prime}} \tag{C10}
\end{equation*}
$$

where
$D_{i j}^{\prime}=$ number of days represented by the jth sample $\left(j=1, \ldots, d_{i}\right)$ in the ith temporal stratum $(i=1, \ldots, L)$.

Alternatively, if the species has multiple overlapping spawnings, then an estimate of total annual entrainment can be based on the formula

$$
\begin{equation*}
\hat{P} M=1-\sum_{i=1}^{L} \sum_{j=1}^{d_{i}} \hat{f}_{i j}\left(1-\hat{P} M_{i j}\right)^{D_{i j}^{\prime}} \tag{C11}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{f}_{i j}= & \text { estimated annual fraction of total larvae hatched during the survey period } \\
& \text { represented by the } j \text { th sample in the } i \text { th temporal stratum. }
\end{aligned}
$$

Formula (C11) is based on the total probability law where

$$
P(A)=\sum_{i=1}^{N} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right) .
$$

In the above example, the event A is larval survival and event B is hatching with $P(B)$ estimated by $\hat{f}_{i j}$.

## Appendix D Delta Method for Calculating Variance

## Variance for $P \hat{E}_{i}$

Using the delta method (Seber, 1984), variance of $P \hat{E}_{i}$ can be effectively approximated by

$$
\begin{aligned}
\operatorname{Var}\left(P \hat{E}_{i}\right)= & \operatorname{Var}\left(\frac{\hat{N}}{(1+\hat{f}) \hat{A}_{i}}\right) \\
= & \operatorname{Var}\left(\hat{N}_{i}\right)\left(\frac{1}{\left(1+f_{i}\right) A_{i}}\right)^{2}+\operatorname{Var}\left(\hat{f}_{i}\right)\left(\frac{-N_{i}}{A_{i}\left(1+f_{i}\right)^{2}}\right)^{2} \\
& +\operatorname{Var}\left(A_{i}\right)\left(\frac{-N_{i}}{(1+f) A_{i}^{2}}\right)^{2} \\
= & \left(\frac{-N_{i}}{\left(1+f_{i}\right) A_{i}}\right)^{2}\left[\frac{\operatorname{Var}\left(\hat{N}_{i}\right)}{N_{i}^{2}}+\frac{\operatorname{Var}\left(\hat{f}_{i}\right)}{\left(1+f_{i}\right)^{2}}+\frac{\operatorname{Var}\left(\hat{A}_{i}\right)}{A_{i}^{2}}\right] \\
= & P E_{i}^{2}\left[C V\left(\hat{N}_{i}\right)^{2}+C V(1+\hat{f})^{2}+C V\left(\hat{A}_{i}\right)^{2}\right] .
\end{aligned}
$$

## Variance for $S_{A}$

Survival to adult can be estimated from

$$
\hat{S}_{A}=\frac{2}{\hat{F} \cdot \hat{R} \cdot \hat{S}_{E} \cdot \hat{S}_{L}}
$$

where:
$\hat{\bar{F}}=$ average egg mass per female per year;
$\hat{R}=$ reproduction longevity, average number of years of reproduction for a female;
$\hat{S}_{E}=$ egg survival rate;
$\hat{S}_{L}=$ survival of larvae from hatching to time of entrainment.
The variance of $\hat{S}_{A}$ based on the delta method is then estimated by the approximate formula

$$
\operatorname{Var}\left(\hat{S}_{A}\right)=S_{A}^{2}\left[\frac{\operatorname{Var}(\hat{\bar{F}})}{\hat{F}^{2}}+\frac{\operatorname{Va} r(\hat{R})}{\hat{R}^{2}}+\frac{\operatorname{Var}\left(\hat{S}_{E}\right)}{\hat{S}_{E}^{2}}+\frac{\operatorname{Var}\left(\hat{S}_{L}\right)}{\hat{S}_{L}^{2}}\right] .
$$

For the example of monkeyface eel, the variance of $\hat{S}_{A}$ is estimated as

$$
\begin{aligned}
\operatorname{Var}\left(\hat{S}_{A}\right) & =(0.0001388)^{2}\left[\frac{(4,667)^{2}}{(32,000)^{2}}+\frac{(2.08)^{2}}{(11.75)^{2}}+\frac{(0.0373)^{2}}{(0.4240)^{2}}+\frac{(0.0314)^{2}}{(0.0904)^{2}}\right] \\
& =0.0000000035
\end{aligned}
$$

or

$$
\hat{S} E\left(\hat{S}_{A}\right)=0.00005905 .
$$

## Variance for $A \hat{E} L$

The estimator of adult equivalent loss is

$$
A \hat{E} L=\hat{E}_{T} \cdot \hat{S}_{A}
$$

with exact variance

$$
\operatorname{Var}(A \hat{E} L)=\operatorname{Var}\left(\hat{E}_{T}\right) \cdot S_{A}^{2}+\operatorname{Var}\left(\hat{S}_{A}\right)^{2} \cdot E_{T}^{2}+\operatorname{Var}\left(\hat{E}_{T}\right)^{2} \cdot \operatorname{Var}\left(\hat{S}_{A}\right) .
$$

Using the variance formula in conjunction with the monkeyface eel data results in an estimated variance of

$$
\begin{aligned}
\operatorname{Vâr}(A \hat{E} L) & =(197,677,101)^{2}(0.0001388)^{2}+(0.00005905)^{2}(160,544,555)^{2}+(192,677,101)^{2}(0.00005905) \\
& =934,541,905.8
\end{aligned}
$$

or

$$
\hat{S} E(A \hat{E} L)=30,570.3
$$

Variance for $\hat{F} H$
The estimator of hindcast fecundity lost is

$$
\hat{F} H=\frac{\hat{E}_{T}}{\hat{S}_{E} \cdot \hat{S}_{L} \cdot \hat{\bar{F}}_{T}}
$$

where
$\hat{E}_{T}=$ estimated total entrainment of larvae;
$\hat{S}_{E}=$ survival probability for eggs;
$\hat{S}_{L}=$ survival of larvae from hatching to time of entrainment;
$\hat{\bar{F}}_{T}=$ estimated average total lifetime fecundity $=\hat{F} \cdot \hat{R}$.
Using the Delta method, an approximate variance estimator is

$$
\operatorname{Var}(\hat{F} H)=F H^{2}\left[\frac{\operatorname{Va} r\left(\hat{E}_{T}\right)}{\hat{E}_{T}^{2}}+\frac{\operatorname{Var}\left(\hat{S}_{E}\right)}{\hat{S}_{E}^{2}}+\frac{\operatorname{Var}\left(\hat{S}_{L}\right)}{\hat{S}_{L}^{2}}+\frac{\operatorname{Va} r(\hat{F})}{\hat{F}^{2}}+\frac{\operatorname{Var}(\hat{R})}{\hat{R}^{2}}\right] .
$$

For the example of monkeyface eel, the variance of $\hat{F} H$ is calculated to be

$$
\begin{aligned}
\operatorname{Vâr}(\hat{F} H) & =(11,140)^{2}\left[\frac{(192,677,101)^{2}}{(160,544,555)^{2}}+\frac{(0.0373)^{2}}{(0.4240)^{2}}+\frac{(0.0314)^{2}}{(0.0904)^{2}}+\frac{(4,667)^{2}}{(32,000)^{2}}+\frac{(2.08)^{2}}{(11.75)^{2}}\right] \\
& =201,208,630
\end{aligned}
$$

or

$$
\hat{S} E(\hat{F} H)=14,184.8 .
$$

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

Appendix A<br>Cooling Water Intake Study Plan

Attachment 1
Model Parameterization

May 11, 2001

## Model Parameterization

The three methods for assessing cooling water system (CWS) effects on larval fishes and megalopal cancer crabs described in the MBPP Modernization Project Study Plan were fecundity hindcasting $(F H)$, adult equivalent loss $(A E L)$ and empirical transport modeling (ETM). The $F H$ and $A E L$ models are demographic approaches that rely almost entirely on life history information for their formulation. An estimate of larval growth rate that is used to determine the duration of exposure to entrainment is the only life history information needed for the formulation of the ETM approach. While this is an advantage of the ETM, all of the models require some estimate of the source water population for their interpretation. This appendix describes how life history information from the scientific and technical literature was used to parameterize these models. We use two taxa as examples, combtooth blennies Hypsoblennius spp. a bay species, and white croaker Genyonemus lineatus a coastal species.

### 1.0 Combtooth blennies

### 1.1 Empirical Transport Model

The calculation of ETM, illustrated in Equations 9 to 14, (Appendix C) requires that several parameters be obtained for each taxon being modeled. These include estimates of the number of larvae and megalops entrained, the number of larvae and megalops in the source water population at risk to entrainment, and an estimate of the period of time that the larvae are subject to entrainment. The period of time that the larvae are exposed to entrainment was estimated by applying a daily larval growth rate to the mean and maximum larval lengths from entrainment samples. The sample of larval combtooth blennies measured from entrainment samples had a mean length of 2.55 mm and a range from 2.0 to 3.2 mm (Figure 3-25 of the 316(b) Resource Assessment report). The upper 99 percentile value of the measurements used in calculating the maximum duration of larval exposure was 3.1 mm , while the lower 99 percentile value used as the minimum length was 2.0 mm . The period of time that the larvae are exposed to entrainment was estimated as follows:

> Exposure Entrainment $($ days $)=($ Mean or Max Length
> $(\mathrm{mm})$ - Minimum Length $(\mathrm{mm})) /$ growth rate $(\mathrm{mm} /$ days $)$

For combtooth blennies a larval growth rate was estimated by averaging the growth rates (0.117, $0.19,0.103 \mathrm{~mm} / \mathrm{d}$ ) from three sympatric species of blennies found in Stephens et al. (1970). A growth rate of $0.1367 \mathrm{~mm} /$ day was used to estimate the maximum period of time that combtooth blenny larvae would be exposed to entrainment as follows:

The larval duration is then used in $E T M$ to calculate an estimate of $P_{m}$, the annual probability of mortality due to entrainment. The data used to calculate an estimate of $P_{m}$ are shown in Table 1. Estimates of the number of larvae in the source water population at risk to entrainment and the number of larvae entrained are combined to form an estimate of $P E$ for each survey. The $P E$ is an estimate of the conditional mortality on the source water population due to entrainment assuming that no other sources of mortality exist (Ricker 1975). The $P E$ estimates from each survey are weighted by the fraction of the total entrainment $\left(f_{i}\right)$ during the entire year that is subject to entrainment during the study period in order to form an annual-mortality estimate. The quantity $f_{i} \bullet\left(1-P E_{i}\right)^{\text {duration }}$ is an estimate of the probability that a larva has to escape entrainment based on data collected during the study period. A mortality estimate is formed by summing the weighted survey survivals and subtracting from one:

$$
\begin{equation*}
P_{m}=1-\sum_{i=1}^{12} f_{i} \cdot\left(1-P E_{i}\right)^{\text {duration }} \tag{2}
\end{equation*}
$$

An estimate of $P_{m}=.49$ was calculated for combtooth blennies.

Table 1. ETM data and example calculations for combtooth blennies Hypsoblennius spp.

| Survey Date | Entrainment Estimate (\#) | Entrainment Volume ( $\mathrm{m}^{3}$ ) | Morro Bay <br> Estimate (\#) | Morro Bay <br> Volume (m3) | $\begin{gathered} \text { Morro Bay } \\ P E \\ \hline \end{gathered}$ | Estero Bay <br> Estimate (\#) | Estero Bay Volume (m3) | $\begin{aligned} & \text { Estero Bay } \\ & \text { PE } \end{aligned}$ | Total PE | $\mathrm{f}_{\mathrm{i}}$ | Duration of Larval Exposure | $=\mathrm{f}_{\mathrm{i}} *\left(1-P E_{i}\right)^{\text {duration }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17-Jan-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0.0000 | 0 | 20,915,551 | 0.0000 | 0.0000 | 0.0021 | 4.0 | 0.0021 |
| 28-Feb-00 | 0 | 1,619,190 | 5,939 | 15,686,663 | 0.0000 | 0 | 20,915,551 | 0.0000 | 0.0000 | 0.0069 | 4.0 | 0.0069 |
| 27-Mar-00 | 8,027 | 1,619,190 | 27,045 | 15,686,663 | 0.2968 | 13,167 | 20,915,551 | 0.6097 | 0.1996 | 0.0031 | 4.0 | 0.0013 |
| 24-Apr-00 | 0 | 1,619,190 | 4,870 | 15,686,663 | 0.0000 | 11,905 | 20,915,551 | 0.0000 | 0.0000 | 0.0023 | 4.0 | 0.0023 |
| 15-May-00 | 3,077 | 1,619,190 | 14,077 | 15,686,663 | 0.2186 | 14,488 | 20,915,551 | 0.2124 | 0.1077 | 0.0048 | 4.0 | 0.0030 |
| 12-Jun-00 | 10,700 | 1,619,190 | 71,704 | 15,686,663 | 0.1492 | 17,830 | 20,915,551 | 0.6001 | 0.1195 | 0.0266 | 4.0 | 0.0159 |
| 10-Jul-00 | 86,893 | 1,619,190 | 339,688 | 15,686,663 | 0.2558 | 136,063 | 20,915,551 | 0.6386 | 0.1826 | 0.2457 | 4.0 | 0.1088 |
| 8-Aug-00 | 158,591 | 1,619,190 | 527,532 | 15,686,663 | 0.3006 | 314,375 | 20,915,551 | 0.5045 | 0.1884 | 0.3702 | 4.0 | 0.1593 |
| 5-Sep-00 | 94,659 | 1,619,190 | 378,555 | 15,686,663 | 0.2501 | 258,424 | 20,915,551 | 0.3663 | 0.1486 | 0.2241 | 4.0 | 0.1170 |
| 2-Oct-00 | 18,889 | 1,619,190 | 124,399 | 15,686,663 | 0.1518 | 126,409 | 20,915,551 | 0.1494 | 0.0753 | 0.0832 | 4.0 | 0.0606 |
| 13-Nov-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0.0000 | 0 | 20,915,551 | 0.0000 | 0.0000 | 0.0273 | 4.0 | 0.0273 |
| 18-Dec-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0.0000 | 0 | 20,915,551 | 0.0000 | 0.0000 | 0.0038 | 4.0 | 0.0038 |

$$
P_{m} \text { Estimate }=1-\Sigma\left(\mathrm{f}_{\mathrm{i}} *\left(1-P E_{i}\right)^{\text {duration }}\right)=\mathbf{0 . 4 9 1 7}
$$

$P E_{i}=$ Entrainment Estimate $_{\mathrm{i}} /\left({\left.\text { Morro Bay } \text { Estimate }_{\mathrm{i}}+\text { Estero Bay Estimate }_{\mathrm{i}}\right)}\right.$ )
$f_{i}=$ Entrainment Estimate $/$ Total Annual Entrainment Estimate

### 1.2 Fecundity Hindcasting

In addition to estimates of the number of larvae entrained, the calculation of $F H$, illustrated in Appendix C of the Study Plan, requires that several life history values be obtained for each taxon modeled. These values are the age at entrainment, the egg and larval survival to entrainment, and lifetime fecundity for each taxon. Lifetime fecundity $(F T)$ is calculated from estimates of annual fecundity and then applied to the average number of years a mature female is reproductive:

$$
\begin{equation*}
F_{T}=\overline{\text { Eggs / year }} \bullet\left(\frac{\text { Longevity }- \text { Maturation }}{2}\right) \tag{3}
\end{equation*}
$$

The estimate of $F H$ is computed using the following formula:

$$
\begin{equation*}
F H=\frac{E_{\text {Toata }}}{\prod_{j=1}^{n} S_{j} \bullet F_{T}}, \tag{4}
\end{equation*}
$$

where $S_{j}$ represents the survival of the $j$ life stages up through entrainment. These could include eggs, yolk-sac and later larval statges depending upon the life history of the taxa.

The life history values needed to estimate $F H$ for combtooth blennies were compiled primarily from Stephens et al. (1970) studies on three sympatric species of blennies. Stephens et al. (1970) do not report estimates of egg survival. Egg masses in the group are demersal and attached to a nest site that is guarded by the male (Stephens et al. 1970). Therefore, egg survival is probably high and conservatively assumed to be 100 percent. Although no estimate of larval survival is available, Brothers (1975) indicates that 98.3 percent larval mortality over two months was a reasonable estimate for arrow goby. We assumed 99 percent larval mortality for combtooth blennies that occupy similar habitats. This estimate was used to calculate a daily survival rate for the estimated total larval duration of 2 to 3 months (Stephens et al. 1970) $\left((1-0.99)^{1 / 75}=\right.$ $0.940^{-\mathrm{d}}$ ). Survival to entrainment was then estimated using the mean number of days to entrainment $(4.03 \mathrm{~d})$ as $0.940^{4.03}=.78$. A fecundity estimate of 1180 eggs was used based on the estimates for $H$. jenkinsi in Stephens et al. (1970), and assuming that the maximum egg production of 1500 after three years occurs over the remaining average maximum lifespan of 7 years (500, 900, 1500, 1500, 1500, 1500). Based on the values from Stephens et al. (1970) the average age of maturity was assumed to be 2 years. $F H$ for combtooth blennies was computed as follows:

$$
F H=4,361=\frac{10,042,151}{(0.7805)(1,180) \frac{(7-2)}{2}}
$$

### 1.3 Adult Equivalent Loss

The calculation of $A E L$, illustrated in Appendix C of the Study Plan, requires survival estimates for the various life stages from entrainment through recruitment as adults for each taxon being modeled. Survival rates are not available for most of the taxa we have collected, and survival rates for specific life stages are even less common. Therefore, in many cases a survival rate was applied across a number of life stages. For example, the single estimates of larval and adult survival obtained for combtooth blennies were applied over the period from entrainment through settlement ( 75 days) and the adult survival rate was applied from settlement to adulthood at age 3.3 years. This assumes that the adult survival rate applies to the various juvenile and pre-recruit stages. If survival rates for all the various life stages were available, then $A E L$ would be calculated as follows:

$$
\begin{equation*}
A E L=\left(\text { Entrainment }_{\text {total }}\right)\left(S_{\text {Early Larvae }}\right)\left(S_{\text {Late Larvae }}\right)\left(S_{\text {Early Juv }}\right)\left(S_{\text {Late Juv. }}\right)\left(S_{\text {Pre-Recruits }}\right) \tag{5}
\end{equation*}
$$

The formulation of an $A E L$ estimate for combtooth blennies included larval survival from entrainment to settlement and survival from settlement to age 3.3 years, the average age of the adults between ages 2 and 7 estimated using the assumption of an exponentially decreasing population size. Larval survival from entrainment (4 days) to settlement ( 75 days) was estimated as $0.94^{75-4}=.0128$ using the same daily survival rate used in formulating $F H$. Adult mortality was estimated from age groupings of three species of blennies in Stephens et al. (1970).
Exponential instantaneous mortality rates $(Z)$ were calculated from these age groupings using the relationship between $\log$ numbers at age $\ln \left(\mathrm{N}_{\mathrm{t}}\right)$ and age $t$ :

$$
\begin{equation*}
\ln \left(N_{t}\right)=-Z t+b \tag{6}
\end{equation*}
$$

The average of the instantaneous mortality rates (H. jenkinsi: $Z=0.72$; H. gilberti: $Z=0.57 ; H$. gentilis: $Z=0.64$ ) was used to estimate annual adult survival at $0.525 \mathrm{yr}^{-1}$. Using this annual rate, the survival from settlement ( 75 days) to age 3.3 years was estimated as $0.525^{3.3 \mathrm{yr}}=0.1361$. $A E L$ for numbers of combtooth blennies entrained in 12 months was computed as follows:

$$
A E L=17,516=(10,042,151)(0.0128)(0.1361)
$$

### 2.0 White Croaker

### 2.1 Empirical Transport Model

The period of time that the larvae are exposed to entrainment used as an exponent in the calculation of $E T M$ was estimated for white croaker using Equation 7. The sample of white croaker larvae measured from entrainment samples had a mean length of 2.8 mm and a range of 1.2 to 7.6 mm . The upper 99 percentile value of the measurements used in calculating the maximum duration of larval exposure was 6.1 mm , while the lower 99 percentile value used as the minimum length was 1.4 mm . A growth rate of $0.20 \mathrm{~mm} /$ day (Murdoch et al. 1989) was used to estimate a maximum period of entrainment risk of 23.5 days, while the duration to the mean length of 2.8 mm was estimated as 6.9 days.

$$
\begin{equation*}
(2.81 \mathrm{~mm}-1.42 \mathrm{~mm}) / 0.20 \mathrm{~mm} / \text { day }=6.9 \text { days } \tag{7}
\end{equation*}
$$

The larval duration is then used in ETM to calculate a probability of survival, the first step in estimating $P_{m}$, the annual probability of mortality due to entrainment using the data shown in Table 2.

Combtooth blennies are primarily bay species, but white croaker occur in bays and estuaries and also in sandy nearshore areas less than 30 m deep (Streamnet 1999). In addition, white croaker can be found out to depths of 100 m (Frey 1971). Therefore, Equation 2 is modified for white croaker and other taxa that have local source populations that are not primarily distributed in Morro Bay. The following equation (8) for $E T M$ employs a correction, $P_{s}$, for local source population sampled in the source water studies as a fraction of the source population of inference:

$$
\begin{equation*}
P_{m}=1-\sum_{i=1}^{12} f_{i} \cdot\left(1-P E_{i} \cdot P_{s}\right)^{\text {duration }} \tag{8}
\end{equation*}
$$

$P_{s}$ was calculated as:

$$
\begin{equation*}
P_{S}=\frac{N_{L}}{N_{T}} \tag{9}
\end{equation*}
$$

where $N_{L}$ represents the sampled source water population and $N_{T}$ represents the local source population of inference. $P_{s}$ has been defined by Ricker (1975), as the proportion of the parental stock. If the distribution in the larger area is assumed to be uniform, then the value of $P_{s}$ for the proportion of the population will be the same as the value computed solely on area or volume.

Therefore, $P_{s}$ was estimated using the distance the larvae could have traveled, based on the duration of exposure to entrainment and current speed, an analogue for volume. A current speed of $11.2 \mathrm{~cm} / \mathrm{sec}$ was calculated from hourly measurements over the period of January 1, 1996 through May 31, 1999 at a single InterOceans S $4^{\text {TM }}$ current meter deployed at -6 m MLLW in approximately 30 m depth about 1 km west of the Diablo Canyon Power Plant Intake Cove south of Morro Bay. The current direction was ignored in the calculations, but is predominately alongshore. The current speed was used to estimate unidirectional displacement over the period of time that the larvae were exposed to entrainment. The value of alongshore displacement ( $N_{T}$ ) was compared with the alongshore length of the sampled waterbody $\left(N_{L}\right)$. A value of 9.6 km was used for $N_{L}$ which is twice the distance of Station 5 to the west Morro Bay breakwater. This value was used because it places Station 5 in the center of the sampled waterbody. Based on an average exposure duration of 6.9 days for white croaker, $P_{s}$ would be calculated as follows:

$$
P_{s}=.14=\frac{9.6 \mathrm{~km}}{(6.9 \text { days })\left(9.7 \mathrm{~km}^{\text {days }}\right)}
$$

We only present a single estimate of $P_{m}$ for white croaker and other taxa that used a $P_{s}$ adjustment because any increase in $P_{m}$ that may occur due to an extended larval duration is offset by the size of the population area due to the larger estimate of alongshore distance.

Table 2. ETM data and example calculations for white croaker Genyonemus lineatus.

| $\underline{\text { Survey Date }}$ | Entrainment Estimate (\#) | Entrainment <br> Volume ( $\mathrm{m}^{3}$ ) | Morro Bay <br> Estimate (\#) | Morro Bay <br> Volume (m3) | $\begin{gathered} \text { Morro Bay } \\ P E \\ \hline \hline \end{gathered}$ | Estero Bay <br> Estimate (\#) | Estero Bay <br> Volume (m3) | $\begin{gathered} \text { Estero Bay } \\ P E \\ \hline \hline \end{gathered}$ | Total PE | $\mathrm{f}_{\mathrm{i}}$ | Duration of Larval Exposure | $=\mathrm{f}_{\mathrm{i}} *\left(1-P E_{i} P_{S}\right)^{\text {duration }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17-Jan-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0 | 0 | 20,915,551 | 0 | 0 | 0.0535 | 6.9 | 0.0535 |
| 28-Feb-00 | 0 | 1,619,190 | 19538 | 15,686,663 | 0 | 66482 | 20,915,551 | 0 | 0 | 0.3827 | 6.9 | 0.3827 |
| 27-Mar-00 | 46088 | 1,619,190 | 215626 | 15,686,663 | 0.2137 | 308637 | 20,915,551 | 0.1493 | 0.0879 | 0.0691 | 6.9 | 0.0634 |
| 24-Apr-00 | 2314 | 1,619,190 | 42942 | 15,686,663 | 0.0539 | 56458 | 20,915,551 | 0.0410 | 0.0233 | 0.1676 | 6.9 | 0.1639 |
| 15-May-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0 | 0 | 20,915,551 | 0 | 0 | 0.0024 | 6.9 | 0.0024 |
| 12-Jun-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0 | 0 | 20,915,551 | 0 | 0 | 0 | 6.9 | 0.0000 |
| 10-Jul-00 | 0 | 1,619,190 | 0 | 15,686,663 | 0 | 0 | 20,915,551 | 0 | 0 | 0.0064 | 6.9 | 0.0064 |
| 8-Aug-00 | 0 | 1,619,190 | 20998 | 15,686,663 | 0 | 111066 | 20,915,551 | 0 | 0 | 0 | 6.9 | 0.0000 |
| 5-Sep-00 | 2615 | 1,619,190 | 13287 | 15,686,663 | 0.1968 | 36110 | 20,915,551 | 0.0724 | 0.0529 | 0.0394 | 6.9 | 0.0374 |
| 2-Oct-00 | 2307 | 1,619,190 | 24605 | 15,686,663 | 0.0938 | 174301 | 20,915,551 | 0.0132 | 0.0116 | 0.005 | 6.9 | 0.0049 |
| 13-Nov-00 | 9748 | 1,619,190 | 101024 | 15,686,663 | 0.0965 | 51536 | 20,915,551 | 0.1891 | 0.0639 | 0.1584 | 6.9 | 0.1489 |
| 18-Dec-00 | 0 | 1,619,190 | 7625 | 15,686,663 | 0 | 31390 | 20,915,551 | 0 | 0 | 0.1156 | 6.9 | 0.1156 |
| $P_{m}$ Estimate $=1-\Sigma\left(\mathrm{f}_{\mathrm{i}}\left(1-P E_{i} P_{s}\right)^{\text {duration }}\right)=\quad \mathbf{0 . 0 2}$ |  |  |  |  |  |  |  |  |  |  |  |  |

### 2.2 Fecundity Hindcasting

An estimate of $F H$ for white croaker was calculated using Equations 3 and 4, and the same approach described for combtooth blennies. White croaker spawn from 18 times per year for females of 1-2 years to 24 times for older females (Love et al. 1984). In our calculations for FH we used an average of 21 egg batches per year. A batch fecundity of 5,000 eggs was extrapolated from Love et al. (1984) resulting in a total annual fecundity of 105,000 eggs ( 21 spawnings x 5,000 eggs). Love (1996) reported that white croaker eggs hatch in about 2 days and Murdoch et al. (1989) suggested a daily instantaneous egg mortality rate of $Z=0.25$ (survival=78 \% per day). Egg survival was therefore estimated as $e^{\left(0.25^{*}-2\right)}=0.61$. The same instantaneous mortality rate was used to calculate larval survival from hatching to entrainment at 6.9 days based on the mean entrainment length $\left(e^{\left(0.25^{*}-6.9\right)}=0.18\right)$. An estimate of longevity of 12 year from Love et al. (1984) was used in the model, and the average age of maturation was estimated to be 2 years based on Love's (1996) estimate that the species matures from 1 to 4 years with approximately half of the females spawning after one year. Using Equation 4 FH for white croaker was 53 adult females and was calculated as follows:

$$
F H=53=\frac{2,992,510}{(0.6065)(.1775)(105,000) \frac{(12-2)}{2}} .
$$

### 2.3 Adult Equivalent Loss

The calculation of $A E L$, illustrated in Appendix C of the Study Plan, requires survival estimates for the various life stages of white croaker from entrainment through recruitment as adults. No survival estimates for these life stages were available, therefore $A E L$ was not calculated for white croaker.

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

Appendix A<br>Cooling Water Intake Study Plan

## Attachment 2

Example ETM CALCULATION

June 26, 2001

## Examples of ETM Calculations

This appendix presents data and example Empirical Transport Model (ETM) calculations for combtooth blennies (Hypsoblennius spp.) and KGB rockfish (Sebastes spp.). Combtooth blennies were chosen to represent taxa groups whose larvae are primarily distributed within the bay, while KGB rockfish represent taxa groups with distributions that may extend throughout the nearshore areas of Estero Bay. ETM estimates of $P_{m}$ were calculated differently for these two groups of fishes.

The calculation of $P_{m}$ for the two groups differed in whether the $P E$ estimates for each survey applied to the entire local population or only a fraction of that population. The source water sampling was intended to provide a representative estimate of the population for taxa groups whose larve are distributed within the bay represented in this example by combtooth blennies. For these taxa the estimates of $P E$ for each survey represent the conditional mortality for the entrainable life stage of the local population. Only a fraction of the local population was sampled by the source water sampling for fishes with broader coastwide distributions. For these taxa, their estimated $P E$ only applied to the fraction of the local population that was subject to entrainment.

The calculation of $P_{m}$ for the two groups differed in whether the $P E$ estimates for each survey applied to the entire local population or only a fraction of that population. The source water sampling was intended to provide a representative estimate of the population for taxa groups whose larve are distributed within the bay represented in this example by combtooth blennies. For these taxa the estimates of $P E$ for each survey represent the conditional mortality due to entrainment on the entire local population of interest. The source water sampling only included a fraction of the local population of fishes with broader nearshore distributions. Therefore the estimates of $P E$ for these taxa only applied to the fraction of the local population that was subject to entrainment.

The ETM estimates of $P_{m}$ for both taxa groups were calculated using proportional entrainment $(P E)$ values from each source water survey. The value of $P E_{\mathrm{i}}$ estimates the daily conditional mortality due to entrainment. The value of 1-PE is an estimate of the daily conditional survivorship. The daily conditional survivorship is applied over the number of days that the larvae are in the plankton and subject to entrainment (i.e., $\left[1-P E_{\mathrm{i}}\right]^{\text {days }}$ ). The number of days is estimated by dividing the maximum or average size of the entrained larvae by a daily growth rate. This value (i.e., $\left[1-P E_{\mathrm{i}}\right]^{\text {days }}$ ) is an estimate of the proportion of the population surviving entrainment during the $i^{\text {th }}$ survey period. The estimate of survivorship is weighted by the monthly survey fraction $\left(f_{i}\right)$ of the source water population at risk. This value is the monthly fraction of total annual entrainment for the source water survey period. The weighted estimates
of survivorship during each survey period are then summed and subtracted from unity to provide the final estimate of $P_{m}$ using the formula:

$$
P_{m}=1-\sum_{i=1}^{12} f_{i} \cdot\left(1-P E_{i}\right)^{d a y s} .
$$

This formula was used for the majority of the taxa entrained by the MBPP that have larvae that are primarily distributed within the Morro Bay source water sampling area. For these taxa, $P_{m}$ would estimate the probability of mortality due to entrainment for larvae within the source water sampling area.

Other fish taxa and many of the cancer crabs reside primarily in the nearshore, open-coast habitats found outside Morro Bay. Therefore, the ETM model was adjusted to include an estimate of the fraction of the local larval population sampled during the source water surveys. The following modified form of the ETM model was used for KGB rockfish and other fish and crab taxa with distributions that extend out into the nearshore waters where the source water sampling area represented only a fraction of the coastwide source waterbody:

$$
P_{m}=1-\sum_{i=1}^{12} f_{i} \cdot\left(1-P E_{i} \cdot P_{s}\right)^{d a y s}
$$

with $P_{s}$ representing the proportion of the coastwide source waterbody represented in the sampling (Boreman et al. 1981, MacCall et al. 1983). $P_{s}$ was calculated as

$$
P_{S}=\frac{N_{L}}{N_{T}}
$$

where $N_{L}$ represents the sampled source water population and $N_{T}$ represents the population of inference. Estimates of the population of inference for these taxa were unavailable.
$P_{s}$ can also be estimated using the estimate of the larval or adult population in the study area, defined by Ricker (1975), as the proportion of the parental stock. If the distribution in the larger area is assumed to be uniform, then the value of $P_{s}$ for the proportion of the population will be the same as the value computed based on area or volume. Therefore, $P_{s}$ was estimated using the distance the larvae could have traveled based on the duration of exposure to entrainment and current speed. A current speed of $11.2 \mathrm{~cm} / \mathrm{sec}(4.21 \mathrm{in} . / \mathrm{sec})$ was calculated from hourly measurements over the period of January 1, 1996 - May 31, 1999 at a single InterOceans $\mathrm{S}^{\mathrm{TM}}$ current meter deployed at $-6 \mathrm{~m}(-19.8 \mathrm{ft})$ MLLW in approximately $30 \mathrm{~m}(99 \mathrm{ft})$ about 1 km
( 0.6 mi ) west of the Diablo Canyon Power Plant Intake Cove, south of Morro Bay. The current direction was ignored in the calculations, but was predominately alongshore. The current speed was used to estimate unidirectional displacement over the period of time that the larvae were exposed to entrainment. The value of alongshore displacement $\left(N_{T}\right)$ was compared with the alongshore length of the sampled waterbody $\left(N_{L}\right)$. A value of $6.0 \mathrm{mi}(9.6 \mathrm{~km})$ was used for $N_{L}$ which is twice the distance of Station 5 to the west Morro Bay breakwater. This value was used because it places Station 5 in the center of the sampled waterbody.

## Combtooth blennies

Data from the paired entrainment and source water surveys for combtooth blennies were used to calculate a $P E$ estimate for each survey (Table ETM-1). Estimates of the mean density for the survey were obtained from the samples collected at the entrainment, bay and offshore stations. These estimates were multiplied by the volumes for those respective areas to obtain estimates of number of larvae. The estimate of $P E$ for a survey was obtained by dividing the estimate of the number entrained by the combined estimate for the bay and offshore sampling areas. No estimate of $P E$ was calculated for the February and April surveys because no larvae were collected in entrainment samples. An estimate of $P E$ will be calculated for any survey where larvae are collected from entrainment because entrainment station samples are included in calculating a mean density for the bay source water area.

The $P E$ estimates were combined with estimates of $f_{i}$ and duration of entrainment risk to obtain an estimate of $P_{m}$. A growth rate for combtooth blenny larvae was estimated by averaging the growth rates of three sympatric blennioids $(0.117,0.19,0.103 \mathrm{~mm} /$ day $[0.005,0.007,0.004$ in./day] from Stephens et al. (1970). This average growth rate was used to convert the mean length of 2.5 mm ( 0.098 in .) into an estimate of of approximately 4.0 days (Table ETM-2). As expected, the estimates of survivorship and $f_{i}$ were equal for surveys where the $P E$ estimate is zero. In other words, the entire fraction present during the survey period did not experience any entrainment related mortality. The estimates of survivorship for each survey were combined to provide a $P_{m}$ estimate $=0.49$.

## KGB Rockfish

Data from the paired entrainment and source water surveys for KGB rockfishes were used to calculate a PE estimate for each survey (Table ETM-3). Estimates of the mean density for the survey were obtained from the samples collected at the entrainment, bay and offshore stations. These estimates were multiplied by the volumes for those respective areas to obtain estimates of number of larvae. The estimate of $P E$ for a survey was obtained by dividing the estimate of the number entrained by the combined estimate for the bay and offshore sampling areas. No
estimate of $P E$ was calculated for the March and June surveys because no larvae were collected in entrainment samples.

The $P E$ estimates were combined with estimates of $f_{i}$, duration of entrainment risk, and $P_{s}$ to obtain an estimate of $P_{m}$. An estimate of the growth rate for KGB rockfish was not available from the literature, so a growth rate from larval brown rockfish of $0.14 \mathrm{~mm} /$ day ( 0.006 in .) (Love and Johnson 1999, Yoklavich et al. 1996) was used to estimate that the duration of entrainment risk for a mean length of 4.3 mm ( 0.17 in .) was approximately 5.5 days. This time period was used to compute an estimate of $P_{s}$ according to the formula:

$$
P_{s}=0.179 \cong \frac{9.6 \mathrm{~km}}{(5.5 \text { days } \cdot 9.68 \mathrm{~km} / \text { day })},
$$

where 9.6 km is the estimated alongshore extent of the source water sampling area, 5.5 days is the estimate of larval exposure to entrainment, and $9.68 \mathrm{~km} /$ day is the daily estimate of current displacement. The estimates of survivorship for each survey were combined to provide a $P_{m}$ estimate $=0.02$.

Table ETM-1. Values used in PE calculations for combtooth blennies Hypsoblennius spp.

| $\begin{aligned} & \text { Survey } \\ & \text { Date } \end{aligned}$ | Entrainment <br> Mean Density | Entrainment Volume | Entrainment Estimate | Bay Density | Bay Volume | $\begin{gathered} \text { Bay } \\ \text { Estimate } \end{gathered}$ | Bay PE | Offshore Density | Offshore Volume | Offshore Estimate | Offshore PE | Total PE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17-Jan-00 | 0.0000 | 1,619,190 | 0 | 0.0000 | 15,686,663 | 0 | 0.0000 | 0.0000 | 20,915,551 | 0 | 0.0 .0000 | 0.0000 |
| 28-Feb-00 | 0.0000 | 1,619,190 | 0 | 0.0004 | 15,686,663 | 5,939 | 0.0000 | 0.0000 | 20,915,551 | 0 | 0.0 .0000 | 0.0000 |
| 27-Mar-00 | 0.0050 | 1,619,190 | 8,027 | 0.0017 | 15,686,663 | 27,045 | 0.2968 | 0.0006 | 20,915,551 | 13,167 | - 0.6097 | 0.1996 |
| 24-Apr-00 | 0.0000 | 1,619,190 | 0 | 0.0003 | 15,686,663 | 4,870 | 0.0000 | 0.0006 | 20,915,551 | 11,905 | 50.0000 | 0.0000 |
| 15-May-00 | 0.0019 | 1,619,190 | 3,077 | 0.0009 | 15,686,663 | 14,077 | 0.2186 | 0.0007 | 20,915,551 | 14,488 | $8 \quad 0.2124$ | 0.1077 |
| 12-Jun-00 | 0.0066 | 1,619,190 | 10,700 | 0.0046 | 15,686,663 | 71,704 | 0.1492 | 0.0009 | 20,915,551 | 17,830 | - 0.6001 | 0.1195 |
| 10-Jul-00 | 0.0537 | 1,619,190 | 86,893 | 0.0217 | 15,686,663 | 339,688 | 0.2558 | 0.0065 | 20,915,551 | 136,063 | - 0.6386 | 0.1826 |
| 8 -Aug-00 | 0.0979 | 1,619,190 | 158,591 | 0.0336 | 15,686,663 | 527,532 | 0.3006 | 0.0150 | 20,915,551 | 314,375 | 50.5045 | 0.1884 |
| 5 -Sep-00 | 0.0585 | 1,619,190 | 94,659 | 0.0241 | 15,686,663 | 378,555 | 0.2501 | 0.0124 | 20,915,551 | 258,424 | 40.3663 | 0.1486 |
| 2-Oct-00 | 0.0117 | 1,619,190 | 18,889 | 0.0079 | 15,686,663 | 124,399 | 0.1518 | 0.0060 | 20,915,551 | 126,409 | - 0.1494 | 0.0753 |
| 13-Nov-00 | 0.0000 | 1,619,190 | 0 | 0.0000 | 15,686,663 | 0 | 0.0000 | 0.0000 | 20,915,551 | 0 | ) 0.0000 | 0.0000 |
| 18-Dec-00 | 0.0000 | 1,619,190 | 0 | 0.0000 | 15,686,663 | 0 | 0.0000 | 0.0000 | 20,915,551 | 0 | 0.0000 | 0.0000 |

Table ETM-2. Values used in calculating the $P_{m}$ estimate for combtooth blennies.

| Survey Date | $\boldsymbol{P} \boldsymbol{E}_{\boldsymbol{i}}$ | $\boldsymbol{f}_{\boldsymbol{i}}$ | Larval <br> duration | Survivorship <br> $\left(\boldsymbol{f}_{\boldsymbol{i}}\left(\mathbf{1}-\boldsymbol{P} \boldsymbol{E}_{\boldsymbol{i}}\right)^{\text {days }}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 17-Jan-00 | 0.0000 | 0.0021 | 4.04 | 0.0021 |
| 28-Feb-00 | 0.0000 | 0.0069 | 4.04 | 0.0069 |
| 27-Mar-00 | 0.1996 | 0.0031 | 4.04 | 0.0013 |
| 24-Apr-00 | 0.0000 | 0.0023 | 4.04 | 0.0023 |
| 15-May-00 | 0.1077 | 0.0048 | 4.04 | 0.0030 |
| 12-Jun-00 | 0.1195 | 0.0266 | 4.04 | 0.0159 |
| 10-Jul-00 | 0.1826 | 0.2457 | 4.04 | 0.1088 |
| 8-Aug-00 | 0.1884 | 0.3702 | 4.04 | 0.1593 |
| 5-Sep-00 | 0.1486 | 0.2241 | 4.04 | 0.1170 |
| 2-Oct-00 | 0.0753 | 0.0832 | 4.04 | 0.0606 |
| 13-Nov-00 | 0.0000 | 0.0273 | 4.04 | 0.0273 |
| 18-Dec-00 | 0.0000 | 0.0038 | 4.04 | 0.0038 |
|  |  |  | $P_{m}=$ | 0.4913 |

Table ETM-3. Values used in PE calculations for KGB rockfishes Sebastes spp.

| Survey <br> Date | Entrainment <br> Mean Density | Entrainment <br> Volume | Entrainment <br> Estimate | Bay Density | Bay Volume Bay Estimate | Bay PE | Offshore <br> Density | Offshore <br> Volume | Offshore <br> Estimate <br> Offshore PE | Total PE |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table ETM-4. Values used in calculating the $P_{m}$ estimate for KGB rockfishes.

| Survey Date | $\boldsymbol{P} \boldsymbol{E}_{\boldsymbol{i}}$ | $\boldsymbol{f}_{\boldsymbol{i}}$ | Larval <br> duration | $\boldsymbol{P}_{\boldsymbol{s}}$ | Survivorship <br> $\left(\boldsymbol{f}_{\boldsymbol{i}}\left(\mathbf{1}-\boldsymbol{P} \boldsymbol{E}_{\boldsymbol{i}} \boldsymbol{P}_{\boldsymbol{s}}\right)^{\text {days }}\right)$ |
| ---: | :---: | :---: | :---: | :---: | ---: |
| 17-Jan-00 | 0.3097 | 0.0040 | 5.55 | 0.179 | 0.0029 |
| 28-Feb-00 | 0.0509 | 0.0308 | 5.55 | 0.179 | 0.0293 |
| 27-Mar-00 | 0.0000 | 0.0849 | 5.55 | 0.179 | 0.0849 |
| 24-Apr-00 | 0.0295 | 0.6811 | 5.55 | 0.179 | 0.6614 |
| 15-May-00 | 0.0208 | 0.0847 | 5.55 | 0.179 | 0.0830 |
| 12-Jun-00 | 0.0000 | 0.1145 | 5.55 | 0.179 | 0.1145 |
| 10-Jul-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |
| 8-Aug-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |
| 5-Sep-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |
| 2-Oct-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |
| 13-Nov-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |
| 18-Dec-00 | 0.0000 | 0.0000 | 5.55 | 0.179 | 0.0000 |

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

Appendix B
Data comparing all fishes collected in various studies of Morro and Estero Bays

Table B-1. Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977 - 1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spiny dogfish Squalus acanthias |  |  |  |  | X |  |  |  |
| Swell shark Cephaloscyllium ventriosum |  |  |  | X | X |  |  |  |
| Filetail cat shark Parmaturus xaniurus |  |  |  |  | X |  |  |  |
| Pacific angel shark Squatina californica | X |  |  |  |  |  |  |  |
| Leopard shark Triakis semifasciata | X |  |  | X | X | X |  |  |
| Horn shark Heterodontus francisci | X |  |  | X |  |  |  |  |
| Horn shark egg case Heterodontus francisci |  |  |  |  | X |  |  |  |
| Gray smoothhound Mustelus californicus | X | X |  | X |  |  |  |  |
| Thornback Platyrhinoidis triseriata | X |  |  | X | X | X |  |  |
| Shovelnose guitarfish Rhinobatos productus | X |  |  | X | X |  |  |  |
| Ratfish Hydrolagus colliei |  |  |  |  | X | X |  |  |
| Round stingray Urolophus halleri | X |  |  | X | X |  |  |  |
| Bat ray Myliobatis californica | X | X | X | X | X | X |  |  |
| Electric ray Torpedo californica |  |  |  |  | X | X |  |  |
| Big skate Raja binoculata | X |  |  | X |  |  |  |  |
| Silversides, unidentified Atherinidae |  |  |  |  |  | X | X | X |
| Topsmelt Atherinops affinis | X | X | X | X | X | X | X | X |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls <br> Mar 1992 - Jul 1999 <br> (CDFG unpubl. data) | PG\&E 1977 - 1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement $1999-2000$ <br> (Tenera 2000) | MBPP Entrainment <br> Jan - Dec 2000 <br> (Tenera 2000) | MBPP Source Water <br> Jan - Dec 2000 <br> (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jacksmelt Atherinopsis californiensis | X | X | X | X | X | X | X | X |
| Smelts, unidentified Osmeridae |  |  |  |  |  | X | X | X |
| Night smelt Sprinchus starski |  |  |  | X |  | X |  |  |
| Pacific argentine Argentina sialis |  |  |  |  |  |  | X |  |
| Popeye blacksmelt Bathylagus ochotensis |  |  |  |  |  |  | X | X |
| California grunion Leuresthes tenius |  |  |  |  | X |  |  |  |
| King-of-the-salmon Trachipterus altivelis |  |  |  |  | X |  | X |  |
| Ribbon fishes, unidentified Trachipteridae |  |  |  |  |  |  | X |  |
| Tubesnout Aulorhynchus flavidus |  |  |  | X | X | X | X |  |
| Tube blennies, unidentified <br> Chaenopsidae |  |  |  |  |  |  | X | X |
| Blennies, unidentified Blenniidae |  |  |  |  |  | X | X |  |
| Hypsoblennies, unidentified Hypsoblennius spp. |  |  |  |  |  |  | X | X |
| Rockpool blenny Hypsoblennius gilberti |  |  |  | X |  | X |  |  |
| Mussel blenny Hypsoblennius jenkinsi |  |  |  |  |  | X |  |  |
| Spotted cuskeel Chilara taylori |  |  |  | X | X | X |  |  |
| Basketweave cusk-eel Ophidion scrippsae |  |  |  |  |  | X |  |  |
| Pacific hake Merluccius productus |  |  |  |  | X |  | X |  |
| Clingfish, unidentified Gobiesox spp. |  |  |  |  |  | X | X | X |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977 - 1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment <br> Jan - Dec 2000 <br> (Tenera 2000) | MBPP Source Water <br> Jan - Dec 2000 <br> (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Northern clingfish Gobiesox maeandricus |  |  |  |  | X | X |  |  |
| Kelp clingfish Rimicola muscarum | X |  |  | X |  |  |  |  |
| Plainfin midshipman Porichthys notatus | X |  |  | X | X | X |  |  |
| Hatchetfishes, unidentified Sternoptyx spp. |  |  |  |  |  |  | X |  |
| Lanternfishes, unidentified Myctophidae |  |  |  |  |  |  | X | X |
| Northern lampfish Stenobrachuis leucopsarus |  |  |  |  |  |  | X | X |
| California headlight fish Diaphus theta |  |  |  |  |  |  |  | X |
| Longfin lanternfish Diogenichthys atlanticus |  |  |  |  |  |  | X |  |
| Blue lanternfish Tarletonbeania crenularis |  |  |  |  |  |  | X | X |
| Broadfin lampfish Nannobrachium ritteri |  |  |  |  |  |  | X |  |
| Pinpoint lanternfish Nannobrachium regalis |  |  |  |  |  |  |  | X |
| Red brotula Brosmophycis marginata |  |  |  |  |  |  | X |  |
| Sculpins, unidentified Cottidae |  |  |  |  |  | X | X | X |
| Sculpins, unidentified Clinocottus spp. |  |  |  |  |  | X |  |  |
| Sculpins, unidentified Radulinus spp. |  |  |  |  |  |  |  | X |
| Sculpins, unidentified Icelinus spp. |  |  |  |  |  |  | X |  |
| Sculpins, unidentified Ruscarius spp. |  |  |  |  |  |  | X |  |
| Sculpins, unidentified Oligocottus spp. |  |  |  |  |  |  | X | X |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | Fierstine Studies $1968-1970$ <br> (Fierstine et al. 1973) | Horn Studies 1974-1976 <br> (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sculpins, unidentified Artedius spp. |  |  |  |  |  | X | X | X |
| Smoothhead sculpin Artedius lateralis | X |  |  |  | X | X | X | X |
| Pacific staghorn sculpin Leptocottus armatus | X | X | X | X | X | X | X | X |
| Snubnose sculpin Orthonopias triacis |  |  |  |  | X | X | X | X |
| Wooly sculpin Clinocottus analis |  |  |  |  |  |  | X | X |
| Coralline sculpin Artedius corallinus |  |  |  |  | X |  |  |  |
| Cabezon Scorpaenichthys marmoratus | X |  | X | X | X | X | X | X |
| Bonyhead sculpin Artedius notospilotus |  |  |  | X | X | X |  |  |
| Tidepool sculpin Oligocottus maculosus |  |  |  |  |  |  | X |  |
| Manacled sculpin Synchirus gilli |  |  |  |  |  | X |  |  |
| Prickly sculpin Cottus asper | X |  |  |  |  |  | X | X |
| Riffle sculpin Cottus gulosus | X |  |  |  |  |  |  |  |
| Fluffy sculpin Oligocottus snyderi |  |  |  |  |  | X |  |  |
| Roughcheek sculpin Artedius creaseri |  |  |  |  | X |  | X | X |
| Snailfishes, unidentified Liparis spp. |  |  |  |  |  |  | X | X |
| Slipskin snailfish Liparis fucensis |  |  |  |  |  |  |  | X |
| Poachers, unidentified Agonidae |  |  | X | X |  | X | X | X |
| Pygmy poacher Odontopyxis trispinosa |  |  |  |  |  | X |  | X |
| Pricklebreast poacher Stellerina xyosterna |  |  |  | X | X | X |  |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kelp bass Paralabrax clathratus |  |  |  | X | X |  |  |  |
| Barred sand bass Paralabrax nebulifer |  |  |  | X |  |  |  |  |
| Grunts, unidentified Haemulidae |  |  |  |  |  |  | X |  |
| Salema Xenistius californiensis |  |  |  |  |  |  |  | X |
| Croakers, unid. Sciaenidae |  |  |  |  |  |  | X | X |
| White croaker Genyonemus lineatus |  |  |  | X | X | X | X | X |
| Spotfin croaker Roncador stearnsii |  |  | X |  |  |  |  |  |
| Queenfish Seriphus politus |  |  |  | X | X |  | X |  |
| Northern anchovy Engraulis mordax | X | X |  | X | X | X | X | X |
| California lizardfish Synodus lucioceps |  |  |  | X | X |  |  |  |
| Jack mackerel Trachurus symmetricus | X |  | X | X | X |  |  |  |
| Pacific mackerel Scomber japonica |  |  |  |  |  | X |  |  |
| Gunnels/pricklebacks, unidentified Pholididae/Stichaeididae |  |  |  |  |  | X |  |  |
| Pricklebacks, unidentified Stichaeididae |  |  |  |  |  | X | X | X |
| Gunnels, unidentified Pholididae |  |  | X | X |  | X | X | X |
| Kelp gunnel Ulvicola sanctaerosae |  |  |  |  |  | X |  |  |
| Penpoint gunnel Apodichthys flavidus | X |  |  | X | X | X |  |  |
| Rockweed gunnel Xererpes fucorum | X |  |  | X | X | X |  |  |
| Sand lance Ammodytes hexapterus |  |  |  |  | X |  | X |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clinid kelpfishes, unid. Clinidae |  |  |  |  |  |  | X |  |
| Labrisomid kelpfishes, unid. Labrisomidae |  |  |  |  |  |  | X | X |
| Kelpfish, unid. Gibbonsia spp. |  |  |  | X |  | X | X | X |
| Crevice kelpfish Gibbonsia montereyensis | X |  |  |  |  | X |  |  |
| Giant kelpfish Heterostichus rostratus | X |  |  | X | X | X |  |  |
| Striped kelpfish Gibbonsia metzi |  |  |  | X | X | X |  |  |
| Spotted kelpfish Gibbonsia elegans |  |  |  |  | X |  |  |  |
| Fringeheads, unidentified Neoclinus spp. |  |  |  |  |  |  | X |  |
| One spot fringehead Neoclinus uninotatus |  |  |  |  | X | X |  |  |
| Sarcastic fringehead Neoclinus blanchardi |  |  |  | X | X |  |  |  |
| Monkeyface prickleback Cebidichthys violaceus | X |  |  |  | X |  | X | X |
| Masked prickleback Stichaeopsis spp. |  |  |  |  | X |  |  |  |
| Ribbon prickleback Phytichthys chirus |  |  |  |  |  | X |  |  |
| Rock prickleback Xiphister mucosus |  |  |  |  |  | X |  |  |
| Combfishes Zaniolepis spp. |  |  |  |  |  |  | X |  |
| Shortspine combfish Zaniolepis frenata |  |  |  |  |  |  | X |  |
| High cockscomb Anoplarchus purpurescens |  |  |  |  | X | X |  |  |
| Greenlings, unidentified Hexagrammidae |  |  |  |  |  |  | X | X |
| Lingcod Ophiodon elongatus | X |  | X | X | X | X |  |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment <br> Jan - Dec 2000 <br> (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Painted greenling Oxylebius pictus | X |  |  |  |  |  | X | X |
| Kelp greenling Hexagrammos decagrammus |  |  | X | X | X | X |  |  |
| Pipefishes, unidentified Syngnathus spp. |  |  |  | X |  | X | X | X |
| Kelp pipefish Syngnathus californiensis | X |  |  |  |  | X |  |  |
| Bay pipefish Syngnathus leptorhynchus | X | X |  | X | X | X | X | X |
| Snubnose pipefish Syngnathus arctus |  |  |  | X |  |  |  |  |
| California needlefish Strongylura exilis |  |  | X |  |  |  |  |  |
| Pacific sardine Sardinops sagax | X |  |  | X |  | X | X | X |
| Gobies, unidentified Gobiidae |  |  |  |  |  |  | X | X |
| Shadow goby Quietula y-cauda |  | X |  |  |  |  | X | X |
| Arrow goby Clevelandia ios | X | X |  | X |  |  | * | * |
| Longjaw mudsucker Gillichthys mirabilis | X |  |  |  |  | X | X | X |
| Blackeye goby Coryphopterus nicholsi |  |  |  |  |  |  | X | X |
| Blind goby Typhlogobius californiensis |  |  |  |  |  |  | X | X |
| Tidewater goby Eucyclogobius newberryi | X | 0 |  |  |  |  |  |  |
| Bay goby Lepidogobius lepidus | X | X |  | X | X | X | X | X |
| Surfperches, unidentified Embiotocidae |  |  | X |  |  | X |  |  |
| Walleye surfperch Hyperprosopon argenteum | X | X | X | X | X | X |  |  |
| Shiner perch Cymatogaster aggregata | X | X | X | X | X | X |  |  |

*All of the larval specimens sent from the unidentified goby category were genetically identified as arrow goby.

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977 - 1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment <br> Jan - Dec 2000 <br> (Tenera 2000) | MBPP Source Water <br> Jan - Dec 2000 <br> (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Silver surfperch Hyperprosopon ellipticum |  |  | X |  | X |  |  |  |
| Kelp surfperch Brachyistius frenatus |  |  |  |  | X | X |  |  |
| Barred surfperch Amphistichus argenteus |  |  | X |  |  | X |  |  |
| Dwarf surfperch Micrometrus minimus | X | X | X | X | X |  |  |  |
| Striped surfperch Embiotoca lateralis | X |  | X |  | X | X |  |  |
| Rubberlip surfperch Rhacochilus toxotes | X |  | X | X | X |  |  |  |
| Sharpnose seaperch Phanerodon atripes | X |  |  |  |  |  |  |  |
| Reef surfperch Micrometrus aurora |  |  | X |  | X |  |  |  |
| White surfperch Phanerodon furcatus | X |  | X | X | X | X |  |  |
| Pile surfperch Damalichthys vacca | X | X | X | X | X | X |  |  |
| Rainbow surfperch Hypsurus caryi | X |  |  | X | X | X |  |  |
| Black surfperch Embiotoca jacksoni | X | X | X | X | X | X |  |  |
| Spotfin surfperch <br> Hyperprosopon anale |  |  | X | X | X | X |  |  |
| Surfperch unidentified juvenile |  |  |  |  | X |  |  |  |
| Ronquils, unidentified Bathymasteridae |  |  |  |  |  |  | X | X |
| Smooth ronquil Rathbunella hypoplecta |  |  |  |  | X |  |  |  |
| Pacific tomcod Gadus macrocephalus |  |  |  | X |  | X |  |  |
| Common mola Mola mola |  |  |  |  | X |  |  |  |
| Sharksucker Echeneis naucrates |  |  |  |  |  | X |  |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | Fierstine Studies $1968-1970$ <br> (Fierstine et al. 1973) | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Herrings and anchovies, unid. Clupeiformes |  |  |  |  |  |  | X |  |
| Herrings, unidentified Clupeidae |  |  |  |  |  |  |  | X |
| Pacific herring Clupea pallasii | X | X |  | X | X | X | X | X |
| Medusa fish Icichthys lockingtoni |  |  |  |  | X | X | X | X |
| Pacific butterfish Peprilus simillimus | X |  |  |  | X | X |  |  |
| Lefteye flounders \& sanddabs, unid. Paralichthyidae |  |  |  |  |  |  | X | X |
| Flatfishes, unidentified Pleuronectidae |  |  |  | X |  |  | X | X |
| Flatfishes, unidentified Hypsopsetta spp. |  |  |  |  |  |  | X |  |
| Flatfishes, unidentified Pleuronectiformes |  |  |  |  |  |  | X | X |
| Turbots, unidentified Pleuronichthys spp. |  |  |  |  |  |  |  | X |
| Sanddabs, unidentified Citharichthys spp. |  |  |  |  |  | X | X | X |
| California tonguefish Symphurus atricauda | X |  |  | X | X | X |  |  |
| Speckled sanddab Citharichthys stigmaeus | X | X | X | X | X | X | X | X |
| Pacific sanddab Citharichthys sordidus |  |  | X |  |  | X | X | X |
| Diamond turbot Hypsosetta guttulata | X | X | X | X | X |  |  |  |
| Hornyhead turbot Pleuronichthys verticalis |  |  |  | X |  |  | X | X |
| C-O turbot <br> Pleuronichthys coenosus | X |  |  | X | X | X |  |  |
| Curlfin turbot Pleuronichthys decurrens |  |  | X | X | X | X |  |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | Fierstine Studies $1968-1970$ <br> (Fierstine et al. 1973) | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spotted turbot Pleuronichthys ritteri | X |  |  | X |  |  |  |  |
| Starry flounder Platichthys stellatus | X | X |  | X | X | X | X | X |
| California halibut Paralichthys californicus | X |  | X | X | X |  | X | X |
| Dover sole Microstomus pacificus |  |  |  |  |  | X |  | X |
| Slender sole Eopsetta exilis |  |  |  |  |  | X |  |  |
| Sand sole Psettichthys melanostictus | X |  | X | X |  | X | X | X |
| Rock sole Pleuronectes bilineatus |  |  |  |  |  |  | X | X |
| English sole Parophrys vetulus | X |  | X | X | X | X | X | X |
| Rockfishes, unidentified Sebastes spp. |  | X |  | X |  | X | X | X |
| Rockfish unidentified juvenile Sebastes spp. |  |  |  |  | X | X |  |  |
| Chilipepper Sebastes goodei |  |  |  |  |  | X |  |  |
| Brown rockfish Sebastes auriculatus | X |  |  | X | X | X |  |  |
| Black rockfish Sebastes melanops |  |  |  | X |  | X |  |  |
| Calico rockfish Sebastes dalli | X |  |  |  |  |  |  |  |
| Blue rockfish Sebastes mystinus | X |  |  |  | X |  |  |  |
| Bocaccio Sebastes paucispinus | X |  |  | X | X | X |  |  |
| Stripetail rockfish Sebastes saxicola |  |  |  | X |  |  |  |  |
| Grass rockfish Sebastes rastrelliger | X |  |  | X | X | X |  |  |
| Copper rockfish Sebastes caurinus |  |  |  |  | X | X |  |  |

Table B-1 (continued). Presence and absence data of all fishes collected in various studies in Morro and Estero Bays.

| Species | $\begin{gathered} \text { Fierstine Studies } \\ 1968-1970 \\ \text { (Fierstine et al. 1973) } \end{gathered}$ | Horn Studies 1974-1976 (Horn 1980) | PG\&E 1973 Beneficial Uses (PG\&E 1973) | CDFG Otter Trawls Mar 1992 - Jul 1999 (CDFG unpubl. data) | PG\&E 1977-1978 MBPP Impingement (Behrens and Sommerville 1982) | MBPP Impingement 1999-2000 <br> (Tenera 2000) | MBPP Entrainment Jan - Dec 2000 (Tenera 2000) | MBPP Source Water Jan - Dec 2000 (Tenera 2000) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Widow rockfish Sebastes entomelas |  |  |  |  | X |  |  |  |
| Black-and-yellow rockfish Sebastes chrysomelas |  |  |  |  | X | X |  |  |
| Black-\&-yellow/gopher rockfish Sebastes chrysomelas/S. carnatus |  |  |  |  |  | X |  |  |
| Kelp rockfish Sebastes atrovirens |  |  |  |  | X | X |  |  |
| Aurora rockfish Sebastes aurora |  |  |  |  |  |  | X |  |
| Olive rockfish Sebastes serranoides | X |  |  |  | X | X |  |  |
| Olive-Yellowtail rockfish juv. Sebastes serranoides/flavidus |  |  |  |  | X |  |  |  |
| Gopher rockfish Sebastes carnatus |  |  |  | X | X | X |  |  |
| Vermilion rockfish Sebastes miniatus |  |  |  | X |  |  |  |  |
| Spotted scorpionfish Scorpaena guttata |  |  |  | X |  | X |  |  |
| Thornyheads Sebastolobus spp. |  |  |  |  |  |  |  | X |
| Sablefish Anoplopoma fimbria |  |  |  |  | X |  |  |  |
| Senorita Oxyjulis californica |  |  |  | X | X |  |  |  |
| Steelhead Salmo gairdneri | X |  |  |  |  |  |  |  |
| Killifish, unid. Cyprinodontidae |  |  |  | X |  |  |  |  |
| California killifish Fundulus parvispinnus | X | X |  |  |  |  |  |  |
| Mosquitofish Gambusia affinis | X |  |  |  |  |  |  |  |
| Threespine stickleback Gasterosteus aculeatus | X |  |  |  |  |  |  |  |
| Green sunfish Lepomis cyanellus | X |  |  |  |  |  |  |  |
| Unidentified fish |  |  |  |  |  | X | X | X |

## Literature Cited

Behrens, D. W., D. C. Sommerville. 1982. Impingement studies at the Morro Bay Power Plant. Report 026.22-80.1. Pacific Gas and Electric Company, Dep. Eng. Res., San Ramon, CA.

California Department of Fish and Game (CDFG), Morro Bay Office, unpublished Moro Bay otter trawl data, 1992-1999.

Fierstine, H. L., K. F. Kline, G. R. Garman. 1973. Fishes collected in Morro Bay, California between January, 1968 and December, 1970. California Department of Fish and Game. 59(1): 73-78.

Horn, M. H. 1980. Diel and Seasonal Variation in Abundance and Diversity of Shallow Water Fish Populations in Morro Bay, California. California Fish and Game Bulletin. 78(3):759-770.

Pacific Gas \& Electric (PG\&E). 1973. Evaluation of the effect of cooling water discharges on the beneficial uses of receiving waters at Morro Bay Power Plant. PG\&E, San Francisco.

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix C

## Calculation of a Morro Bay Tidal Exchange Ratio

and

# Questions Regarding the Tidal Exchange Ratio 

by

David A. Jay
Department of Environmental Science and Engineering
Oregon Graduate Institute
Beaverton, OR 97006-8921

# Calculation of a Tidal Exchange Ratio 

David A. Jay

Department of Environmental Science and Engineering
Oregon Graduate Institute
Beaverton, OR 97006-8921

## Data and Calculations

The "Tidal Exchange Ratio" or $T E R$ is the fraction of the total tidal exchange that consists of "new" water coming into the estuary, i.e., water that did not leave the estuary on the previous tidal cycle. In Morro Bay, the "total tidal exchange" is the synonymous with the tidal prism. Depending on the context, one can use either the daily tidal prism ( $8,270 \mathrm{ac} \mathrm{ft}$ ) or the total daily tidal exchange ( $12,560 \mathrm{ac}$. ft , reckoned as twice the volume between MLW and MHW). The ratio TER is difficult to estimate from measurements, because: a) the currents that prevail outside of any estuary mouth are complex and variable, and b) it is quite sensitive to processes inside the estuary, especially river inflow and density stratification.

A method has been devised, however, to measure this ratio from the properties of water flowing in and out of an estuary entrance. This approach is much less dependent on the vagaries of shelf currents, though this variability still affects the results achieved. The $T E R$ is defined for a positive estuary (Largier, 1996) as:

$$
\begin{equation*}
T E R=\left(\frac{S_{\text {in }}-S_{\text {out }}}{S_{\text {ocean }}-S_{\text {out }}}\right) \tag{1}
\end{equation*}
$$

where: $S_{\text {in }}$ is the salinity of water coming into the estuary, $S_{\text {out }}$ is the salinity of the water leaving the estuary, and $S_{\text {ocean }}$ is the salinity of the ocean source water. $T E R$ varies from 0 to 1 . If the same water goes in and out on flood and ebb, the result is $0\left(S_{\text {in }}=S_{\text {out }}\right)$. If no "old" water comes back in that went out on ebb, $S_{\text {ocean }}=S_{\text {in }}$, and $T E R=1$.
$S_{\text {in }}$ is measured as the salt transport into the estuary over the flood half of a 12.42 hr a tidal cycle (or during both floods of a 24.84 hr tidal day) divided by the landward water transport. $S_{\text {out }}$ is calculated as the salt transport out of the estuary over the ebb half of a 12.42 hr a tidal cycle (or during both ebbs of a 24.84 hr tidal day) divided by the seaward water transport. $S_{\text {ocean }}$ is the maximum salinity observed during the 12.42 or 24.84 hr period at an estuary mooring, or if a coastal mooring is located totally away from the estuary outflow, the average salinity value. TER can then be estimated from time series data at regular intervals; I used a 3-hr interval for the 12.42 hr estimate and 6 -hr intervals for the tidal daily calculation. Ideally, these measurements should be made using several current meters located at the ends of the jetties. One meter outside the estuary could be used to estimate ocean salinity, if sufficient instrumentation were available.

The procedure implied by (1) sounds simple, but is complicated by the properties of the limited data available near the entrance, one 13-d S4 current meter record located near the seabed at the end of the sand spit, near marker \#8. This record has 24 samples per hour, with both velocity and salinity collected at each time. Because this mooring is some distance from the entrance, much of the water measured at this mooring goes back and forth in the channel without actually ever leaving the estuary. This is especially true on the lesser ebb each day, when little salinity change is observed at the mooring, and on the neap tide. Also, near-bed data over-estimate the true crosssectional average of $S_{\text {out }}$ more than they overestimate the cross-sectional average of $S_{\text {in }}$, because there is more stratification on ebb than flood. Therefore, any estimate arrived at is highly conservative - data collected nearer to the mouth would give a higher $T E R$, because less of the water that passed the meter would simply be that trapped in the channel without going to the ocean. Data collected throughout the water column (or at a meter closer to middepth) would give a higher $T E R$, because they would more accurately reflect the decrease in salinity near the surface on ebb.

Having examined the data and calculated results, I believe that the better estimate is that based on the 12.84 hr tidal cycle. I've rejected the 24.84 hr estimate for this mooring, because too little of the water passing this mooring on the lesser ebb actually leaves the estuary, so no realistic answer can be achieved except on the greater
ebb. In fact, the value of $T E R$ on the lesser ebb was sometimes $<0$, which is clearly not realistic. In order to focus on the realistic part of the output and reject results contaminated by the results for the lesser ebb, I have also plotted the maximum value in a 25 -hr running window (Figure 1).


Figure 1: Tidal exchange ratio TER estimated from mooring MBB8; data from Tetra Tech; Tetra Tech (1999).

Figure 1 suggests that $T E R$ is $0.6-0.8$ most of the time but drops to 0.2 to 0.4 sporadically, but especially on the neap. The apparent decrease in $T E R$ on the neap is likely not realistic - there is no inherent reason why $T E R$ should be lower on a neap. This decrease probably reflects the fact that the mooring is too far from the entrance to be useful during this period. Given the extremely conservative calculation implied by using a mooring that is well landward of the entrance and near the seabed, it is defendable to use a TER value near the upper end of the range seen in Figure 1, perhaps 0.7 to 0.8 . Some seasonal variability will also likely occur, however. Reduced freshwater inflow could, for example, decrease $T E R$ by decreasing stratification and shear, unless there were compensating changes in the ocean. It is impossible to predict the variations in $T E R$ that would result from changing shelf circulation conditions, e.g., seasonal variations in the upwelling regime.

## Summary and Conclusions

1. The "Tidal Exchange Ratio" or $T E R$ is the fraction of the total tidal exchange that consists of "new" water coming into the estuary, i.e., water that did not leave the estuary on the previous tidal cycle. In Morro bay, the "total tidal exchange" is the synonymous with the tidal prism. Depending on the context, one can use either the daily tidal prism $(8,270 \mathrm{ac} \mathrm{ft})$ or the total daily tidal exchange $(12,560 \mathrm{ac} . \mathrm{ft}$, reckoned as twice the volume between MLW and MHW).
2. Calculations from limited data suggest that a $T E R$ value of 0.7 to 0.8 is probably appropriate for Morro Bay, at least during the spring period for which data are available.
3. If a more definite value of $T E R$ is required, then it would be advisable to install current meters (with salinity) near the entrance of Morro Bay and on the shelf before the end of the winter. As the bay warms and salinities increase in early spring, it will be impossible to use the method of eq (1) to define $T E R$, because salinity differences between bay and ocean water will become too small to allow an accurate calculation.

## References

Largier, J., 1996, Hydrodynamic exchange between San Francisco Bay and the ocean: the role of ocean circulation and stratification, in: J. T. Hollibaugh (ed.), San Francisco Bay the Ecosystem, AAAS, San Francisco, pp. 69104.

Tetra Tech, Inc., 1999, Morro Bay National Estuary Program Hydrodynamic Circulation Model, Lafeyette, CA., various paginations

## Attachment to Appendix C

# Questions Regarding the Tidal Exchange Ratio 

by

David A. Jay
Department of Environmental Science and Engineering
Oregon Graduate Institute
Beaverton, OR 97006-8921

# Questions Regarding the Tidal Exchange Ratio 

David A. Jay<br>Associate Professor<br>Department of Environmental Science and Engineering<br>Oregon Graduate Institute<br>Beaverton, OR 97006-8921

At the April 30, 2001 meeting of the Technical Working Group, a discussion was held in which the following questions were raised regarding the "Tidal Exchange Ratio," or $T E R$, as described in Appendix A of the draft MBPP 316(b) Resource Assessment report:

1. How representative are the existing calculations of $T E R$ with respect to annual cycles of tidal range, estuarine circulation and coastal conditions?
2. Given that the $T E R$ was calculated in such a way that it reflects (in most cases) only one tide per day, should the value $T E R$ be reduced by a factor of two?
3. What is the best estimate of $T E R$ ? Why did I suggest a value of $T E R=0.7$ to 0.8 , instead of an arithmetic mean of the values?

The "Tidal Exchange Ratio" or $T E R$ is the fraction of the total tidal exchange that consists of "new" water coming into the estuary, i.e., water that did not leave the estuary on the previous tidal cycle. In Morro Bay, the "total tidal exchange" is the same as the tidal prism. Depending on the context, one can use either the daily tidal prism $(8,270 \mathrm{ac} \mathrm{ft})$ or the total daily tidal exchange $(12,560 \mathrm{ac} . \mathrm{ft}$, reckoned as twice the volume between MLW and MHW).

The $T E R$ is defined as follows (Largier, 1996):

$$
\begin{equation*}
T E R=\left(\frac{S_{\text {in }}-S_{o u t}}{S_{\text {ocean }}-S_{o u t}}\right) \tag{1}
\end{equation*}
$$

where: $S_{\text {in }}$ is the salinity of water coming into the estuary, $S_{\text {out }}$ is the salinity of the water leaving the estuary, and $S_{\text {ocean }}$ is the salinity of the ocean source water. $T E R$ varies from 0 to 1 . If the same water goes in and out on flood and ebb, the result is $0\left(S_{\text {in }}=S_{\text {out }}\right.$ ). If no "old" water comes back in that went out on ebb, $S_{\text {ocean }}=S_{\text {in }}$, and $T E R=1 . S_{\text {in }}$ is measured as the salt transport into the estuary over the flood half of a 12.42 hr tidal cycle (or during both floods of a 24.84 hr tidal day) divided by the landward water transport. $S_{\text {out }}$ is calculated as the salt transport out of the estuary over the ebb half of a 12.42 hr a tidal cycle divided by the seaward water transport. $S_{\text {ocean }}$ is the maximum salinity observed during the 12.42 hr period at an estuary mooring, or if a coastal mooring is located totally away from the estuary outflow, the average salinity value. $T E R$ can then be estimated from time series data at regular intervals; I used a 3-hr interval. In order to focus on the realistic part of the output and reject results affected by the results for the lesser flood and ebb, I have also plotted the maximum value in a $25-\mathrm{hr}$ running window (Figure 1). The lesser ebb flood and ebb data are deemed not to be representative, because the current meter was more than 1 km from the estuary entrance, a substantial fraction of the tidal excursion ${ }^{\text {on }}$ most lesser tides. While tidal excursion values varied from $<3 \mathrm{~km}$ (weakest neap tide) to $\sim 12.5 \mathrm{~km}$, many lesser floods and ebbs had tidal excursions of $<5-6 \mathrm{~km}$. Under these circumstances, the distance between the meter and the entrance can be expected to have a major effect on the results.

Responses to the questions defined above:

[^1]1. How representative are the results in Figure 1? There are issues with regard to: a) tidal variability, b) the high variability of estuary-coastal exchange, c) measurement of $T E R$, and d) the instrument location. The data used to calculate $T E R$ were collected by Tetra Tech at the end of the sand spit near Marker \#8, during the period 4/22/98 to 5/9/98 (Figure 2; Tetra Tech, 1999). The S4 current meter (with temperature and conductivity sensors) was located about $1 \mathrm{~m}(3 \mathrm{ft})$ above the bed. Reflecting this collection location (near the bed and on the inside of a sharp bend in the channel), currents were flood-dominant. Maximum flood currents were $\sim 0.9 \mathrm{~ms}^{-1}$ $\left(2.9 \mathrm{fts}^{-1}\right)$, while maximum ebb currents were only $\sim 0.7 \mathrm{~ms}^{-1}\left(2.3 \mathrm{fts}^{-1}\right)$. The time period during which data were collected included a strong spring tide (4/26/98 to $4 / 27 / 98$ ) and a weak neap tide ( $5 / 3 / 98$ to $5 / 4 / 98$ ). The greater diurnal tidal range during this period varied from 3.7 to 7.7 ft . (about 1.1 to 2.4 m ), relative to the average diurnal range of $5.4 \mathrm{ft}(1.7 \mathrm{~m})$. While a period of less than a month does not encompass the full annual cycle of tidal processes, the data are certainly representative of the range of tidal conditions that would occur over the annual cycle. Also, tidal variability may not be the dominant factor, as there is not a clear neap-spring cycle in the calculated $T E R$. TER has an intermediate value on the spring tide ( $\sim \mathrm{d} 115$ ), and high and low extremes occur between the spring and the neap. Neap values at the end of the record are quite low, but not the lowest in the record.

How representative these $T E R$ results are relative to the annual cycles of freshwater inflow and coastal circulation is a more difficult question. Factors that would likely affect $T E R$ include freshwater inflow, stratification, winds, and coastal circulation. Strong coastal currents (to either the north or south) should remove from the vicinity of the jetties water leaving the estuary on ebb, increasing TER. Very strong freshwater flow might result in greater exchange, with $T E R$ approaching unity, but freshwater flow was low to moderate during the data collection period. The late-summer period of very weak stratification and freshwater inflow might show weaker tidal exchange than the spring (decreasing $T E R$ ), given constant oceanic conditions. On the other hand, coastal circulation factors during the summer and fall might actually improve tidal exchange, increasing TER. Factors favoring strong exchange would likely include a strong sea breeze and coastal surface currents to the south. The latter is expected to be a factor, because of the orientation of the jetties.

Characteristics of the density field are also important in measuring $T E R$. TER is determined using the salinity difference between the bay and coastal ocean. As ( $S_{\text {ocean }}-S_{\text {out }}$ ) approaches zero during the summer, the calculated $T E R$ ceases to have any statistical significance. An indeterminant $T E R$ does not mean that tidal exchange is weak, only that it cannot be measured from salinity differences. It is possible that it could be measured from temperature differences, but the daily cycle of atmospheric heating and cooling might render this calculation inaccurate. Thus, estimates of $T E R$ should be made based on data collected after the onset of winter rains and before ( $S_{\text {ocean }}-S_{\text {out }}$ ) approaches zero in summer. The data set employed is appropriate in this regard.

Finally, instrument position is important in two respects. An instrument located some distance inside the estuary underestimates $S_{\text {in }}$ and over-estimates $S_{\text {out }}$, leading to a very conservative evaluation of $\left(S_{\text {in }}-S_{\text {out }}\right)$ and TER. TER calculated from a meter near the bed is also conservative because of systematic tidal changes in stratification and the vertical distribution of the tidal flow. That is, near-bed data give a good estimate of $S_{\text {ocean }}$, but overestimate the true cross-sectional average of $S_{\text {out }}$ more than they overestimate the cross-sectional average of $S_{\text {in }}$. This occurs because there is usually more stratification and velocity shear on ebb than flood. The conservative bias imparted by the location employed in this study may outweigh the seasonal fluctuations that have not been accounted for.

In summary, the calculated $T E R$ is reasonably representative of the annual cycle of tidal conditions. It is unclear how representative the results are with regard to seasonal fluctuations of freshwater flow and coastal circulation processes. However, the data employed were collected $>1 \mathrm{~km}$ inside the estuary and near the bed. This instrument location imparts a very conservative bias to the calculation, underestimating TER and the actual tidal exchange.
2. Should the calculated $T E R$ be reduced by a factor of two? The answer here is simple. By definition, $T E R$ is the factor that is multiplied by the mean or greater daily tidal prism, to determine the amount of new water coming into the estuary on each tide or over a tidal day. The fact that the data do not allow the value of $T E R$ to be measured twice a day does not change the definition of TER, or the way that it is used. Thus, the answer is "no".
3. What is the best estimate of TER? The answer to question 1) indicates that the collection location of the current meter data make the calculated TER value very conservative. In my best professional judgement, therefore, I suggested a value above the mean of 0.6 as the best estimate.

## References

Largier, J., 1996, Hydrodynamic exchange between San Francisco Bay and the ocean: the role of ocean circulation and stratification, in: J. T. Hollibaugh (ed.), San Francisco Bay the Ecosystem, AAAS, San Francisco, pp. 69-104.

Tetra Tech, Inc., 1999, Morro Bay National Estuary Program Hydrodynamic Circulation Model, Lafayette, CA., various paginations.


Figure 1: Tidal exchange ratio TER estimated from mooring MBB8; data from Tetra Tech (1999).


Figure 2: Hourly observed alongchannel velocity $\sim 3$ ft above the bed at MBB8; data from Tetra Tech (1999).

Morro Bay Power Plant Modernization Project 316(b) Resource Assessment

## Appendix D

# Molecular identification and quantification of clam larvae in Morro Bay 

## by

Jonathan Geller
Associate Professor
Moss Landing Marine Laboratories

# MOLECULAR IDENTIFICATION AND QUANTIFICATION OF clam larvae in Morro Bay 

Jonathan Geller<br>Associate Professor<br>Moss Landing Marine Laboratories

Background and Synopsis: This document incorporates suggestions made at the December 4, 2000 and January 19, 2001 meetings of the Morro Bay Power Plant Technical Working Group at the Moss Landing Marine Laboratories, and recommendations suggested by Dr. Peter Raimondi on January 25, 2001. These discussions have helped to focus attention on objectives that will contribute to decision making related to Duke Energy's proposed modifications to the Morro Bay Power Plant.

This revised proposal 1) has an accelerated time-line, 2) uses fluorescent detection of speciesspecific molecular probes in individually sorted bivalve larvae, and 3) analyzes plankton samples to be collected in Morro Bay from March 2001-September 2001, a time period which brackets the major spawning season of most benthic invertebrates, and 4) implements an adaptive sampling strategy to capture pulses of bivalve recruitment. I will use existing sequence detection methods (exonuclease cleavage of reporter dyes from specific probes, also known as Taqman® assay). The targeted species are major prey items for sea otters: the Washington Clam, Saxidomus nuttali, Gaper clam, Tresus nutalli and Pismo clam, Tivela stultorum. Two other species, Macoma secta and Mytilus galloprovincialis are also otter prey, are likely to be particularly abundant in samples and are also targeted. A strategy for identifying and enumerating larvae which are not among these targeted species but turn out to be abundant in our samples is also proposed.

Sampling sites and schedule will be as performed earlier for ichthyoplankton work, except a weekly sample will be taken to detect the onset of recruitment pulses. Larval density data, in conjunction with plankton sample, entrainment and source water volume estimates, will be used by Tenera to estimate proportional losses due to entrainment for these clam species during the sampling period. This will be done in much the same way as it was done for fish to produce a parallel report.

Status Report (4-18-01). The project was funded 3-15-01. We have collected and determined DNA sequences from Tresus nuttallii, Mytilus galloprovincialis, three species of Macoma, Protothaca staminea, and Clinocardium nuttallii. We have additionally isolated tissues from Tivela, Panopea, and Saxidomus. One round of plankton sampling took place in March 2001. Bivalves sorted from one of five stations yielded 91 larvae, thus concern over possible null samples appears to be diminished. Initital Taqman probes are currently being designed and tested with M. galloprovincialis.

## Introduction.

The key impediment to identification of clam larvae (as well as most other invertebrate and many fish larvae), is the lack of characterized diagnostic morphological features (Loosanoff et al. 1966, Chanley and Andrews 1971). While scanning electron microscopy can identify characteristics of the larval shell which allow sorting of larvae to species (Lutz and Jabonksi 1979, Lutz et al. 1982, Mullineaux et al. 1996), this is an impractical approach for routine analysis of plankton. In contrast, molecular methods allow for higher precision and faster throughput in identification (Geller 1997). Identification is unequivocal because adult organisms, which are unambiguously identified, can be used to determine DNA sequences which are specific to each species. DNA sequences, unlike morphology, are not dependent on the life stage of an organism, thus such diagnostic DNA sequences can be detected in a larva. A variety of molecular detection methods are available and have been used in zooplankton identification in past studies (Hare et al. 1994, Bucklin et al. 1998, Makinster et al. 1999, Hare et. al. 2000), and all recent molecular methods utilize the polymerase chain reaction (PCR). PCR is the amplification of a target sequence of DNA from a small quantity of starting DNA, such as could be extracted from an individual larva. The product of PCR is a large amount of a specific DNA fragment which can contain a diagnostic sequence.

Until very recently, species-specific DNA sequences in PCR products were detected using post-PCR methods of analysis, such as DNA sequencing, restriction digestion, gel-electrophoresis or blot-hybridization. Post-PCR handling greatly increases time and labor, and reduces throughput. For example, Medeiros-Bergen (1995) identified sea cucumber larvae by using a species specific probe that bound to amplified larval DNA affixed in spots to nylon membranes (requiring 2-3 days per assay). More recently, Hare et al. (2000) used species-specific amplification primers to determine the identity of bivalve larvae. While this later approach significantly reduced the amount of post-PCR processing, it required gel electrophoresis of PCR products which roughly doubled the time required per set of samples. Thus, Hare et al. (2000) processed only 142 larvae, which would be insufficient for our purposes.

Newer technology (Real-Time PCR) allows the use of species-specific hybridization probes during PCR, eliminating all post-PCR processing. While rapidly growing in use in the biomedical fields, instrument costs have slowed the use of this technology in marine biology. Fortunately, MLML possesses the essential optical equipment. With our instrument (BioRad iCycler Q system) Real Time PCR allows up to 96 larvae to be analyzed with up to four species-specific probes in about 2 hours. A variety of probes and hybridization strategies can be used in Real Time PCR. We will use the most well developed technology called Taqman ${ }^{\circledR}$ assays.

Taqman ${ }^{\circledR}$ technology. This process was developed by Applied Biosystems, Incorporated, and refers to the production of a fluorescent signal specific to particular DNA sequences (i.e., bivalve DNA sequences) and is illustrated in Figure 1. A species-specific probe is designed based upon sequences derived from identified adults. The probe is constructed with a reporter dye attached to one end ( $5^{\prime}$ ) and a quencher dye attached to the other end ( $3^{\prime}$ ). The reaction is illuminated with light at a wavelength that induces excitation fluorescence in the reporter dye. An
optical instrument reads the intensity of emitted fluorescence. However, the quencher dye absorbs this energy and re-emits it at a wavelength which is not detected. Thus, when the probe first binds to its corresponding target, no signal is produced. However, during PCR, a newly synthesizing DNA strand will displace the $5^{\prime}$ end of the probe, exposing it to exonuclease digestion (Taq DNA polymerase used in PCR has both polymerase and exonuclease activity). Exonuclease digestion thus cleaves the reported dye from the probe, separating it from the quencher dye, and a fluorescent signal is produced. Newly synthesized PCR products become targets for detection in subsequent rounds of amplification/detection, greatly enhancing the fluorescent signal.

Figure 1. Taqman sequence detection system: $\mathrm{R}=$ reporter fluorophore, $\mathrm{Q}=$ quencher fluorophore.
A. In solution, the reporter dye on the probe does not fluoresce due to the physical proximity of the quencher dye. During PCR, the probe anneals in a species-specific manner to single stranded DNA. Later, amplification primers anneal and Taq DNA polymerase begins to copy template DNA strands.

B. As the newly synthesizing strand contacts the annealed probe, the $5^{\prime}$ end of the probe is displaced, exposing it to exonuclease digestion by Taq polymerase.

C. Exonuclease activity causes the reporter dye to be cleaved from the probe, releasing it into solution. Now, the reporter fluoresces and is detected by the optical instrument. Since one dye is released for each DNA copy, fluoresence is proportional to the amount of amplification product. In the absence of amplification, no fluorescent signal is produced.

D. A cycle of synthesis is complete, and newly synthesized products become template in further rounds of probe annealing. Because of amplification of template sequences, Taqman detection is very sensitive.


## Methods.

The proposed project has five phases: 1) characterization of adult DNA sequences for probe design; 2) plankton sampling and sorting; 3) Taqman ${ }^{\circledR}$ detection of species specific DNA in larvae; 4) retroactive identification of abundant but still unidentified larvae; and 5) data analysis.

## Phase 1. Adult Sequences from Targeted Species.

Three species, as major prey of sea otters, are initially selected for probe development. These are the Washington clam, Saxidomus nuttali, the Gaper clam, Tresus nutalli, and the Pismo clam, Tivela stultorum. Two additional species that are also prey and expected to be numerically dominant are Mytilus galloprovincialis and Macoma secta. Omission of these later two would likely lead to large numbers of unidentified larvae.

In addition to these primary targets, sequences from other abundant shallow water bivalves will be obtained to assist in phase 4, the retroactive identification of abundant larvae not belonging to the targeted species. Collections in Morro Bay and Elkhorn Slough will provide adults of these additional species. In all cases, sequences will be derived using standard methods to create a locally relevant sequence database. Tissue and shell vouchers of all adult specimens will be kept.

## Phase 2. Plankton Sampling.

Most broadcast spawning bivalve species have peak spawning seasons in the spring and summer. We will sample at least monthly from March-September 2001. Samples will consist of five replicate vertical tows at the five stations previously used in Morro Bay surveys by Tenera. Samples will be collected using a 0.5 meter diameter, 100 um mesh size net. This mesh size will capture all later-staged shelled pediveligers. An attached flow meter will be used to estimate the volume of water sampled. Depth of bottom for each tow will be recorded. On each sampling date, collections will be made at four time points: Slack Higher High, Lower Low, Lower High, Higher Low tides.

Adaptive sampling strategy: Because spawning and recruitment of invertebrate larvae often occur as as short and punctuated events, a weekly plankton tow will be made at high tide at the station located at the powerplant intake. This single sample will be visually inspected under a dissecting scope to qualitatively assess larval bivalve abundances, and then archived. A high abundance of larvae will trigger weekly, full scale sampling until larval abundances decline. Thus, sampling will be minimally monthly, but may be weekly during periods of high larval abundance. Application of molecular assays to samples will be minimally monthly, but may be targeted to samples obtained during recruitment pulses. The Technical Advisory Panel will be consulted before making a decision to reduce sampling. If significantly greater sampling or molecular assays are recommended by the Technical Advisory Panel, the project budget may require augmentation.

Following existing protocols for oyster larvae (D. Hedgecock, Bodega Marine Laboratory, pers. com., and demonstrated to be successful in our laboratory with polychaete larvae and copepods), plankton will be concentrated to 1 liter, killed with 10 ml of chlorox, rinsed immediately in seawater, and preserved in $75 \%$ ethanol. Three replicate tows will be further analyzed, two will be archived.

Samples will examined for a rough estimate of bivalve larvae abundance. Samples will then be split using a plankton splitter until bivalve abundance is approximately 100 per subsample. Bivalve larvae will then be sorted and counted. In tows containing fewer than 100 larvae, all larvae will be counted and analyzed (such analyses will reveal only most abundant species-see below). Total abundance in plankton samples will be extrapolated, and total density in the water column estimated by dividing by the volume of water filtered. Ninety-one randomly chosen larvae will be distributed into 96 -well microtiter plates containing 50 ul PCR buffer compatible with proteinase-K and frozen until analyzed ( 5 wells are left empty for control templates).

How many larvae should be assayed? The answer depends on how much importance is placed on detecting rare species (Figure 2). For example, to achieve detection in $95 \%$ of samples (tows) of a species that is $3 \%, 2 \%, 1 \%$, or $0.5 \%$ of all larvae, $100,150,300$, or 600 larvae, respectively, would need to be processed. This roughly corresponds to $1,2,3$, or 6 microtiter dishes. For practical purposes, a single microtiter dishes (91 larvae) may be a limit imposed by the time involved in plankton sorting.. If so, detection sensitivity would be $93.5 \%, 84 \%, 60 \%$, and $36 \%$ for larvae as rare as $3 \%, 2 \%, 1 \%$, and $0.5 \%$, respectively. In a three tow set, however, detection would be $99.9 \%, 99.6 \%, 93.6 \%$, and $74.5 \%$, respectively. Thus, very rare ( $<0.5 \%$ ) larvae might be often missed, but larvae as rare as $1-3 \%$ will almost always be detected.


Figure 2. Probability of detection in one plankton sample, assuming target species is $3 \%, 2 \%, 1 \%$, and $0.5 \%$ (lines from left to right) of total bivalve larvae. The x axis is labeled so as to correspond to microtiter dishes ( 96 wells minus 5 wells for controls=91 larvae).

The total sampling program consists of 5 tows x 5 stations $\times 4$ time points $\times 6$ months $=600$ plankton samples Analysis will be based on three of each set of five tows $=360$ samples $\times 91$ larvae $/$ microtiter plates $=32,400$ larvae.

## Phase 3. Molecular analysis.

A. DNA extractions will follow a protocol used for oyster larvae from the genetics lab at the Bodega Marine Laboratory (D. Hedgecock, pers. com.). One $\mu l$ of Proteinase-K ( $5 \mathrm{mg} / \mathrm{ml}$ ) will be added to each well and incubated at $55^{\circ} \mathrm{C}$ for 1 hour. Proteinase- K is then inactivated by raising the temperature to $95^{\circ} \mathrm{C}$ for 10 minutes. Microtiter dishes are then centrifuged to collect any condensation. If further purification is needed, powdered silica, to which DNA binds in appropriate buffer conditions, will be added to samples, followed by washing away of impurities, resuspsion, centrifugation, and elution of DNA into Tris-EDTA.
B. Polymerase Chain Reaction. Amplification primers, deoxynucleotide triphosphate (dATP, dCTP, dGTP, and dTTP), Taq DNA polymerase, and four Taqman probes will be added to each well. Concentrations of probes, primers, dNTPs and $\mathrm{MgCl}_{2}$ will need to be optimized in preliminary trials. PCR will be performed in the BioRad iCycler Q system. Each plate will contain a positive control for each species, and a negative control (no template). Ethidium bromide, which binds to double stranded DNA (dsDNA) and fluoresces at 595 nm is added to every reaction to detect production of dsDNA (as a check for amplification success).

Because only four species can be simultaneously monitored, while TWG wishes five species be studied, detection of Tivela will proceed in a different manner. An aliquot of PCR product from
each plate will be pooled, diluted, and used a single template for a second Taqman assay using a Tivela probe. This approach will determine if any Tivela were present or absent in the original assay plate without incurring significant additional cost. If Tivela are detected, the Tivela probe will be added to the original assay plate to identify which larvae among those remaining unidentified were Tivela. In the event that Tivela is routinely detected, it can be substituted for a less often detected species among the first four targeted species. The displaced species will then be subject to presence/absence analysis as described above.
C. Primer and probe design. Past studies have shown high variability of mitochondrial cytochrome oxidase subunit I (CO I) in bivalves and a large database ( 472 sequences) exists in the EMBL and Genbank databases, thus this locus will be targeted. Previously published CO I primers (Folmer et al. 1995) that are effective for bivalves will be used to amplify this locus from adults of each targeted species and all geographically co-occurring congeners. Sixteen adults of each species from Morro Bay and Elkhorn Slough will be sampled and sequenced (using standard methods of PCR, cloning, and dideoxy-chain termination sequencing reactions) to assess any intraspecific variation that to be avoided in probe design. Probes will be designed according to ABI guidelines: to anneal to species-specific sequences, to lack secondary structures above melting temperatures that would inhibit annealing to templates, and to lack $G$ at the 5 ' end. New PCR primers will be designed to bracket probe regions, minimize PCR product length. and to have melting temperatures $8-10^{\circ} \mathrm{C}$ lower than probes. Probes will be tested on adult DNAs collected in Part 1.

Probes will utilize the following reporter-quencher combinations (see section above on Tivela):

| Probe | 5' $^{\prime}$ Reporter | 3' $^{\prime}$ Quencher |
| :--- | :--- | :--- |
| Saxidomus | HEX | DABCYL |
| Tresus | FAM | DABCYL |
| Mytilus | Cy5 | Black Hole 3 |
| Macoma | Texas Red | Black Hole 2 |
| Tivela | FAM | DABCYL |

Phase 4. Unidentified but abundant larvae. A possible result is that some plankton samples may contain many larvae that give a positive amplification signal but are not identified by our probes. From such samples, sixteen PCR products will be randomly chosen, cloned and sequenced. These sequences will indicate whether unidentified larvae are a diverse pool of species or dominated by few. Comparison of sequences to our database of local species may identify many larvae. Minimally, we expect that comparison of sequences to our database and to the large number of bivalve CO I sequences in EMBL and Genbank will narrow the identification to a family or
genus, and referral to local species lists (Coan et al. 2000) should further narrow possible choices to a relatively few species.

If 1-3 species appear to dominate the pool of larvae that remain unidentified after a first round of probing, it would be straightforward to quantify their abundance in a second round of probing. New Taqman probes will be designed based on sequences of the abundant species discovered in phase 3. PCR products generated in the phase 3 will be used as templates (when diluted) for this second set of Taqman probes.

Phase 5. Data analysis. Geller will provide estimates of mean larval abundance (and variance) for each targeted species for each station and sampling period. Tenera will use these data to represent sourcewaters and entrained waters for calculations of proportional mortality attibutable to seawater uptake, as in models for fish larvae entrainment. A preliminary report of these results covering March-July 2001 will be prepared for August regulatory decision making, with a final report on the entire sample period in November 2001.

## Literature Cited

Bucklin, A; Benthley, AM; Franzen, SP 1998. Distribution and relative abundance of Pseudocalanus moultoni and P. newmani (Copepoda: Calanoida) on Georges Bank using molecular identification of sibling species. Marine Biology 132: 97-106.
Coan, E.V., Scott, PV., and Bernard, F.R. 2000. Bivalve seashells of western North America. Marine Bivalve Mollusks from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History.
Folmer, O; Black, M; Hoeh, W; Lutz, R; Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Geller, J.B. 1998 Molecular studies of marine invertebrate biodiversity: status and prospects. Chapter 18 in Cooksey, K.E. (ed). Molecular Studies of the Sea. Chapman, London.
Hare, JA; Cowen, RK; Zehr, JP; Jeanes, F; Day, KH 1994. Biological and oceanographic insights from larval labrid (Pisces: Labridae) identification using mtDNA sequences. Marine Biology 118: 17-24.
Hare, M.A., Palumbi, S.R., and Butman, C.A. 2000. Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Marine Biology 137:953-961.
Loosanoff, V.L., Davis, H.C., and Chanley, P.E. 1966. Dimensions and shapes of larvae of some marine bivalve mollusks. Malacalogia 4:351-435.
Lutz, R; Goodsell, J; Castagna, M; Chapman, S; Newell, C; Hidu, H; Mann, R; Jablonski, D; Kennedy, V; et al. 1982. Preliminary observations on the usefulness of hinge structures for identification of bivalve larvae. J. Shellfish Research 2: 65-70
Lutz, R.A.; Jablonski, D. 1979. Micro- and ultramorphology of larval bivalve shells: ecological, paleoecological, and paleoclimatic applications. Proc. Natl. Shellfish. Assoc 69: 197-198.
MaKinster, JG; Roberts, JE; Felder, DL; Chlan, CA; Boudreaux, M; Bilodeau, AL; Neigel, JE. 1999. PCR amplification of a middle repetitive element detects larval stone crabs (Crustacea: Decapoda: Menippidae) in estuarine plankton samples. Marine Ecology Progress Series 188: 161-168

Medeiros-Bergen, DE; Olson, RR; Conroy, JA; Kocher, TD 1995. Distribution of holothurian larvae determined with species-specific genetic probes. Limnology and Oceanography 40: 1225-1235.
Mullineaux, LS; Kim, SL; Pooley, A; Lutz, RA . 1996. Identification of archaeogastropod larvae from a hydrothermal vent community. Marine Biology 124: 551-560.

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix E

# Calculation of a Morro Bay Source Water Volume 

by

David A. Jay
Department of Environmental Science and Engineering
Oregon Graduate Institute
Beaverton, OR 97006-8921

# The Morro Bay Power Plant and Circulation Processes in Morro Bay 

by<br>David A. Jay<br>Associate Professor<br>Department of Environmental Science and Engineering Oregon Graduate Institute<br>Beaverton, OR 97006-8921

Phone: 503-748-1372
Fax: 503-748-1372
email: djay@ese.ogi.edu
for
Duke Energy North America
655 3rd Street, P.M.B. 49
Oakland, CA 94607
Phone: 510-251-6804
Fax: 510-251-6805

15 March 2001

## Table of Contents

Table of Contents ..... 3

1. Executive Summary ..... 5
2. Introduction ..... 11
3. Setting ..... 15
3.1. Morro Bay - General Characteristics ..... 15
3.2. Morro Bay - Freshwater Inflow ..... 16
4. Tidal Processes ..... 19
4.1. Tidal Species and Tidal Constituents ..... 19
4.2. Tides in Shallow Bays ..... 21
4.3. The Effects of Mean Flows on Tidal Propagation ..... 23
4.4. Tidal Currents in a Shallow Bay ..... 26
5. Tidal Analysis Methods ..... 29
5.1. Harmonic Analysis of Tides ..... 29
5.2. Continuous Wavelet Transform Analysis of Tides ..... 30
5.3. Spatial and Temporal Patterns ..... 31
5.4. Definition and Estimation of the Tidal Prism ..... 32
6. Data ..... 37
7. Results ..... 47
7.1. Hypothesis H1 ..... 47
7.1.1. MBPP Intake flow and Tidal Range ..... 48
7.1.2. River Flow and Tidal Range ..... 49
7.1.3. Summary for Hypothesis H1 ..... 49
7.2. Tidal Analysis Results ..... 50
7.2.1. Tidal Harmonic Analysis ..... 50
7.2.2. Wavelet Tidal Analysis Results ..... 56
7.3. Hypothesis H2 - Results for 1998 Surface Elevation Data ..... 58
7.3.1. The Major Tidal Species, $D_{1}$ and $D_{2}$ ..... 59
7.3.2. The Overtides, $D_{4}$ and $D_{6}$ ..... 61
7.3.3. Summary for Hypothesis H2 - Surface Elevation Analyses ..... 62
7.4. Hypothesis H2 - Tidal Currents ..... 63
7.4.1. The Major Tidal Species, $D_{1}$ and $D_{2}$ ..... 64
7.4.2. The Overtides, $D_{4}$ and $D_{6}$ ..... 65
7.4.3. Summary for Hypothesis H2 - Analyses of Current Meter Data ..... 66
7.5. Summary of Analyses of Tidal Heights and Currents ..... 67
8. Summary of Conclusions 95
9. References 99
10. Glossary

## 1. Executive Summary

The Morro Bay Power Plant (MBPP) is located near the entrance to Morro Bay. The plant takes in cooling water from Morro Bay and discharges the heated effluent to the ocean outside of the bay. The volume of the intake flow depends on the level of plant operation. The minimum discharge is zero. The maximum discharge is 668 million gallons per day (MGD), equivalent to $\sim 1,000$ cubic feet per second (cfs). When the MBPP is operating, the intake flow creates a steady current near the entrance of the bay. This mean flow moves in a landward direction from the mouth of the bay toward the plant. Landward of the plant this current does not exist. There are also two tributary streams to the bay that affect current patterns in the bay, Chorro and Los Osos Creeks. Flows in these streams vary from a few cfs to $>1,560 \mathrm{cfs}$ (the two-year flood level). These creeks enter the middle of Morro Bay on its east side and create, therefore, a mean flow ${ }^{11}$ from the land to the ocean that extends from mid-bay to the ocean.

The possible impacts of the MBPP intake flow on tidal processes in Morro Bay have arisen as an issue in the Application for Certification process. The concern is that the MBPP intake flow decreases the tidal prism of the bay or in some other way affects tidal processes and long-term shoaling patterns. This report describes analyses that evaluate the validity of this concern. To insure a rigorous and decisive result, the analyses are posed in terms of formal hypotheses, and state-of-the-art tidal analysis methods are used for hypothesis tests. The focus is on tidal processes (instead of transport per se) because: a) tidal processes can be easily quantified, and b) any impacts on sediment transport must be a result of the physical circulation. If impacts on physical circulation are absent, then there can be no impacts on sediment transport.

Two hypotheses are considered:
H1: The daily tidal exchange and tidal prism of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow.

H2: Specific tidal species and tidal constituents of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow.

[^2]River flow is considered as an additional perturbation to the tides, because its effects on the bay are likely to be larger than those of the MBPP intake flow. Although the methods employed have been used in other estuaries, detection of river flow effects on Morro Bay tides provides an additional form of validation of the methods used. Moreover, analysis of river flow effects serves to put the MBPP intake flow in context as a minor perturbation to the bay's physical processes.

Hypothesis H 1 is considered because of its ecological significance to Morro Bay - if MBPP intake flow actually does influence tidal exchange and the tidal prism, then the MBPP intake flow might affect sediment transport and shoaling patterns in the bay. Conversely, if the MBPP does not influence the large-scale tidal processes of the bay, then impacts on sediment transport processes and shoaling are unlikely. Hypothesis H2 addresses the individual tidal processes that collectively create the tidal prism. It is considered in order to: a) explain the results of $\mathrm{H} 1, \mathrm{~b}$ ) increase the sensitivity of the analysis tools employed, and c) verify that the methods used are effective. If there is an influence of low- frequency flow processes on the tidal prism (i.e., a positive result for H 1 ), then this must be explicable in terms of specific tidal processes analyzed in H2. Furthermore, modern tidal analysis methods dissect the tidal species into their component parts and remove the dominant tidal monthly variations in tidal processes. This approach provides a very sensitive test of impacts on the bay. Therefore, if there is a negative result for the smaller tidal constituents in H 2 , this provides strong support for a negative result for H 1 . Finally, the positive result achieved for H 2 with regard to river flow indicates that any effects of the MBPP intake would have been detected, if any existed.

The analyses described in this report consider two aspects of the tides: a) the rise and fall of the tide, as measured by surface elevation records, and b) the tidal exchange, as measured by a current meter. There is, moreover, a direct linear relationship between tidal range and tidal prism volume - any change in one implies a change in the other. Thus, a positive result for H 1 or H 2 in analyses of either tidal elevation or tidal currents implies a positive result for the other variable.

Tidal theory suggests, moreover, that the presence of a mean flow can decrease the tidal range and tidal exchange of an estuary, if the mean flow is large enough and acts over a long enough distance. This decrease in tidal action occurs through a frictional interaction between the tidal and mean flows. This frictional interaction, acting over distance, dissipates tidal energy and
distorts the tidal wave. The MBPP intake flow varies only from 0 to $\sim 9 \%$ of the tidal prism, while river flow can be much larger, $\sim 10 \%$ ( $2-\mathrm{yr}$ flood event) to $>250 \%$ ( 100 year flow event) of the average tidal prism. Still, both MBPP intake flow and river flow act over a limited distance. Thus, although the tidal prism (the subject of H1) is an important ecological indicator, it is not particularly sensitive to non-tidal perturbations to Morro Bay. On the other hand, some of the smaller, non-linearly generated components of the tide (known as overtides) are potentially very sensitive to the presence of mean flow. Also, any effects of river inflow and MBPP intake flow on Morro Bay overtides can be distinguished by their temporal and spatial patterns. Looking at the spatial and temporal variability of selected overtides (the subject of H 2 ) provides, therefore, an extremely sensitive test for any influence of mean flows on tidal properties. If the effect of these mean flow processes cannot be seen even in the overtide records in H 2 , these effects are indeed very small, well below the threshold level for ecological significance.

The tidal elevation data employed here were collected at two stations in the bay by Tetra Tech between 9 March and 10 April 1998 (Tetra Tech, 1999). Of these two stations, MBN is near the mouth of the bay and the Morro Bay Power Plant. Station MBS is in mid-bay near the river deltas. These two stations are well situated to capture spatial variations of tidal properties in the bay. The sampling period encompasses small fluctuations in river flow related to the passage of several storms and a variable MBPP intake flow volume. However, the plant operated to some degree during the entire period, so the MBPP intake volume never dropped to zero.

The current meter data analyzed here were collected at a single station near Fairbank Point by PGE between November 1995 and January 1997. This data set covers almost the entire range of MBPP operation levels and a substantial river flow range as well. There is, however, a gap of four months between deployments in the middle of the record. The deployment location for the current meter is ideal for determining whether there are any effects of the MBPP on the more landward portions of the bay.

Two tidal analysis methods were employed in this report. Harmonic analysis, the traditional method used for tidal prediction, was used to quantify the average tidal processes in Morro Bay. Harmonic analysis assumes that tidal properties and processes are independent of all outside perturbations, i.e., that the tides are statistically stationary. It is, however, precisely the non-
stationary response of the tides to mean flows that is tested through H1 and H2. Non-stationary tidal responses are sought using continuous wavelet transform analyses, a method designed to measure the evolving frequency content of a process, e.g., tides.

Hypothesis H1 was tested using the month of tidal elevation data collected by Tetra Tech in spring 1998. Results for H1 were negative, for both MBPP intake flow and river inflow. MBPP intake flow varied from $\sim 150$ to 360 MGD during the March-April 1998 period during which the Tetra Tech tidal elevation data were collected. This intake flow range corresponds to a range in the ratio of intake flow to tidal prism of $\sim 1.2$ to $4.2 \%$. The total possible range of the ratio of intake flow to tidal prism is zero (no plant operation) to $\sim 9 \%$ (full operation during the weakest neap tide). The range of plant operation that occurred during March-April 1998 did not produce any detectable perturbations to the tidal prism at station MBN (near the MBPP plant) or at station MBS (in the interior of the bay). River flow into Morro Bay during the March-April 1998 period was only $\sim 0.02$ to $1 \%$ of the tidal prism. This is not high enough to produce any noticeable perturbation of the tides. Higher river flows in the range of 5-30\% of the tidal prism do occur at intervals of $\sim 6$ mo to 5 yrs and do perturb the tides, thereby affecting sediment transport.

Results for H2a were negative for both the 1998 tidal elevation data and the 1995-97 current meter data. This negative outcome for the primary components of the tide (the diurnal [ $\mathrm{D}_{1}$ ] and semidiurnal or $\left[\mathrm{D}_{2}\right]$ tidal species) strongly reinforces the conclusions for H 1 , because the behavior of $D_{1}$ and $D_{2}$ waves governs the size of the tidal prism. Tests were also conducted for non-linearly generated overtides, because these are quite sensitive to non-tidal perturbations. These tests focused on the two largest overtides in the bay, the quarterdiurnal and six-diurnal species $\left(D_{4}\right.$ and $\left.D_{6}\right)$. Also, specific predictions were available as to the reactions of $D_{4}$ and $D_{6}$ to the presence of a mean flow.

Results for Hypothesis H2a (the effects of MBPP intake flow on tidal exchange) were consistent with those for Hypothesis H1a (the effect of MBPP intake flow on tidal range). No effects of MBPP operation were detectable in the interior of the bay (using both surface elevation and current data) or near the MBPP itself (where only surface elevation data were available). This test is quite conclusive in that the current meter data cover almost the entire range of MBPP intake flow, $\sim 50-612$ MGD (compared to a total range of $0-668$ MGD). This negative for Hy-
potheses H1a and H2a means that adverse effects of the MBPP intake flow on shoaling processes in the interior of the bay are excluded. It is not possible for the MBPP to effect sediment transport in the very shallow waters landward of Fairbank Point without acting through the tidal currents. This analysis cannot, however, exclude the possibility that the MBPP has subtle effects on tidal exchange, currents and sediment transport near the estuary entrance.

There is a very strong contrast between the negative results for Hypotheses H1a and H2a and the positive results for Hypotheses H 2 b (the effects of river inflow on tidal processes in the bay). The tidal dynamics of the bay respond strongly to river inflow - a decrease in tidal exchange was evident for river flow levels less than half of the maximum MBPP intake flow level. River inflow also strongly influences the sediment dynamics of the bay, both because high river inflow brings with it large amounts of sediment, and because river inflow changes the tidal dynamics and estuarine circulation of the bay in such a way as to favor sediment retention.

Finally, the analysis methods employed to test Hypotheses H1 and H2 were quite sensitive, as is evident from the positive results for Hypotheses H2b for river inflow levels of about half the maximum MBPP intake flow (equivalent to one-third of the two-year return flow).

In summary, analyses of tidal current and surface elevation records do not support the idea that MBPP intake flow affects the tidal regime of the interior of Morro Bay. The analysis methods used were sensitive enough, moreover, to capture changes in tidal properties caused by brief high river-flow events. High river flow decreases the tidal range and the amplitudes of the principal tidal species, and alters the distribution of energy between overtide species. Successful detection of river flow-induced perturbations of the tidal regime at river flow levels less than half of full MBPP plant operation conclusively demonstrates the sensitivity of the analysis methods used. Were there any effects of the MBPP intake flow on the tidal circulation processes in the interior of Morro Bay, they would have been detected.

## 2. Introduction

The Morro Bay Power Plant (MBPP) is located near the entrance to Morro Bay (Figure 2.1). The plant uses cooling water from Morro Bay and discharges the heated effluent to the ocean north of Morro Rock, outside of the bay. The volume of the intake flow is variable, depending on the level of plant operation. The minimum discharge is zero (with the plant not in operation); maximum discharge is 668 million gallons day ${ }^{-1}$ (MGD), equivalent to $\sim 1,000$ cubic feet per second $\left(\mathrm{ft}^{3} \mathrm{~s}^{-1}\right)$ or $28 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. When the MBPP is operating, the intake flow creates a current near the entrance of the bay. This mean flow moves in a landward direction from the mouth of the bay toward the plant. Landward of the plant this mean flow does not exist. In addition to the MBPP intake flow, there are two tributary streams to the bay that also create a mean flow. The tributaries are Chorro and Los Osos Creeks. Much of the year, flow in these streams is very low, and their influence on the bay is limited. Their maximum river flow is, however, larger than the MBPP intake flow, $1,560 \mathrm{ft}^{3} \mathrm{~s}^{-1}\left(\sim 44 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ for the sum of the two-year return flows of Chorro and Los Osos Creeks (Tetra Tech, 1998). These creeks enter the bay on its east side, somewhat more than half way to the head of the bay. They create, therefore, a mean flow from the land to the ocean that extends from mid-bay to the ocean.

The possible impacts of the MBPP intake flow on tidal processes in Morro Bay have arisen as an issue in the Application for Certification process. The concern is that the MBPP intake flow decreases the tidal prism of the bay or in some other way affects tidal processes and, therefore, long-term shoaling patterns. This report describes analyses that evaluate whether this concern is valid. To insure a rigorous approach, the analyses are posed in terms of formal hypotheses, and state-of-the-art tidal analysis methods are used for hypothesis tests. The focus is on tidal processes (instead of sediment transport per se) because:

- Tidal processes can be easily quantified.
- Any impacts on sediment transport must be a result of the physical circulation. If impacts on physical circulation are absent, then there can be no impacts on sediment transport.
- Given the very shallow water of back bay (mean depth $<2 \mathrm{~m}$ relative to Mean Lower Low Water or MLLW), tidal circulation is the dominant circulation process.

A focus on tidal processes is, therefore, appropriate. The data analyses described below utilize two data sets. The first is a month of tidal elevation data collected by Tetra Tech during MarchApril 1998 (Tetra Tech, 1999). This period is favorable for analyses, because MBPP intake flow was quite variable, and two tide gauges are available in the bay. The second data set employed is a current meter record (collected by an InterOcean S4 current meter) extending from November 1995 to January 1997, with a four-month gap in spring-summer 1996. This is the longest physical data record available for the system. It covers almost the total range of MBPP intake flow and a reasonable range of river flow, up to $457 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ for Chorro Creek.

The two hypotheses considered are:
H1: The daily tidal exchange and tidal prism of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow. H2: Specific tidal species and tidal constituent of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow. Baroclinic processes (those involving internal salinity and density differences) are not considered in the hypotheses, because the interior of the bay is very shallow and density differences are small, except during major river-flow events. Both river flow and the MBPP plant inflows are considered in the hypothesis scheme, because: a) the same tide-mean flow frictional interactions apply to both, and b) the effects of the river flow provide a demonstration of the sensitivity of the method. Although river flow creates a mean flow from the bay to the ocean and the MBPP intake flow is in the opposite direction, the underlying physical processes are the same. Successful detection of river flow effects on Morro Bay tides in the analyses described below confirms the sensitivity of the analysis methods employed.

Hypothesis H1 is considered because of its ecological significance to Morro Bay. If MBPP intake flow actually did influence tidal exchange and the tidal prism, then it might also affect sediment transport in the bay. Conversely, if the MBPP does not influence the large-scale tidal processes of the bay, then impacts on sediment transport processes and shoaling in the interior of the bay are highly unlikely. Hypothesis H 2 addresses the individual tidal processes that collectively create the tidal prism. It is considered to clarify and validate the results for H1. If

[^3]there is an influence of either of the above low-frequency flow processes on the tidal prism (i.e., a positive result in H 1 ), then this must be explicable in terms of positive result for specific tidal species or constituents in H2. Furthermore, the tidal prism is a bulk parameter that is the net result of the overall tidal dynamics of the bay. As such, it is much less sensitive to non-tidal perturbations than some of smaller individual tidal species and constituents. Modern tidal analysis methods make it possible, moreover, to remove the dominant neap-spring effects seen in the tidal range and focus individually on the smaller (overtide) species (in H2). This approach provides a very sensitive test of impacts on the bay. Changes in overtides that might alter sediment transport patterns can be detected, if any such exist. Therefore, if there is a negative result for the smaller tidal constituents in H 2 , this provides strong support for a negative result for H 1 . Moreover, a positive result in H 2 is possible, even though the result for H 1 is negative. A positive result in H 1 with a negative result in H 2 would, however, indicate methodological problems.

The analyses described in this report consider two aspects of the tides: a) the rise and fall of the tide, as measured by surface elevation records, and b) the tidal exchange, as measured by a current meter. There is, moreover, a direct linear relationship between tidal range and tidal prism volume - any change in one implies a change in the other. Thus, a positive result for H 1 or H 2 in analyses of either tidal elevation or tidal currents implies a positive result for the other variable.

The tidal elevation data employed here were collected at two stations in the bay by Tetra Tech between 9 March and 10 April 1998 (Tetra Tech, 1999). Of these two stations, MBN is near the mouth of the bay and the Morro Bay Power Plant. Station MBS is in mid-bay near the river deltas. These two stations are well situated to capture spatial variations of tidal properties in the bay. The sampling period encompasses small fluctuations in river flow related to the passage of several storms and a variable MBPP intake flow volume. However, the plant operated to some degree during the entire period, so the MBPP intake volume never dropped to zero.

The PG\&E current meter data analyzed here were collected at a station near Fairbank Point between November 1995 and January 1997. This data set covers most of the range of MBPP operation levels and a substantial river flow range as well. There is, however, a gap of four months between deployments in the middle of the record. The deployment at Fairbank Point is ideal for detecting any effects of the MBPP on the more landward portions of the bay.


Figure 2.1: Station locations for the data analyzed in this report. The data include: a) two 1998 Tetra Tech pressure gauges (from which tidal height is calculated); stations MBS and MBN (Tetra Tech, 1999), and b) the 1995-97 PGE current meter located and near Fairbank Point (FB). The MBPP intake flow structure is located on the shore NW of station MBN. Figure modified from Tetra Tech (1999).

## 3. Setting

### 3.1. Morro Bay - General Characteristics

Morro Bay is a shallow, seasonally hyper-saline, bar-built estuary, a type of system often referred to as a lagoon or barrier-lagoon (Orme, 1991). It is situated behind a barrier sand spit formed by littoral transport north from the vicinity of Pt. Buchon. This natural (south) barrier spit separates the bay and the delta of Chorro and Los Osos Creek from the more open waters of Estero Bay. The south spit is cut off from Morro Rock by the dredged navigation channel. This modern entrance is one of two original entrances. A smaller (north) sand spit connects Morro Rock to the mainland. This spit is artificial, and was constructed to close a second natural entrance to the bay north of Morro Rock.

Morro Bay is of recent (Holocene) origin - it has assumed approximately its present form since the relative stabilization of sealevel ca. 6-7,000 Years Before Present (YBP). Orme (1991) estimates that the barrier spit likely formed between 3,500 and 5,000 YBP. Like most estuaries, Morro Bay is a transient feature in geological terms, and it is vulnerable to filling by dredged material disposal, sedimentation from tributary creeks, migration of its sand spit, tectonic changes, and global sealevel rise.

The total surface area of Morro Bay is approximately $3.3 \mathrm{mi}^{2}$. Much of the Bay is intertidal, so that the area of open water at low tide (the subtidal area) is considerably smaller $-<1$ $\mathrm{mi}^{2}$ (Tetra Tech, 1999). The subtidal volume is ca. 4,400 ac ft, giving an average depth of the subtidal part of the bay of 8.4 ft below Mean Lower Low Water (MLLW) or 11.3 ft below Mean Tide Level (MTL). The area of the system below Mean High Water (MHW) is $\sim 11,470 \mathrm{ac}$. ft., yielding an average depth for the system as a whole of $\sim 3.8 \mathrm{ft}$ below MTL. Since MTL is 2.9 ft above MLLW, the average level of the sea bed within the bay is close to 1 ft below MLLW. This very shallow average depth and the contrast between the depths of the subtidal and inter-tidal areas reflects the presence of relatively narrow channels through a considerable expanse of intertidal flats and marsh.

One of the more notable features of Morro Bay is that its freshwater supply is not at its head or most distant point from the entrance, as is typical for an estuary. Instead the primary
freshwater sources, Chorro and Los Osos Creeks, enter the middle of the bay, between Baywood Park and White Point. This geometry is reflected in flushing time and salinity patterns in the bay makes the back bay area landward of the deltas particularly susceptible to shoaling. This area is amply supplied with sediment from the tributary streams, but there is no corresponding fluvial net flow in this part of the bay to remove the sediment supplied.

### 3.2. Morro Bay -- Freshwater Inflow

An estuary is traditionally defined as a semi-enclosed coastal water body where seawater is diluted by freshwater derived from land drainage (Dyer, 1997). Freshwater inflow is, therefore, a vital part of any estuarine system. Morro Bay receives freshwater input from the seasonally variable flows of Chorro and Los Osos Creeks. Total watershed of the creeks encompasses approximately 48,000 acres, only about 23 times the total surface area of the bay. This small ratio of watershed to estuary area marks Morro Bay as a marine-dominated system. Because of the small catchment area, average flows for these tributaries are quite small, and peak flows are of more importance to the system. Tetra Tech (1999) used the following values for numerical model simulations:

- Summer low flow: 1.4 and $0.3 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ for Chorro and Los Osos Creeks, respectively.
- Medium flow: 64 and $3.3 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ for Chorro and Los Osos Creeks, respectively.
- "Extreme" high flow: 1,146 and $203 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ for Chorro and Los Osos Creeks, respectively. These values are somewhat less than the 2-year flood level for Chorro Creek (1,476 cfs) and between the 2-year ( 84 cfs ) and 5-year ( 566 cfs ) flood level for Los Osos Creek (Tetra Tech, 1998).

The total 2 -yr event flow ( $1,560 \mathrm{cfs}$ ) is $\sim 10 \%$ of the tidal prism. Much higher flows occur at longer intervals. The 5, 10, 25, and 100-year flood levels for Chorro Creek are estimated to be $4,588,8,640,16,669$ and $35,390 \mathrm{cfs}$, respectively (Tetra Tech, 1998). The corresponding figures for Los Osos Creek are 566, 1,374, 3,245 and 7,994 cfs, respectively. The total river inflows (sum of the flows for Chorro and Los Osos Creeks) for the 5, 10, 25, and 100-year flood events are $5,154,10,014,19,914$, and $43,384 \mathrm{cfs}$, respectively. These values are $33,64,127$ and $278 \%$
(respectively) of the greater daily tidal flux. These extreme flow levels will certainly affect tidal processes when they occur, but the total duration of extreme flows is very short.

High river flow events are expected to have much larger effects on the sediment transport regimes of the bay than the MBPP power plant for several reasons:

- The river flow enters Morro Bay in its middle portion, south of Fairbank Point, where the bay is very shallow. River flow will, therefore, create more bed friction over a larger part of the bay than the MBPP intake flow, which exists only near the mouth of the bay, where the channel is relatively deep.
- River flow events are accompanied by very large inputs of fine, suspended sediment, whereas the MBPP intake flow brings marine waters with little suspended material into the system. Material from tributary creeks has caused considerable shoaling of the delta and back bay areas over the last 120 years (Haltiner and Thor, 1988, 1991).
- Sediment transport varies approximately with the cube of the velocity above a threshold. Thus, relatively infrequent events have a very large impact. Tetra Tech (1998) estimated, for example, that the 10 yr flow event in Chorro Creek brings in about 28 times as much sediment as the 2 yr event.
- The non-linear interactions of tides with a mean flow vary with the square or cube of velocity. Thus, small mean flows have negligible effects, but tide-mean flow interactions grow rapidly with the mean flow.

This study uses flow from Chorro Creek River, the larger of the two tributaries as a surrogate for total river inflow. At high flow levels, Chorro Creek provides $80-90 \%$ of the total flow. Because flow fluctuations are more important than absolute flow values to the analysis, this approximation does not affect the conclusions drawn.

## 4. Tidal Processes

### 4.1. Tidal Species and Tidal Constituents

The analyses in Section 7 are based on a background knowledge regarding estuarine tidal processes that is common to all estuaries. The necessary definitions and relationships are supplied in this section.

The observed tide at the mouth of Morro Bay is the result of the gravitational attraction of the sun and moon acting on the waters of the Pacific Ocean. This gravitational forcing occurs at specific frequencies that are known from astronomical considerations. There are two principal components (known as "tidal species") to the astronomical tide:

- The diurnal or once-daily tidal wave. This tidal species is denoted as the $\mathrm{D}_{1}$ tide.
- The semidiurnal or twice daily tidal wave. This tidal species is denoted as the $\mathrm{D}_{2}$ tide.

The tides on the West Coast of the United States are a mixture of the diurnal and semidiurnal waves, with the $\mathrm{D}_{2}$ wave being larger than the $\mathrm{D}_{1}$ wave at most locations. The ratio of the $\mathrm{D}_{2}$ tide to the $\mathrm{D}_{1}$ tide in Morro Bay is about 1.1:1.

A tidal wave impinging on Morro Bay from the open ocean is modified and distorted by the shallow water of the bay. The result is production of additional tidal species with frequencies higher than $D_{1}$ and $D_{2}$. These higher-frequency waves are generated by interactions of the main tidal species that can be defined through analysis of the fundamental equations governing tidal motion. Such non-linear tidal species or "overtides" are weak or absent in the open ocean. The overtides relevant here are:

- The terdiurnal or three-times daily tidal wave. This tidal species is denoted as $D_{3}$.
- The quarterdiurnal or four-times daily tidal wave, denoted $\mathrm{D}_{4}$.
- The six-diurnal or six-times daily tidal wave, denoted as $\mathrm{D}_{6}$.
- The eighth-diurnal or eight-times daily tidal wave, denoted as $\mathrm{D}_{8}$.

All the tidal species are observable physical realities as well as mathematical concepts. The diurnal and semidiurnal waves represent the once and twice daily movements of water in
and out of the bay in response to the gravitational pull of the sun and moon on the water of the Pacific Ocean. The non-linear species represent the distortion of the tidal species incident from the ocean by propagation through the shallow water of the bay. Each tidal species has a mathematical representation (in terms of a complex number with time-variable amplitude and phase). It is sometimes useful, moreover, to represent each tidal species as the sum of specific "tidal constituents" whose frequencies are determined from astronomy. Each tidal constituent can also be represented as a complex number (having an amplitude and phase). The tidal constituents for each tidal species have frequencies that are close to one another. Thus, the sum of tidal constituents that represents a tidal species has properties that vary slowly in time. This slow variation of the tidal species properties is much like the beat frequency of two musical instruments that are almost, but not quite, in tune.

Tidal constituents are convenient mathematical abstractions that often do not have the same physical reality as the tidal species. Their utility comes from the fact that a successful representation of a tidal species (by a tidal harmonic analysis) results in tidal constituents that are essentially constant in time. That is, harmonic analysis of surface elevation data for a station from one year will produce essentially the same collection of tidal constituents as an analysis of data for that station for any other year. Because of the invariance in time of the tidal constituents for many locations, harmonic analysis provides a powerful method of tidal prediction. This apparent invariance of tidal constituents is perhaps, however, illusory in the present case. Affirmation of either of the above two hypotheses would mean that the tidal constituents used to represent tidal species were not invariant, but changed in time with the volume of river inflow or MBPP cooling intake. Conventional tidal analysis methods presume that the tides are "statistically stationary"; i.e., that they have a statistical invariance in time that validates a representation in terms of time-invariant tidal constituents. Application of such a method would prevent a valid test of the two hypotheses. A less conventional but more flexible wavelet transform tidal analysis approach is used here, as discussed in the next section. This approach allows a valid test of the two hypotheses to be performed.

### 4.2. Tides in Shallow Bays

It is important to briefly consider how shallow water tidal propagation affects the tidal heights in an embayment. These considerations make it possible to define exactly which properties of the tide are most sensitive to the presence of a mean flow. This allows a test of H2, which represents a much more sensitive look at Morro Bay tides than is the case for H 1 .

Tidal propagation in shallow embayments is governed by five primary factors (Jay, 1991; Friedrichs and Aubrey, 1994; Lanzoni and Seminara, 1998):

- The amplitude of the tide relative to the mean depth of the embayment.
- The shape of the embayment, specifically its length and the rate at which depth and width change along the embayment.
- The size and shape of the tidal flats along the banks of the embayment.
- The strength of the friction against the bed.
- The presence and position of mean flows, the MBPP intake flow and river flow in this case. All of these factors affect both surface elevation and tidal currents. There are additional factors, discussed below, that affect primarily tidal currents without leaving much trace in the tidal elevation record.

Morro Bay is very shallow, with a mean depth of only $\sim 3.8 \mathrm{ft}(1.2 \mathrm{~m})$ relative to Mean Tide Level (MTL). The mean daily tidal amplitude (half the range between MHHW and MLLW) in Morro Bay is $\sim 2.7 \mathrm{ft}(0.82 \mathrm{~m})$, yielding a ratio of tidal amplitude to depth of $\sim 0.7$. This suggests that the tides in the bay should be highly distorted. Also, the cross-sectional area of the bay decreases sharply from the mouth (where an artificially large cross-section is maintained by dredging) to the head of the bay. This geometry is termed "convergent" and may lead to amplification of the tide, because the tidal wave is continually funneled into a smaller cross-section. However, the bay is also very short relative to the wavelength of the major tidal species. This fact limits: a) the possibility of tidal amplification through funneling or resonance, and $b$ ) the degree of distortion of the wave that can occur. Furthermore, most of the surface area of the bay is intertidal, with the subtidal volume of the system mostly near the entrance. Because most of the
bay is so shallow, bed friction is strong, even without mean flows. Mean flows affect tidal dynamics primarily by increasing the strength of bed friction. Whether this effect is of any practical importance in Morro Bay is tested through hypotheses H1 and H2.

The information in the previous paragraph can be used to provide specific predictions of how tidal processes (and surface elevation in general) will be affected by propagation in a short, shallow and convergent bay like Morro Bay. These predictions are used to test the above two hypotheses. These predictions relate to:

- The amplification of the basic $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ waves in the system.
- The opposing effects of wave distortion related to shallow depths versus distortion due to the presence of tidal flats.
- Loss of tidal energy due to bed friction.
- An increase in frictional energy loss due to the presence of mean flows. This factor is considered in the next section.

Amplification: Morro Bay is convergent, a situation typically leading to an increase in the amplitude of the $D_{1}$ and $D_{2}$ waves toward the head of the estuary. The bay is also very short and highly frictional, which sharply limits the degree of amplification that can be observed. We expected, therefore, only a very modest tidal amplification towards the head of the bay.

Wave distortion: Tidal distortion can be understood in part by analogy to waves on a beach. Just as a wind wave shoaling on a beach steepens (the crests overtake the trough), a tidal wave propagating in a shallow bay will steepen, if the ratio of tidal amplitude to mean depth is appreciable. However, tidal flats introduce a factor not present in the case of wind waves. Tidal variations in estuarine width (caused by the presence of tidal flats) introduce a wave distortion of the opposite sense (the troughs overtake the crests), if the tide floods through a larger cross-sectional area than it ebbs. Either sort of wave distortion varies with the square of the tidal amplitude in the bay. Because both peak flood and peak ebb occur in Morro Bay at about the same elevation (MTL on the average), the wave distortion observed in Morro Bay is expected to be related to tidal variations in depth (wave steepening). In a tidal analysis, this distortion of the $D_{2}$ wave causes growth of overtides $D_{4}$ and $D_{8}$ toward the head of the bay. Both should, however, remain
small in a bay as short as Morro Bay. Because the $\mathrm{D}_{1}$ wave is smaller than the $\mathrm{D}_{2}$ wave, distortion of the $\mathrm{D}_{1}$ wave is visible primarily through growth toward the head of the bay of overtides related to the interaction of $D_{1}$ with $D_{2}$, in this case $D_{3}$ and $D_{6}$. On the whole, however, wave distortion effects are usually small in a bay of this sort.

Bed friction: Frictional energy loss at the seabed is usually the largest factor affecting the observed tidal species and constituents in a shallow bay. The bedstress on a tidal wave (i.e., the retardation of wave propagation by friction at the bed) is proportional to $C_{D}|U| U$, where $C_{D}$ is a constant (the drag coefficient $\sim 0.003$ ), $U$ is total velocity, and $|\mid$ is absolute value. This bedstress can be expressed as (Dronkers. 1964):

$$
\begin{equation*}
C_{D}|U| U \cong a U+b U^{2}+c U^{3} \tag{1}
\end{equation*}
$$

Where the coefficients $a, b, c$ are functions of the ratio of mean flow velocity $<U>$ to tidal velocity $U_{T}$. If the mean flow velocity goes to zero, $a=8 / 3 \pi, b=0$, and $c=a / 5$. The fact that $a>0$ means that all tidal constituents will be damped to zero if an embayment is large enough, but this occurs only over a distance much greater than the length of Morro Bay. The fact that $c \neq 0$ means that toward the head of the bay: a) energy loss from the $D_{1}$ wave will cause the growth of $D_{3}$ relative to $D_{1}$, and b) energy loss from the $D_{2}$ wave will cause the growth of $D_{6}$ relative to $D_{2}$. $D_{2}$ is larger than $\mathrm{D}_{1}$ in Morro Bay, and frictional energy loss is usually the largest single factor structuring the distribution of tidal species and constituents in a shallow bay (Parker, 1991). Therefore, of all the effects of tidal propagation in Morro Bay, growth of $\mathrm{D}_{6}$ toward the head of the bay should be the most prominent. Nonetheless, Morro Bay is so short that this growth should remain modest.

Mean flows: The effects of a mean flow on tidal processes is the subject of the next section.

### 4.3. The Effects of Mean Flows on Tidal Propagation

The presence of a mean flow causes an increase in the tidal energy loss to bed friction, over and above that caused by propagation of the tidal wave itself. This increase in frictional energy loss manifests itself as:

- Changes in the frequency distribution of the tidal energy - some species increase in amplitude and others decrease.
- Changes in the spatial distribution of the tidal energy - the ratios of tidal energy at the various tide stations in the bay may change.

This can be explained in terms of eq. 1 by considering the values of $a, b$, and $c$ as the ratio of mean flow to tidal flow becomes large. In such a circumstance, $a=c=0$, and $b=\pi$. The presence of even a small mean flow (as in Morro Bay) causes $a$ and $c$ to decrease and $b$ to grow.

There are two primary predictions related to the distribution of tidal species and constituents in the bay:

- Spatial variations in the major tidal species, $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ : It is observed in the landward reaches of tidal rivers that there is a decrease (at any fixed location) with river flow in the tidal amplitude from a base, low-flow amplitude. This decrease is proportional to the square root of the river flow, and the proportionality constant grows in the landward direction (Jay and Flinchem, 1997). Thus, tides 18 miles from the mouth of the Columbia River are only marginally affected by river flow, whereas tidal amplitude varies seasonally by a factor of three to ten or more at stations 50 to 150 miles from the ocean. Because Morro Bay is only $\sim 3$ miles long and the mean flows (the MBPP intake flow and the river inflow) are modest (much less than in the Columbia), mean-flow effect on $D_{1}$ and $D_{2}$ are likely to be small. If any river flow effect on the major tidal species is to be found, it should be seen near the mouths of the tributaries (Chorro and Los Osos Creeks) during and after major storms.
- Spatial variations in overtide structure: River inflow causes all tidal constituents in a large tidal river or estuary to be strongly damped as distance from the ocean increases. Still, friction from river inflow can cause the growth of overtides at the expense of the major tidal species near the mouth of a system. Thus in the Columbia, Jay and Flinchem (1997) found that the amplitude of overtide $\mathrm{D}_{4}$ decreased in an absolute sense with river flow, but that there was an increase in $D_{4}$ relative to $D_{2}$. Close to the mouth of an estuary, there can be an increase in $\mathrm{D}_{4}$ in both the relative and absolute senses, but the relative increase should be easier to detect than the absolute one. This behavior can be explained in terms of the changes with river flow of the coefficients in eq. 1. Interactions of mean flow and the tidal flow are
related to coefficient $b$ in eq. 1. At any fixed station, $b$ increases with increasing mean flow (relative to tidal velocity). For any fixed mean flow, $b$ increases in the landward direction. Thus, increasing river flow will eventually damp all tidal species in a large river estuary, and the greater the river flow, the closer to the mouth tidal motion will cease to be perceptible. In a very short system like Morro Bay, another effect is likely to be more prominent. Coefficient $b$ is zero in the absence of mean flow, but increases with river flow. Thus, the presence of a mean flow (which increases $b$ ) can increase the generation of quadratic overtides like $\mathrm{D}_{4}$ (caused by the interaction of $\mathrm{D}_{2}$ with itself), which would otherwise be less prominent in Morro Bay than $\mathrm{D}_{6}$. In contrast, $c$ (the coefficient in eq. 1 responsible for generation of $\mathrm{D}_{6}$ ) decreases as mean flow increases. This should damp $\mathrm{D}_{6}$ as mean flow increases. The loss of energy to $\mathrm{D}_{6}$ may, however, not be as rapid as that for $\mathrm{D}_{2}$, because overtides have multiple generation mechanisms. Because of the generation mechanisms involved and the potentially large relative changes in overtide amplitudes, it is more likely that effects of a mean flow can be seen in the overtides than in the tidal range or the major tidal species $\left(D_{1}\right.$ and $\left.D_{2}\right)$.

The specific circumstances of mean flows in Morro Bay should also be considered in designing hypothesis tests. There are two important factors: a) the temporal evolution of the mean flows, and $b$ ) their spatial distribution. Both factors can be used to detect mean flow effects and to distinguish (potentially) the river flow and MBPP inflow signals from one another.

- Temporal evolution: River inflow to Morro Bay is usually small, but shows sporadic peaks. If effects of river inflow on tides are to be found, it will be during and shortly after storms; these usually occur during the winter (November to March). MBPP intake volume varies seasonally and, in some seasons, from day-to-day. If there is an effect of the power plant on the tide, it can only be detected during periods when use of the plant varies from day-to-day.
- Spatial distribution: The frictional effects of a mean flow on tidal processes occur because friction acts over a distance. Inflow from Chorro and Los Osos Creeks occurs in the middle of the bay, and there is a mean flow associated with the presence of river inflow between the ocean entrance and the mouths of these creeks. There may also be an eddy circulation near the head of the bay driven by river flow. Thus, river-flow friction throughout the bay should cause the signal to evolve toward the head of the bay. The largest effects of river inflow on Morro Bay should be observable in the overtides at tide gauges located in mid-bay, or even
towards the head of the bay. In contrast, the mean flow associated with the MBPP occurs only between the ocean entrance and the power plant, which is $<1 \mathrm{mi}$. inside the bay. Thus, the effect of friction occurs only over a limited reach between the entrance and the power plant. There is no reason to expect further evolution of the tidal effects of the plant anywhere landward of the plant, even in the overtides. Thus, a gauge near the plant should show the same temporal pattern as one elsewhere in the bay. This difference in spatial distribution of effects provides a second means to distinguish river inflow and MBPP intake flow effects on Morro Bay tides, should any mean flow effects be observable.

In summary, tidal theory suggests that the presence of a mean flow can decrease the tidal range of an estuary, if the mean flow is large enough and acts over a long enough distance. The MBPP intake flow varies only from 0 to $\sim 9 \%$ of the tidal prism, while river flow can be $\sim 10 \%$ (2-yr flood event) to $>250 \%$ (100-year flow event) of the tidal prism. Both MBPP intake flow and river flow act over a limited distance. Thus, it is unlikely that any decrease in tidal range can actually be measured in H 1 , except perhaps at river flows approaching the 5 -yr event level. On the other hand, overtides $\mathrm{D}_{3}$ and $\mathrm{D}_{4}$ (which should increase with mean flow) and $\mathrm{D}_{6}$ (which should decrease with mean flow) are very sensitive to the presence of mean flow. Furthermore, any effects of river inflow and MBPP intake flow on Morro Bay overtides can be distinguished by their temporal and spatial patterns. Looking at the spatial and temporal variability of selected overtides (H2) provides, therefore, an extremely sensitive test for any influence of mean flows on tidal properties. If the effect of these mean flow processes cannot be seen even in the overtides records, these effects are indeed very small, well below the level of ecological significance.

### 4.4. Tidal Currents in a Shallow Bay

Topography, wave distortion, bed friction and the presence of a mean flow affect tidal currents just as much as they affect tidal elevation. There are several additional mechanisms that affect tidal currents to a much greater degree than tidal elevations. The differences between tidal currents and tidal elevation arise primarily from the fact that surface elevation is an integral measure of processes throughout the water column, whereas tidal currents are measured at a single point in the water column. Tidal currents are, therefore, inherently more variable than surface elevation.

There are two processes likely to be important in the Morro Bay currents analyzed here:

- Lateral currents or secondary circulation. When the flow in a channel rounds a bend, then the surface elevation is higher on the outside of the bed. In a steady flow like a river, this results in a steady lateral circulation, toward the outside of the bend at the surface and toward the inside of the bend at the bed. In a reversing tidal flow, the strength of this lateral circulation varies tidally, being strong on flood and ebb, and vanishing at slack water, between flood and ebb. Thus, the lateral circulation has two maxima per tidal cycle (one on flood and one on ebb) and two minima (at each slack water). In contrast, the alongchannel circulation has one maximum (peak flood) and one minimum (peak ebb) during each tidal cycle. Lateral circulation in a tidal channel then doubles the frequency of the basic tidal forcing - alongchannel $D_{2}$ currents lead to a $D_{4}$ lateral circulation. The interaction of alongchannel $D_{1}$ and $D_{2}$ currents leads to a $D_{3}$ lateral circulation. Lateral circulation effects are often quite evident in current data, but are hard to detect in surface elevation data, unless tide gauges are placed on both banks of a channel bend.
- Flood-ebb differences in the distribution of alongchannel currents in the water column. These may arise from:

1. Tidal variations in salinity and density. When the vertical salinity stratification varies tidally, then the vertical mixing regime is different on flood and ebb, changing vertical mixing and current patterns. This process is known as internal tidal asymmetry (Jay and Musiak, 1996). It is likely present during periods of high river flow, but absent otherwise. It will be undetectable in surface elevation data.
2. The channel curvature is greater landward of Fairbank Point than seaward of it. When the degree channel curvature varies along a channel, then flood and ebb currents will be pushed by centrifugal acceleration toward the bank to different degrees, affecting both the lateral distribution of alongchannel currents and the strength of lateral currents. This process is evident throughout the current data record, but is hard to detect in surface elevation records.

The current data here are from a single instrument. They do not allow elucidation of complex current patterns within the Fairbank cross-section or define differences between estuarine crosssections. The proposed hypothesis tests do not require, however, that all the details of the current
regime be resolved. The distinctive temporal patterns of MBPP intake flow and river flow will allow their effects to be detected, if they are important.

## 5. Tidal Analysis Methods

Tests of hypothesis H 1 and H 2 require that surface elevation and current meter records be analyzed to quantify the tidal information contained therein. Two types of tidal analyses are used: harmonic analysis (Foreman, 1977), and a continuous wavelet transform approach (Jay and Flinchem, 1997; Flinchem and Jay, 2000). The former is used to quantify the average tidal processes in Morro Bay. The latter is specifically designed to detect statistical fluctuations in tidal properties, as is required to test H 1 and H 2 . Both methods can be applied equally well to either surface elevation (as measured by a tide gauge) or tidal current (as measured by a current meter) records, though the vector nature of the current data changes the analysis details. Analyses of tidal currents discussed below focus on the alongchannel velocity that moves water in and out of the estuary. This component of the current is aligned approximately along a NNW-SSE axis.

### 5.1. Harmonic Analysis of Tides

Harmonic analysis describes observed tides in terms of a set of frequencies known from astronomical considerations. The analysis assigns an amplitude and phase to each frequency so as to minimize errors (defined as the differences between the data and the harmonic description of the data) according to a "least-squares" criterion; i.e., the sum of the square of the errors over the record is minimized. This technique has been in common use for more than a century and is extremely effective in representing tides in areas where astronomical forcing is the only factor causing variations in surface elevation. It maximizes the number of frequencies that are resolved, provides an extremely compact representation of the data, and allows prediction of past and future tides. The weaknesses of this technique are that: a) it presumes that the tides are a "statistically stationary" process, b) it provides no information regarding fluctuations in tidal processes, and c) it does not describe fluctuations in current or surface elevation not driven by the sun and moon (unless these surface fluctuations happen to occur exactly at a tidal frequency). Thus, harmonic analysis presumes that hypothesis H 1 and H 2 are false and treats the mean-flow effects of interest here as "noise". It is not, therefore, a suitable method for testing these hypotheses.

### 5.2. Continuous Wavelet Transform Analysis of Tides

Analysis of tides using continuous wavelet transforms is a recent development, designed specifically to examine non-stationary tides; i.e., tides where the observed surface motion is the result of atmospheric motion plus other perturbations. It has been used to examine river tides, and even biological processes that exhibit tidal variability (Jay and Flinchem, 1997; Flinchem and Jay, 2000). Its advantages relative to harmonic analysis are (Jay and Flinchem, 1999):

- It makes no assumptions about the types of processes present or the statistical stationarity of the data.
- Rapid changes in tidal properties can be tracked, even when these changes occur over a few days. This is important in capturing the transient effects of storms or rapid changes in MBPP intake volume.
- It quantifies a fuller range of frequencies, limited only by the length of the record and the time resolution of the data. The wavelet method uses astronomical information to define frequencies, but unlike harmonic analysis, the filter scheme is set up to capture non-tidal variance as well.
- The wavelet method is stable in the sense that, for short records, the results are less dependent on the character of the data and the details of the analysis than for harmonic analysis.

Not surprisingly, there are also limitations implied by the use of wavelet transform tidal analysis. The most important in the present instance is that the number of frequencies that can be resolved is limited by the very short analysis windows used - a wavelet analysis determines only tidal species, not the constituents by which these species may be represented. A short analysis window is dictated by the need to resolve day-to-day changes in tidal processes. Since, however, the wavelet analysis is designed for use only in cases where the tides are non-stationary (which removes the physical meaning of tidal constituents), this is not a fundamental limitation. The wavelet analysis' ability to predict future tides is also limited by the relatively small number of frequencies used. If the tides are truly non-stationary, this is not really a disadvantage either - no simple method will yield meaningful predictions.

### 5.3. Spatial and Temporal Patterns

It is also important to explain how spatial and temporal patterns of tidal properties are to be resolved. For any location, the output from a wavelet tidal analysis of surface elevation time series is a set of amplitudes and phases representing the behavior of each tidal species as a function of time. Although it is possible to obtain an analysis output for each frequency corresponding to the time of each input data point, it is more convenient to obtain outputs of all parameters at intervals of several hours; a 6-hr interval was employed in this study. In order to search for small changes in the tidal dynamics of Morro Bay related to fluctuating mean flows, it is necessary first to remove the much larger tidal monthly or neap-spring variations in tidal properties. This can be achieved using data from a reference station. Usually, the reference station is a nearby tide gauge on the open coast; sometimes a local station in the estuary is used. In either case, the tidal wave impedance for the two stations (the estuarine station and the reference station) is calculated as a function of time. This complex impedance at any time is the ratio at that time of the complex numbers representing the amplitude and phase of each tidal species at the estuarine and coastal stations. For practical data analysis, the impedance time series for each species is resolved into two components: a) an amplitude ratio time series (the amplitude at the estuarine station divided by the amplitude at a reference station), and b) a phase-difference time series (the phase of the estuarine station minus that at the coastal station). To bring spatial variations of tidal dynamics within Morro Bay, it is also useful to calculate an impedance between the two stations for which data are available in the bay, using a ratio of the more landward station to the more seaward station.

The impedance for the major tidal species $D_{1}$ and $D_{2}$ is calculated in a direct way; e.g., as the ratio of $\mathrm{D}_{2}$ at MBN or MBS to $\mathrm{D}_{2}$ for a reference station, usually Port San Luis (PSL) for tidal elevation or Los Angeles for currents. For the comparison within the bay, $\mathrm{D}_{2}$ for MBN is compared to $\mathrm{D}_{2}$ for MBS. An indirect calculation of impedance is used for the overtides, because overtides are non-linear tidal species created by specific interactions of the major tidal species $D_{1}$ and $\mathrm{D}_{2}$. In calculation of their impedance, therefore, the reference station is used differently than for the major tidal species $D_{1}$ and $D_{2}$. Since $D_{4}$ is created by the quadratic interaction of $D_{2}$ with itself, the $\mathrm{D}_{4}$ impedance amplitude is calculated as the ratio of $\mathrm{D}_{4}$ amplitude in the bay (at MBN or MBS) to the square of $\mathrm{D}_{2}$ amplitude at a reference station. The $\mathrm{D}_{4}$ phase difference is the $\mathrm{D}_{4}$
phase minus twice the $D_{2}$ phase. This approach reconciles the different time bases of the phase calculation at the two different frequencies; i.e., $360^{\circ}$ in phase is 12.42 hr for $\mathrm{D}_{2}$, but only 6.21 hours for $D_{4}$. For $D_{6}$, the impedance amplitude is calculated as the ratio of $D_{6}$ amplitude in the bay (at MBN or MBS) to the cube of $\mathrm{D}_{2}$ amplitude at a reference station. The $\mathrm{D}_{6}$ phase difference is the $\mathrm{D}_{6}$ phase minus three times the $\mathrm{D}_{2}$ phase.

Two other types of impedance plots were also employed, distinguished by the choice of reference station. For the tidal elevation data set, there were two stations located in the bay. Given multiple stations, spatial differences in tidal amplification, distortion and energy loss can be detected by calculating an impedance ratio of the more landward station (MBS) relative to the more seaward station (MBN), instead of to the coastal reference station. In this case, the overtide comparison for stations MBS and MBN within the bay was carried out directly in terms of the ratio of amplitudes and phase differences for MBS and MBN. Thus, a ratio of $\mathrm{D}_{4}$ amplitudes at MBS and MBN was calculated without use of the reference station amplitude. The ratio of overtide amplitudes at the tide and current stations in the interior of the bay relative to local $D_{2}$ at the same station (instead of $\mathrm{D}_{2}$ at a more seaward station) was also a useful parameter for detecting frictional modification of the tide. This utility arises from the fact that overtide energy comes at the expense of energy in the main $\left(D_{1}\right.$ and $\left.D_{2}\right)$ tidal species. Thus, an increase in $D_{4}$ or $D_{6}$ will typically coincide with a decrease in $\mathrm{D}_{2}$. When this sort of variation occurs, the change in the local ratio of $\mathrm{D}_{4}$ to $\mathrm{D}_{2}{ }^{2}$ (or $\mathrm{D}_{6}$ to local $\mathrm{D}_{2}{ }^{3}$ ) will be larger than the change in the ratio of $\mathrm{D}_{4}$ to reference station $D_{2}{ }^{2}$ (or $D_{6}$ to reference $D_{2}{ }^{3}$ ).

Finally, it should be noted that all phases have an inherent ambiguity of $360^{\circ}$ in phase; i.e., $360^{\circ}$ may be added to or subtracted from any phase without changing the mathematical meaning of the phase, though the appearance and interpretation of the resulting phase plot may be altered. An attempt has been made to "unwrap" the phase in such a way as to produce the most compact form of phase variation, but this approach still does not always result in a phase plot with a clear interpretation.

### 5.4. Definition and Estimation of the Tidal Prism

Implicit in the analysis that follows is the idea that the tidal prism and tidal range are closely related. In fact, tidal prism volume $V_{P}$ increases directly with tidal range - this can be
demonstrated by integration of an equation expressing conservation of fluid mass. Thus for a rising tide:

$$
\begin{equation*}
V_{P}=\left.\int_{0}^{L}(b h)\right|_{t=\frac{T}{2}}-\left.(b h)\right|_{t=0} d x \tag{2}
\end{equation*}
$$

where: $x$ is distance along the estuary, $t$ is time, $b$ is the width of the estuary (which varies with $x$ and $t$ ), $h$ is the surface elevation (which also varies with $x$ and $t$ ), $L$ is the length of the estuary, and $T / 2$ is the length of time between low water and the following high water, and $T$ is the tidal period. This relationship says that the tidal prism is the volume between the high and low water surface levels, determined from the product of estuary height and width, integrated over the length of the system. Eq. 2 also suggests, however, that there is not a unique relationship between tidal range and tidal prism, because the width of the bay increases greatly at higher tidal elevation. Thus, for example, the tidal prism for a 5 ft rise between 1 ft and 6 ft above MLLW will be larger than that for a rise between MLLW and 5 ft above MLLW. Figure 5.1 (top) shows the relationship between estimated tidal prism and tidal range at station MBS, for the MarchApril 1998 period. This tidal prism was estimated under the assumption that the entire bay has a tidal range the same as station MBS, using the volume vs. elevation curve (Figure 5.1, bottom). As noted below there are some variations of range with position, but station MBS is likely representative for the interior of the bay. Figure 5.1 suggests that: a), in practice, the variation of tidal prism for any given range is small relative to the variation with range, and b) tidal range increases almost linearly with tidal range, despite the non-linear elevation vs. volume curve.

Tidal range is calculated directly from the tidal height data rather than from tidal analysis results, so its determination does not depend on the details of any particular tidal analysis method. The tidal range used here is a daily greater tidal range (difference between the higher high and lower low waters), the long term average of which approximates the greater diurnal tidal range reported in tide tables as the difference between MHHW and MLLW. This tidal range also defines the tidal prism (the volume between the higher high and lower low water planes). Tidal range is calculated as a continuous function of time. At any point in time $t$, the tidal range is the difference between the largest and smallest hourly tidal elevations in a window extending from points $t-n$ to $t+n$ ( $n$ an integer). This moving window always contains an odd number of
data points. The tidal day has an average length of 24.84 hr , so the minimum useful value for $n$ for hourly data is $n=12$; i.e., a window with 25 hourly observations. However, tidal variability and atmospheric perturbations cause some tidal days to be longer than 25 hr . Therefore, $n=13$ (a 27 hr window) has been used here. In fact, the calculated tidal range changes very little for values of $n$ from 12 to 14 .


Figure 5.1: Morro Bay volume vs. tidal elevation (top) and greater daily tidal prism as a function of tidal range (bottom). Bay volumes above 5.4 ft are extrapolated from data in Tetra Tech (1999). Tidal prism is the volume between HHW and LLW, determined at 6-hr intervals; see text for details.

## 6. Data Sets

The analyses described in this report consider two aspects of the tides: a) the rise and fall of the tide, as measured by surface elevation records, and b) the tidal exchange, as measured by a current meter. There is, moreover, a direct linear relationship between tidal range and tidal prism volume - any change in one implies a change in the other. Thus, a positive result for H 1 or H 2 in analyses of either tidal elevation or tidal currents implies a positive result for the other variable.

The Morro Bay tidal elevation data employed here were collected at two stations by Tetra Tech between 9 March and 10 April 1998, during an El Nino winter with high rainfall (Figures 2.1 and 6.1; Tetra Tech, 1999). Of these two stations, MBN is near the mouth of the bay and the Morro Bay Power Plant. Station MBS is in mid-bay near the river deltas. These two stations are well situated to capture spatial variations of tidal properties in the bay. The sampling period provides both fluctuating river flow related to the passage of several storms (Figure 6.2) and a variable MBPP intake flow volume (Figure 6.3); however, the plant operated to some degree during the entire period, so the MBPP intake volume never drops to zero. As a result of the unusually high river flow, salinities in the bay were likely their typical values for the spring season. The storms also brought sporadically strong winds, which likely perturbed the surface elevation of the bay on occasion. Neither winds nor changes in salinity are analyzed here, and they may contribute to the background noise of the results.

The current meter data analyzed here were collected at a single station near Fairbank Point by PGE between November 1995 and January 1997 (Figure 6.4). The current meter employed was an Interocean S4 located at mid-depth on the West side of the channel at Fairbank. There were two deployments, yielding almost 10 mo of data over a $15-\mathrm{mo}$ period; there is a gap of several months between deployments in the middle of the record. This covers a substantial river flow range ( 1.1 to $457 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ or 0.03 to $4.6 \%$ of the tidal prism; Figure 6.5) and almost the entire range of MBPP intake flow levels ( $\sim 50$ to 612 MGD or 0.6 to $8.8 \%$ of the tidal prism, Figure 6.6). MBPP intake flow is not available, however, for November-December 1995. The deployment location for the current meter is ideal for determining whether there are any effects of the MBPP on the more landward portions of the bay. The S4 current meter that collected the data was also equipped with temperature and conductivity sensors. Temperature, salinity and
density records are, therefore, available for the observation period, but have not been analyzed in detail. Examination of the data suggests that the mean flow (after removing the tides by averaging) at this current meter was generally northward toward the mouth of the estuary, whereas one would typically expect landward flow (to the south) at depth in an estuarine channel. The fact that landward flow was not observed through most of the record is interesting. This absence may reflect: a) the weakness of the two-layer flow (caused by weak river flow and small density differences within the estuary), b) the existence of an inverse estuarine circulation with landward flow at the surface (caused by strong evaporation during dry periods), or c) lateral differences in mean flow patterns related to the shape and curvature of the channel. Moreover, the river flow was very small during most of the record, so that density-driven circulation (either normal or inverse) would have been very weak anyway. Therefore, small differences in flow predominance throughout the cross-section could change the direction of the mean flow at the location of the meter. Moreover, landward near-bed flow of up to $0.1 \mathrm{ft} \mathrm{s}^{-1}$ did occur during the high river flow events in February 1996 and January 1997. That is, the strong horizontal density gradient occasioned by the high river flow drove a two-layer estuarine circulation, with the river inflow moving out at the surface and denser water moving landward closer to the bed.

Coastal tidal data for Los Angeles, Port San Luis, and Monterey for 1995 to 1998 were obtained from the National Ocean Survey (http://co-ops.nos.noaa.gov/active_stations.shtml). Comparison of the harmonic tidal constituents for these three coastal stations suggests that their tidal properties are quite similar. Port San Luis (the closest coastal station to Morro Bay) was used as a reference station for calculation of the amplitude ratios and phase differences in analyses of the 1998 tidal elevation data. The relevant section of Port San Luis (PSL) data are shown in Figure 6.1. Data for Port San Luis were missing, however, for November-December 1995, so Los Angeles tidal elevation was used as a reference station for analyses of the 1995-98 PG\&E current meter data (Figure 6.7).

It was also necessary to deal with the disparate time resolutions of the data sets employed, and define a common time interval for tests of the two hypotheses. The two Morro Bay tide gauges collected data as 10 min averages. The PG\&E current meter collected 10 min of data every hour. The NOAA data for Port San Luis were collected as 6 min averages, with subsequent averaging by NOAA to one hour. The Morro Bay tide data were, therefore, decimated to hourly
intervals, a customary time resolution for tidal analysis. In contrast to the high resolution of the tidal data, MBPP intake and tributary inflow data were available only on a daily basis. A common time base of 6 hr was established for all mean flow variables and analyses of tidal properties by: a) cubic spline interpolation of the MBPP intake and river inflow data at 6 hr intervals, and b) calculation of wavelet tidal analysis outputs at 6 hr intervals.


Figure 6.1: 1998 hourly surface elevation time series for stations MBN (near the MBPP intake), MBS (in mid-bay) and the reference station at Port San Luis (PSL) for $\sim d$ 67-99.


Figure 6.2: Above: daily river-flow time-series for Chorro Creek ( ), and the 6-hourly interpolated version used in the analyses ${ }^{( }{ }^{1}$ ) of the 1998 Tetra tech data. No river-flow data are available after the middle of March. Below: daily river-flow time-series for Chorro Creek expressed as a function of daily tidal prism.


Figure 6.3: Top: Daily Morro Bay Power Plant (MBPP) intake flow, ( ), and the 6-hourly interpolated version used in the analyses $\left.{ }^{( }{ }^{1}\right)$ of the 1998 Tetra Tech data. Bottom: interpolated Morro Bay Power Plant (MBPP) intake flow expressed as a fraction of the tidal prism. Note that the Tetra Tech data are available only for $\sim d$ 67-97.


Figure 6.4: Alongchannel currents in ft $s^{-1}$, calculated from $S 4$ current meter data collected by $P G \& E$ during 1995-1997. There was a gap of $\sim 4$ mo. between the first deployment (top) and the second deployment (bottom). Time on the $x$-axis is in days from 10/1/95. Positive values are landward, toward back bay, in the direction of $166^{\circ} T$.


Figure 6.5: Above: daily river flow time series for Chorro Creek ( ), and the 6-hourly interpolated version used in the analyses ${ }^{(1)}$ of the 1995-97 PG\&E current meter data. A missing section of river flow data in 1995 was interpolated from a nearby gauge; flows were uniformly low during this period. Below: daily river flow time series for Chorro Creek expressed as a function of daily tidal prism.


Figure 6.6: Above: Daily Morro Bay Power Plant (MBPP) intake flow, ( ), and the 6-hourly interpolated version used in the analyses $\left({ }^{1}\right)$ of the 1995-1997 PG\&E current meter data. Below: interpolated Morro Bay Power Plant (MBPP) intake flow expressed as a fraction of the tidal prism.



Figure 6.7: Surface elevation data (obtained from the National Ocean Survey (http://co-ops. nos.noaa.gov/active_stations.shtml) for (above) the first and (below) the second PG\&E current meter deployment. Time in days from 10/1/95 is on the x-axis; elevation in ft relative to MLLW is on the $y$-axis.

## 7. Results

### 7.1. Hypothesis H1

The tidal exchange and tidal prism of Morro Bay are quantities of fundamental ecological importance. Therefore, hypothesis H1 states that: "The daily tidal exchange and tidal prism of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow". A positive result for H 1 with regard to the MBPP intake flow would suggest that the MBPP has substantial effects on tidal processes and circulation in the interior of Morro Bay. This positive result might then suggest that there are also impacts on sediment transport and shoaling in the interior of the bay. A negative result here suggests (subject to confirmation through a negative result for the major tidal species in H 2 ) that there are no tidal circulation impacts of the MBPP on the interior of the bay. Because tides provide most of the energy for sediment transport in the system, a negative result for the MBPP intake flow for H1 suggests that there are no significant physical impacts of the intake flow on the interior of the bay. Hypothesis H2, discussed below, investigates the effects of mean flow on individual tidal species, and validates the method tested here.

River flow is, aside from the tidal circulation, the other major process in the bay responsible for circulation processes. River flow creates a mean flow through a much larger part of the bay than is the case for the MBPP intake flow, so it should be more effective (per unit flow volume) than the MBPP intake flow in altering the tides and mean surface elevation. A negative result in H 1 for the river flow likely means that the data set does not include any high-flow events. Considering results for other estuaries, effects of river flow on the tidal prism (i.e., a positive result for H 2 ) are expected for river flow at least at the 2 to 5 yr event levels, if not at lower levels. These flows are 1,560 to $5,154 \mathrm{cfs}$ (Tetra Tech, 1998) or $\sim 10$ to $33 \%$ of the mean greater daily tidal flux, respectively. Because of the greater sensitivity of the smaller tidal constituents, a positive result for H 2 may occur for even lower flow levels.

Tidal range and tidal exchange are directly related through conservation of mass. That is, an increase in tidal range from one day to the next implies an increase in tidal exchange exactly sufficient to fill and empty the increased tidal prism associated with the larger tidal range. In principle, therefore, H1 can be tested equally well using tidal elevation data (from which tidal
range is inferred) or current meter data (measuring tidal exchange). In practice, however, there is no simple, commonly accepted metric equivalent to tidal range that can be used with tidal currents. While one can note the range of current values over a day, the presence of a mean flow, the higher noise levels, and the vertical variability of tidal currents often render this calculation less than satisfactory in practice. Thus, H1 is tested using tidal elevation data only. The equivalence (through the mass conservation principle) of tidal range and tidal exchange means, however, that results relative to H 1 for tidal range also apply to tidal exchange.

The effects of the mean flows (MBPP intake flow and river flow) on tidal range are tested by examining tidal ranges (Figure 7.1) and tidal range ratios (Figure 7.2) for the two stations in the bay (MBN and MBS relative to Port San Luis or PSL). A tidal range ratio between MBS and MBN was also used to examine any possible influence of mean flows on amplification of the tide inside Morro Bay (Figure 7.2). Scatterplots of the tidal range ratios against non-dimensionalized mean flow volume and river flow volume are used to assess impacts, if any. Because tidal prism is calculated directly from observations without use of any tidal analysis method, results for H 1 do not depend on the details of any tidal analysis method. The results for tidal range are much more scattered, however, than the results for H 2 below, where harmonic analysis has been used. This occurs because the tidal range calculation includes changes in elevation caused by winds, atmospheric pressure and other non-tidal processes. These influences are largely excluded by the tidal analysis, which focuses solely on the tidal response of the system.

### 7.1.1. MBPP Intake flow and Tidal Range

One way to measure the strength of the MBPP intake flow is as a ratio to the actual tidal prism for each day of operation. The minimum possible value of this ratio is clearly zero, when the plant is not in operation. The maximum ratio of around $9 \%$ corresponds to full operation and the weakest possible neap tide. The total range of MBPP intake flow during the Tetra Tech sampling period was from $1.3-4.2 \%$ of the tidal prism (Figure 6.3). This range covers from low plant operation levels up to about half of the total possible maximum MBPP intake flow. During most of the sampling period, MBPP intake flow was about 170 MGD , yielding a ratio to tidal prism of $\sim 1.3-2.3 \%$ (Figure 6.3), and the largest variation of tidal range responses occurred at this intake flow level (Figure 7.3). There is, moreover, no trend toward higher or lower tidal
ranges as the MBPP intake flow increased relative to tidal prism. There is also no indication that tidal amplification within the bay (the MBS:MBN tidal range ratio) is a function of MBPP intake flow. This is clearly a negative result for H 1 with regard to the effects of MBPP intake flow on the tidal prism and tidal exchange. Effects on sediment transport in the interior of the bay are, therefore, very unlikely. This result does not necessarily rule out, however, subtler changes to individual tidal species caused by the MBPP intake flow, considered under H2a.

### 7.1.2. River Flow and Tidal Range

There were no major flow events during the March-April 1998 Tetra Tech sampling period analyzed here. The total range of Chorro Creek inflow during the period was 42 to 166 cfs , or 0.2 to $1 \%$ of the tidal prism (Figure 6.2), considerably smaller than the MBPP intake flow. It is not surprising that no effects on the tidal range can be detected (Figure 7.4). Larger river flows do, however, produce measurable effects, as the results for the PGE current meter data demonstrate (Section 7.3).

### 7.1.3. Summary for Hypothesis H1

Results for H1 were negative, for both MBPP intake flow and river inflow. MBPP intake flow varied from 170 to 360 MGD during the March-April 1998 period during which the Tetra Tech tidal elevation data were collected. This intake flow range corresponds to a range in the ratio of intake flow to tidal prism of $\sim 1.3$ to $4.2 \%$. The total possible range of the ratio of intake flow to tidal prism is zero (no plant operation) to $\sim 9 \%$ (full operation during the weakest neap tide). The available range of plant operation did not produce any detectable perturbations to the tidal prism at station MBN (near the MBPP plant) or at station MBS (in the interior of the bay). The ratio of tidal range at station MBS to that at MBN was also unaffected. It is unlikely that analyses of data from another period that covered the full operation range (from 0 to $9 \%$ ) would produce any different result. River flow into Morro Bay during the March-April 1998 period was only $\sim 0.02$ to $1 \%$ of the tidal prism. This is not high enough to produce any real perturbation of the tides. Higher river flows do perturb the tidal range, thereby likely affecting sediment transport.

### 7.2. Tidal Analysis Results

### 7.2.1. Tidal Harmonic Analysis

Harmonic analysis provides a detailed picture of the average frequency content of a surface elevation or current record, under the assumption that the tides are stationary. Harmonic analysis results for Port San Luis (station PSL) and the two stations in Morro Bay are listed in Table 7.1 (1998 data set). Tables 7.2 and 7.3 summarize tidal datum levels and ranges estimated from the harmonic constants. Results for MBN and MBS are based on the month of available data. The PSL results are reported in two forms: a) an analysis of the data for the entire year of 1998, and b) an analysis for the one month period for which data are available at MBN and MBS. Although the one-year record provides more precise knowledge of tides at PSL, comparisons between stations must should be based on similar record lengths and time periods; i.e., on the one-month analyses for the three stations. All records were sufficient to resolve at least the three largest diurnal $\left(D_{1}\right)$ constituents, the four largest semidiurnal $\left(D_{2}\right)$ constituents ${ }^{\frac{1}{3}}$, and at least one constituent for the overtide species $\mathrm{D}_{3}$ (constituent $\mathrm{M}_{3}$ ), $\mathrm{D}_{4}$ (constituent $\mathrm{M}_{4}$ ), $\mathrm{D}_{6}$ (constituent $\mathrm{M}_{6}$ ), and $\mathrm{D}_{8}$ (constituent $\mathrm{M}_{8}$ ). Analyses of one year of data (1998) from Monterey and Los Angeles indicate that the results obtained for Port San Luis are representative.

The harmonic analyses of tidal elevation data show that:

- The semidiurnal tide is larger than the diurnal tide, as is typical of most of the West Coast of the US. The semidiurnal constituent $\mathrm{M}_{2}$ (the twice-daily tide driven by gravitational attraction of the moon) is the largest constituent, followed by the diurnal constituent $\mathrm{K}_{1}$.
- The tidal constituents of the basic diurnal and semidiurnal tidal species show, as expected, little variation amongst the three stations.
- There is a slight increase of the semidiurnal tide in the basin, evident at MBS, the station farthest from the ocean. There is a small decrease in the diurnal tide at station MBS, relative

[^4]to station MBN. Thus, the ratio of the sum of the three largest semidiurnal constituents to the sum of the three largest diurnals is 1.05 at MBN and 1.11 at MBS.

- Tidal ranges increase from the coast toward the head of the bay by $0.15-0.2 \mathrm{ft}$, indicative of slight amplification by the topography. The datum levels reported in Table 7.2 for MBN (near the mouth of the bay) are consistent with previous estimates in other studies.
- The largest difference between the stations in the bay is the greater amplitude of the overtide constituents $\mathrm{M}_{6}$ and $\mathrm{M}_{8}$ inside the bay, especially at station MBS, farthest from the ocean. Thus, $\mathrm{M}_{6}$ is $\sim 17$ times as large at MBS as at PSL. $\mathrm{M}_{8}$ is 2-6 times larger inside the bay.
- As predicted above, the strongest overtide is the six-diurnal overtide (constituent $\mathrm{M}_{6}$ ), which is very small at PSL and grows in a landward direction. This overtide is the result of bed friction in the shallow water of Morro Bay. The terdiurnal $\left(\mathrm{D}_{3}\right)$ and quarterdiurnal $\left(\mathrm{D}_{4}\right)$ overtides (constituents $\mathrm{M}_{3}$ and $\mathrm{M}_{4}$, respectively), which result from distortion of the tidal wave in shallow water, are also larger in the bay by a factor of 2 to 5 .
- The strong temporal variability of very small overtides (M6 and M8 at PSL) suggest either that they are strongly variable in time or are not accurately determined. Attention to the spatial and temporal patterns of theses overtides is, therefore, important.

Harmonic analysis of the PG\&E tidal current data (Table 7.4) provides additional information regarding tidal processes. Important features suggested by Table 7.4 and the data include:

- Currents near Fairbank are fairly strong, up to $\sim 2 \mathrm{ft} \mathrm{s}^{-1}$ on flood (to the south with positive values in Figure 6.4) and $\sim 3 \mathrm{ft} \mathrm{s}^{-1}$ on ebb (to the north with negative values in Figure 6.4). The difference between the flood and ebb currents is partly accounted for by river flow, but wave distortion effects and flood-ebb differences in the lateral distribution are also involved.
- Although maximum currents are strongly seaward (ebb-oriented), the mean flow through most of the current record is weak and variable. The relative strengths of maximum flood and ebb currents do not predict the mean flow, because there is a substantial degree of distortion of the currents by the presence of tidal flats. Floods are relatively long and slow, whereas ebbs are short and fast. Thus the difference between peak flood and ebb currents is larger than that between the average flood and average ebb currents. The variability of the mean
flow is also related to the presence or absence of mean flows generated by winds and the internal density field of the estuary.
- During the periods of strongest river in flow ( $\sim \mathrm{d} 120-150$ and $420-440$ ), the mean flow is actually landward at this cross-section. This likely occurs because the meter is deep enough in the flow to be in the landward-flowing bottom layer during the high-flow periods when estuarine circulation is strong. It is possible that a weak negative estuarine circulation contributes to the net outflow during December 1995, before the onset of winter rains.
- The current meter data provide ambiguous information regarding sediment transport patterns in the system. On the one hand, the ebb dominance of maximum currents suggests that sediment supplied by tributary streams during periods of high river flow can be exported from this part of the estuary during river flow events. On the other hand, the landward mean flow during the same periods is conducive to retention of sediment. Coarser material is likely to move in the direction of maximum current, whereas fine material may also be influenced by the mean flow.
- The deeply scoured channel at Fairbank implies that tidal currents are stronger there than at most other locations in the bay. This is especially true relative to back bay, where tidal currents are clearly weak.
- Tidal currents are more irregular than tidal elevations, because of the influence of river inflow, winds and natural variability within any channel cross-section. Most of these features are much less prominent in a tidal record than is the case with current meter data.
- Semidiurnal $\left(D_{2}\right)$ currents at Fairbank are considerably stronger than diurnal $\left(D_{1}\right)$ currents. The ratio of the three largest $D_{2}$ current constituents to the three largest $D_{1}$ current constituents in Table 7.4 is 1.86 , even though the corresponding ratio for tidal heights is only $\sim 1.1$. This is an expected result. The $\mathrm{D}_{2}$ tidal cycle lasts only about half as long as the $\mathrm{D}_{1}$ tidal cycle. Thus, any given $\mathrm{D}_{2}$ tidal elevation amplitude causes about twice the current as the same $\mathrm{D}_{2}$ tidal elevation amplitude, because the tidal exchange occurs in half the time.
- Overtide current amplitudes are stronger (relative to the $\mathrm{D}_{2}$ current amplitude) than is the case in the tidal elevation record. This result is also expected, and is related to complex tidal variations in the distribution of flow within the Fairbank cross-section. The cross-sectionally averaged currents likely show less overtide variability than does the current at any one location in the section. The surface elevation record reflects sectionally-averaged currents.
- Although lateral currents were not analyzed in detail here, the lateral current record also contains useful information. Lateral currents at Fairbank are mostly overtides related to the fact that the channel near Fairbank is slightly curved. Surface elevation on the outside of the curve (on the West side of the channel) will be slightly higher on both flood and ebb. This lateral motion at twice the basic tidal frequency creates overtide currents. Because of the role of lateral currents, the ratio of minor to major axis amplitudes is larger for the overtides than for the $D_{1}$ and $D_{2}$ constituents.
- There are also likely vertical variations in current structure that are related to changes in river flow and salinity. These cannot be resolved with data from a single current meter.

In summary, the tidal records for the Morro Bay area are typical of those for regions with narrow continental shelves. The basic $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ tidal species show only weak spatial variability. Overtides grow inside the bay and are most prominent at the one station located well inside of Morro Bay (MBS). There is a slight amplification of the tide from the coast to the head of the bay. Tidal currents in the bay are driven by changes in surface elevation. The tidal current patterns revealed by tidal analysis are, therefore, consistent with the results for analysis of tidal elevation. The most conspicuous differences between the current and elevation records are: a) the stronger overtides in the current record, and b) the creation of lateral (cross-channel) flows by channel curvature; this process could not be detected in the available elevation records.

Table 7.1: Tidal Harmonic Analysis Results for the 1998 Tidal Height Data

| Constituent | Port San Luis ${ }^{\S}$ (PSL) - 1 Year |  | Port San Luis ${ }^{\text {s }}$ (PSL) - 1 Month |  | Morro Bay North* (MBN) 1 Month |  | Morro BaySouth* (MBS) 1Month |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Amp , m | Phase, o | Amp , m | Phase | Amp , <br> m | Phase, | Amp , <br> m | Phase, <br> ${ }^{\circ}$ |
| Q ${ }_{1}$ | 0.040 | 194 | 0.049 | 193 | 0.051 | 194 | 0.052 | 207 |
| $\mathrm{O}_{1}$ | 0.222 | 199 | 0.219 | 195 | 0.237 | 217 | 0.222 | 206 |
| $\mathrm{P}_{1}$ | 0.110 | 212 | 0.116 | 211 | $0.111^{\text {* }}$ | 215 | $0.111^{\ddagger}$ | $218{ }^{*}$ |
| $\mathrm{K}_{1}$ | 0.356 | 215 | 0.373 | 213 | 0.357 | 217 | 0.354 | 221 |
| $\mathrm{N}_{2}$ | 0.115 | 145 | 0.131 | 147 | 0.112 | 149 | 0.134 | 161 |
| $\mathrm{M}_{2}$ | 0.489 | 168 | 0.490 | 167 | 0.482 | 174 | 0.498 | 182 |
| $\mathrm{S}_{2}$ | 0.148 | 164 | 0.151 | 167 | 0.148 | 178 | 0.152 | 187 |
| $\mathrm{K}_{2}$ | 0.044 | 157 | 0.045 | 160 | $0.045^{\dagger}$ | $171^{\dagger}$ | $0.045^{\dagger}$ | $180^{\dagger}$ |
| $\mathrm{M}_{3}$ | 0.0025 | 357 | 0.0027 | 10 | 0.005 | 47 | 0.005 | 56 |
| $\mathrm{M}_{4}$ | 0.0024 | 277 | 0.0024 | 255 | 0.005 | 29 | 0.012 | 131 |
| $\mathrm{M}_{6}$ | 0.0002 | 223 | 0.0009 | 268 | 0.003 | 153 | 0.017 | 130 |
| $\mathrm{M}_{8}$ | 0.0007 | 320 | 0.0009 | 332 | 0.002 | 207 | 0.005 | 87 |

§ 1998 hourly data provided by the National Ocean Survey

* 1998 hourly data provided by Tetra Tech (Tetra Tech, 1999)
* Inferred from $K_{1}$, using the Port San Luis 1-year record.
${ }^{\dagger}$ Inferred from $\mathrm{S}_{2}$, using the Port San Luis 1-year record.
Tidal amplitude represents the magnitude of the vertical excursion of the water surface level.
Tidal phase is the timing of high water relative to the moon's passage over the Longitude of Morro Bay.
Table 7.2: Datum Levels Estimated from Harmonic Constituents, 1998 Tidal Height Data

|  | Port San Luis <br> (PSL) <br> Year |  |  | Port San Luis <br> (PSL) - 1 Month | Morro Bay <br> North* (MBN) 1 <br> Month | Morro Bay <br> South* (MBS) 1 <br> Month |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Datum Level | Feet | Meters | Feet | Meters | Feet | Meters | Feet | Meters |
| MHHW | 5.46 | 1.665 | 5.36 | 1.634 | 5.28 | 1.609 | 5.48 | 1.671 |
| MHW | 4.71 | 1.436 | 4.65 | 1.417 | 4.58 | 1.395 | 4.75 | 1.449 |
| MLHW | 3.96 | 1.207 | 3.94 | 1.200 | 3.87 | 1.181 | 4.03 | 1.227 |
| MTL | 2.83 | 0.862 | 2.86 | 0.873 | 2.80 | 0.856 | 2.91 | 0.887 |
| MHLW | 1.89 | 0.576 | 2.15 | 0.656 | 2.08 | 0.635 | 2.13 | 0.648 |
| MLW | 0.945 | 0.288 | 1.08 | 0.328 | 1.04 | 0.317 | 1.06 | 0.324 |
| MLLW | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

[^5]* 1998 hourly data provided by Tetra Tech (Tetra Tech, 1999)

Table 7.3: Selected Ranges Estimated from Harmonic Analysis Results, 1998 Height Data

| Range | Port San Luis (PSL) ${ }^{\S} 1$ Year |  | $\begin{aligned} & \hline \text { Port San Luis } \\ & \text { (PSL) }-1 \\ & \text { Month } \end{aligned}$ |  | Morro BayNorth* (MBN) -1 Month |  | Morro BaySouth* (MBS) -1 Month |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Feet | Meters | Feet | Meters | Feet | Meters | Feet | Meters |
| MHHW-MLLW | 5.46 | 1.665 | 5.36 | 1.634 | 5.28 | 1.609 | 5.45 | 1.660 |
| MHW-MLW | 3.77 | 1.148 | 3.57 | 1.089 | 3.53 | 1.077 | 3.69 | 1.118 |
| MLHW-MHLW | 2.07 | 0.631 | 1.78 | 0.544 | 1.79 | 0.546 | 1.89 | 0.575 |
| Greater Tropic | 6.13 | 1.869 | 6.09 | 1.857 | 5.96 | 1.817 | 6.04 | 1.842 |
| Lesser Tropic | 1.09 | 0.331 | 0.850 | 0.259 | 0.803 | 0.245 | 0.747 | 0.227 |

§ 1998 hourly data provided by the National Ocean Survey

* 1998 hourly data provided by Tetra Tech (Tetra Tech, 1999)

Table 7.4: Tidal Harmonic Analysis Results for the 1995-97 Current Meter Data

| Constituent | Current Amplitude , $\mathrm{m} \mathrm{s}^{-1}$ |  | Current Amplitude, $\mathrm{ft} \mathrm{s}^{-1}$ |  | Current Direction, Deg. True ${ }^{\S}$ | Current Phase, Degrees* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Major axis ${ }^{\dagger}$ | Minor axis ${ }^{\dagger}$ | Major axis | Minor axis ${ }^{\dagger}$ |  |  |
| $\mathrm{Q}_{1}$ | 0.011 | 0.001 | 0.036 | 0.003 | 349 | 210 |
| $\mathrm{O}_{1}$ | 0.081 | 0.000 | 0.266 | 0.000 | 343 | 193 |
| $\mathrm{P}_{1}$ | 0.051 | 0.001 | 0.167 | 0.003 | 351 | 215 |
| $\mathrm{K}_{1}$ | 0.171 | 0.000 | 0.561 | 0.000 | 346 | 197 |
| $\mathrm{N}_{2}$ | 0.083 | -0.002 | 0.272 | -0.006 | 348 | 21 |
| $\mathrm{M}_{2}$ | 0.377 | -0.009 | 1.236 | -0.030 | 345 | 40 |
| $\mathrm{S}_{2}$ | 0.103 | 0.003 | 0.338 | 0.010 | 346 | 25 |
| $\mathrm{K}_{2}$ | 0.046 | 0.003 | 0.151 | 0.010 | 349 | 28 |
| $\mathrm{MK}_{3}$ | 0.027 | 0.002 | 0.089 | 0.007 | 352 | 138 |
| $\mathrm{M}_{4}$ | 0.053 | 0.002 | 0.174 | 0.007 | 343 | 43 |
| $\mathrm{M}_{6}$ | 0.015 | 0.001 | 0.049 | 0.003 | 342 | 167 |
| $\mathrm{M}_{8}$ | 0.006 | 0.001 | 0.020 | 0.003 | 339 | 271 |

[^6]
### 7.2.2. Wavelet Tidal Analysis Results

Continuous wavelet transform tidal analysis provides a continuous output over the period of a tidal record of the variation in amplitude and phase of the major tidal species. Tidal constituents within tidal species are not resolved. In the present case, wavelet tidal analysis is used to investigate possible non-stationary behavior in Morro Bay tides. Figure 7.5a shows amplitude "scaleograms" for tidal elevation data collected at stations Port San Luis (PSL), MBN and MBS. A scaleogram uses color density or shading to indicate variations in amplitude as a function of time (on the horizontal axis) and frequency (on the vertical axis) ${ }^{\frac{1}{4}}$ A scaleogram is almost like a fingerprint of a tidal record - an enormous amount of information is provided, and each record is slightly different.

These scaleograms suggest the following conclusions:

- The $\mathrm{D}_{1}$ tidal amplitudes at the three stations are very similar, both in amplitude and in time variations in amplitude. The $\mathrm{D}_{2}$ tidal amplitudes show a similar spatial consistency.
- The most prominent features of the $\mathrm{D}_{2}$ tide are spring tides at $\sim \mathrm{d} 70$ and 87 . Another spring tide at the end of the record cannot be fully resolved. The strength of these spring tides varies because of variations in the distance between the moon and earth.
- The $\mathrm{D}_{1}$ tide has maxima (related to the declination of the moon's orbit) at $\sim \mathrm{d} 80$ and 92 .
- Overtides are relatively weak at Port San Luis, slightly larger at MBN, and substantially larger (though still small relative to $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ ) at station MBS.
- Overtides are strongest on spring tides, as is logical from the fact they are generated in proportion to the square or cube of the amplitudes of the $D_{1}$ and $D_{2}$ tides. $D_{6}$ is the strongest overtide, as suggested already by the harmonic analysis. Maxima in the $\mathrm{D}_{1}$ tide do not appear to be as effective in generating overtides. This is likely because the primary generation mechanism is bed friction (rather than wave distortion), and $D_{1}$ currents are weaker than $D_{2}$ currents for any given tidal height amplitude.

[^7]- The Port San Luis record shows energy at a period of 4 d ; this signal is found in the Los Angeles record (not shown) as well. It does not penetrate into Morro Bay.

The overall picture provided by the wavelet analysis of tidal elevation data supports that from the harmonic analysis. The most important added information is the close correspondence between spring tides and generation of overtides.

Wavelet analysis also reveals important details of the tidal current record (Figure 6.4). A scaleogram for the alongchannel component of the 1995-97 current meter data is shown in Figure 7.5 b .

- Alongchannel $D_{1}$ and $D_{2}$ tidal currents show regular neap-spring variability that mirrors the tidal forcing at the coastal tidal height reference station, Los Angeles. $\mathrm{D}_{2}$ tidal currents showed amplitudes of $\sim 0.6$ to $2.3 \mathrm{ft} \mathrm{s}^{-1}$. $\mathrm{D}_{1}$ tidal currents were $\sim 0.1$ to $0.85 \mathrm{ft} \mathrm{s}^{-1}$.
- The strongest alongchannel tidal current velocities were observed in November-December 1995 and August 1996; i.e., at the beginning of each of the two deployments. While this pattern could indicate that biofouling affected the current meter data somewhat, S 4 current meters are not normally susceptible to biofouling. Moreover, the $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ patterns do not change in a similar manner, which also suggests that biofouling was not a factor.
- Alongchannel overtides were strongest on spring tides. Alongchannel $D_{3}$ and $D_{4}$ overtide currents reached 0.2 to $0.45 \mathrm{ft} \mathrm{s}^{-1}$ and 0.25 to $>0.5 \mathrm{ft} \mathrm{s}^{-1}$ on spring tides, respectively. Alongchannel $D_{6}$ and $D_{8}$ overtide currents were not as strong, only about 0.1 to $0.2 \mathrm{ft} \mathrm{s}^{-1}$ and 0.1 ft $\mathrm{s}^{-1}$ on spring tides, respectively.
- The spectral distribution of tidal energy amongst the alongchannel overtide current species is different than was the case for the tidal elevation data, where the greatest energy was in the $D_{6}$ constituent. The fact that there was more current energy in $D_{3}$ and $D_{4}$ than $D_{6}$ reflects two factors: the importance of wave distortion related to the presence of tidal flats, and channel curvature. Tidal flats tend to cause short, sharp ebbs and long, slow floods, as in Figure 6.4. Channel curvature has multiple effects. For example, the maximum flood and ebb currents likely occur in different parts of the channel, because the channel curvature is stronger landward of the station than seaward. This results in a rectification of the current at any given
point in the channel. This rectification both causes the observed ebb-dominance of the mean flows at this station and affects the spectral distribution of overtide energy.
- Across-channel or lateral $D_{1}$ and $D_{2}$ tidal current amplitudes are weak, less than $0.1 \mathrm{ft} \mathrm{s}^{-1}$ on spring tides, with $D_{2}$ currents being about twice those for $D_{1}$. Interestingly, $D_{3}$ and $D_{4}$ lateral overtide currents are nearly as strong as the lateral currents for $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$. In fact, $\mathrm{D}_{4}$ lateral currents are larger than $D_{1}$ lateral currents. This pattern is typical of overtide generation due to channel curvature.
- Tidal variations in salinity are weak, except just after high river-flow events. When river flow is high, there is a greatly enhanced salinity gradient between Fairbank and the estuary entrance, created by the input of freshwater from Chorro and Los Osos Creeks. When salinity gradients are strong, tidal currents can cause relatively large tidal variations in salinity that are otherwise absent. As expected, these increased tidal variations in salinity are associated with low values of mean (tidally averaged) salinity at Fairbank. Biofouling may have affected salinity values somewhat.


### 7.3. Hypothesis H2 - Results for 1998 Surface Elevation Data

The strategy pursued in this investigation is as follows. Hypothesis H1 was defined to test the effects of mean flows on a quantity of major ecological significance, the tidal prism. Hypothesis H 2 addresses the individual tidal processes that collectively create the tidal prism. It states that: "Specific tidal species and tidal constituents in Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow". The role of H 2 is primarily to support and clarify the results for H 1 . Any positive result for H 1 must be explicable in terms of positive results for at least some of the tidal species in H2. Tidal theory provides, moreover, the knowledge to interpret any positive result for H 2 in terms of physical mechanisms. A negative result for H 2 would support and extend a negative result for H 1 , in that the tests employed in H 2 are more specific and sensitive than those in H 1 . A positive result for H 2 is possible without a positive result in H 1 , if the effects on the tides are small and confined to the overtide species. A positive result for H 1 without a positive result for H 2 would indicate methodological problems. H2 is tested using wavelet tidal analysis results for the major tidal species $\left(D_{1}\right.$ and $\left.D_{2}\right)$ and selected overtides $\left(D_{4}\right.$ and $\left.D_{6}\right)$, for both surface elevation and cur-
rents. The latter provide an especially sensitive test of mean flow effects on tidal propagation in the bay.

Hypothesis H1 can only practically be tested with tidal elevation data, because there is no simple analog to tidal range (calculated from surface elevation) that can be routinely determined for currents. Hypothesis H 2 can be tested with either surface elevation or current data. H2 is tested using the 1998 Tetra Tech surface elevation data in this section; analyses of the 1995-96 PG\&E current data are described in the following section.

### 7.3.1. The Major Tidal Species, $D_{1}$ and $D_{2}$

The wavelet analysis provides a time series of amplitudes and phases for all tidal species at each station. Calculation of a complex impedance time series for stations MBN and MBS (using station PSL as a reference) was used to remove tidal monthly variations. The complex impedance was then resolved into an amplitude ratio and phase difference. To examine any changes within the bay, a complex impedance of MBS against MBN was also formed, but this calculation did not provide any new information. Most results shown here for the major tidal species $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ are for the most landward station in Morro Bay (MBS) relative to Port San Luis (PSL); Figures 7.7-7.12. This station in mid-bay is emphasized because: a) it is most likely to reveal the effects of a mean flow, $b$ ) changes in the interior of the bay that are of primary ecological significance, and c) the results for MBN do not reveal any additional information. These figures show that calculation of the impedance removes most of the neap-spring (and other tidalmonthly) variability. That is, to the degree that the $\mathrm{D}_{1}$ or $\mathrm{D}_{2}$ waves impinging on the coast at Morro Bay vary in amplitude in direct proportion to the size of the wave at Port San Luis, then the impedance calculation removes this effect. What this calculation cannot remove is the smaller (non-linear) effects of wave distortion and bed friction in modifying the tidal wave. By removing large, linear effects, the impedance calculation increases the chance that small nonlinear effects of mean flows on the tidal regime will be detected.

The $D_{1}$ results in Figure 7.6 suggest that the $D_{1}$ wave at $M B N$ and MBS is smallest (small impedance amplitude relative to PSL) and moves most rapidly (a small phase difference relative to PSL) when the $D_{1}$ wave itself is small ( $\sim \mathrm{d} 73$ and 87 ). See Figure 7.5a for the time variation of
$\mathrm{D}_{1}$ amplitude. When the $\mathrm{D}_{1}$ wave is large ( $\sim \mathrm{d} 80$ and 92 ), the MBS impedance amplitude and phase difference have intermediate values. These patterns suggest that $\mathrm{D}_{1}$ responds to frictional damping from $\mathrm{D}_{2}$ as well as from its own propagation. Complex patterns are, therefore, expected for $D_{1}$. Despite some noise, Figure 7.7 suggests that the $D_{2}$ wave at MBN and MBS is largest (relative to PSL) and moves most quickly on neap tides when the $\mathrm{D}_{2}$ wave is weak ( $\sim \mathrm{d} 78$ and 93). See Figure 7.5 a for the time variation of $D_{2}$ amplitude. The relative $D_{2}$ amplitude is smaller and the wave somewhat delayed in reaching station MBS on spring tides when the $\mathrm{D}_{2}$ wave is large ( $\sim$ d 70, 87, and $>97$ ) - these results are expected from the non-linear interaction of the tidal wave with bed friction.

The tests of major tidal species against MBPP intake flow also yield a clear result, at least for the available range of MBPP flows. Despite some scatter in the results for ratios of MBPP intake flow to river flow of $<0.04$, there is no physically meaningful dependence in Figures 7.8 and 7.9 of the impedance amplitude or phase difference for the larger tidal species on the square root of MBPP intake flow. ${ }^{[5}$ The scatter at low MBPP intake flow levels reflects the large number of data points for low plant operation levels. If more data were available for higher MBPP intake levels, a similar scatter would also likely be seen. The MBN vs. PSL and MBS vs. MBN were also calculated, but did not reveal any additional information. Thus, there is a negative outcome for the major tidal species with regard to H 2 a .

The potential effects of river flow on the impedance amplitudes and phase differences for $D_{1}$ and $D_{2}$ are shown in Figures 7.10 and 7.11. Just as with MBPP intake flow, amplitudes and phase differences are plotted against the square root of the river flow. The dynamic range of river flow during the March-April 1998 period was too limited ( $\sim 0.2$ to $1 \%$ of the tidal prism) to support any conclusions regarding the influence of river flow on the major tidal species during this time period (under H2b). Just as with the MBPP intake flow results, there is considerable scatter in the results at a river flow to tidal prism ratio of $\sim 0.004$. This scatter reflects the large number of data points at that flow level.

[^8]
### 7.3.2. The Overtides, $D_{4}$ and $D_{6}$

Results reported here for the overtides focus on $D_{4}$ and $D_{6}$ for several reasons:

- Tidal theory (above) suggests that $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ should respond differently to the presence of a mean flow. To the extent that these overtides arise from bed friction, $\mathrm{D}_{4}$ should increase (relative to local $\mathrm{D}_{2}$ ) with increasing mean flow, while $\mathrm{D}_{6}$ should decrease. $\mathrm{D}_{4}$ may also initially increase relative to $D_{2}$ at the coast, as flow increases. For very strong mean flows, $D_{4}$ at an estuarine station must decrease relative to amplitude $\mathrm{D}_{2}$ at the coast, but it will not decrease as rapidly as $D_{2}$ at the estuarine station. If any response to a mean flow were to be detected, a consistent response from these two overtides would help to validate the result.
- Variations in $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ are relatively easy to detect with wavelet filters, because these overtides are typically larger than adjacent tidal species.
- $D_{3}$ is not used for two reasons. First, $D_{3}$ is close in frequency to the much more energetic $D_{2}$ species, which may contaminate the $D_{3}$ result. Second, it is harder to predict or interpret the behavior of $D_{3}$. Like $D_{4}, D_{3}$ can arise from a quadratic interaction of $D_{1}$ with $D_{2}$ (making it proportional to $b$ in eq. 1); in this case it should increase (relative to the major tidal species) with increasing mean flow. $\mathrm{D}_{3}$ can, however, also be created by a cubic interaction of $\mathrm{D}_{1}$ with itself (making it proportional to $c$ in eq. 1), in which case it should decrease with increasing mean flow. Thus, no clear prediction can be made with regard to $\mathrm{D}_{3}$ behavior.
- $\mathrm{D}_{8}$ is small and arises only from very non-linear processes, resulting in a noisy signal, so $\mathrm{D}_{8}$ is also not considered here.

The time variation of $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ overtide amplitudes and phases (relative values in Figures 7.12 and 7.13 and absolute amplitudes in Figure 7.5a) show complex variations, perhaps because both overtides are (in absolute terms) small in the bay, though much larger than at a coastal station like PSL. In particular, the $\mathrm{D}_{4}$ phases at MBN are likely not significant, because of the small amplitude of $\mathrm{D}_{4}$ at MBN. In contrast, $\mathrm{D}_{6}$ phases at MBN do appear meaningful, with the largest phase difference (greatest time difference between processes in the bay and at the coastal station) occurring on neap tide. There is also a weak but clear pattern for the $\mathrm{D}_{4}$ phases at MBS, where the shortest delays (smallest phase) are seen on neap tides, when friction is minimized. This behavior does not hold for the $\mathrm{D}_{6}$ phase at MBS, where neap tides have both the
largest and smallest phase delays. An interesting feature of the overtide amplitude patterns, especially for $\mathrm{D}_{6}$, is that absolute amplitude does increase on spring tides (as predicted by theory; see Figure 7.5a), but $\mathrm{D}_{6}$ amplitude relative to the cube of $\mathrm{D}_{2}$ does not. Thus, the largest amplitudes for both $D_{4}$ and $D_{6}$ occur at about d 78-82, at the end of the neap tide. This means that overtide generation is not as strong as expected from the simplest possible physical interpretation of overtides in the bay, given in Sections 4.2 and 4.3. A longer data record will be required to provide a definitive physical interpretation of the overtides in the bay.

The situation with regard to the behavior of the overtides relative to the MBPP intake flow is simpler. Though there is some scatter in the results for low MBPP intake flow levels, there is no physically meaningful dependence in Figures 7.14 and 7.15 of the impedance amplitude or phase difference for the overtide species $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ on MBPP intake flow, over the available range of MBPP flows. The $\mathrm{M}_{6}$ signal at MBS is particularly clear, because the scatter in $\mathrm{M}_{6}$ phase is small at MBS. The MBN vs. PSL and MBS vs. MBN were also calculated, but were too noisy to interpret, likely because overtide amplitudes at MBN are small and quite noisy. Thus, there is a negative outcome with regard to H 2 a for the overtide species also.

The potential effects of river flow on the impedance amplitudes and phases for $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ are shown in Figures 7.16 and 7.17. The dynamic range of river flow during the March-April 1998 period was too limited ( $\sim 0.2$ to $1 \%$ of the tidal prism) to support any conclusions regarding the influence of river flow on the non-linear overtide species during this time period (H2b).

### 7.3.3. Summary for Hypothesis H2 - Surface Elevation Analyses

Tests of the linear tidal species $\left(D_{1}\right.$ and $\left.D_{2}\right)$ at stations MBS and MBN failed to show any perturbations of tidal elevation properties that could be correlated with MBPP intake flow or river inflow. Tests of non-linearly generated overtides focused on $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$, because these are the two largest overtides in the bay. Also, specific predictions are available as to their reactions to the presence of a mean flow - if a mean flow is above a threshold level, it should cause $D_{4}$ to increase and $D_{6}$ to decrease relative to local $D_{2}$. Although there is some random variability in the analysis results, no perturbations in overtide properties were found that could be related to the presence of mean flows (either MBPP intake flow or river inflow). Thus, H2 was falsified with respect to both MBPP intake flow and river flow for this data set. Because the MBPP is located
close to the estuary entrance, it is not expected that MBPP intake flow will have any effect on the tides in the interior of the bay, even at an intake flow level corresponding to full plant operation. Higher river flow levels would, however, likely produce substantial effects on $D_{1}, D_{2}$, and the overtides. The following section demonstrates the correctness of these conclusions.

### 7.4. Hypothesis H2 - Tidal Currents

It is particularly desirable to use the 1995-97 PG\&E Fairbank Point current meter record to test hypothesis H2, because it is the longest oceanographic data record available for Morro Bay. During the period that the current meter was in the water, the MBPP intake flow varied over almost its entire range, from ca. 50 to 612 MGD out of a maximum possible range of 0 to 668 MGD. The corresponding range of the ratio of MBPP intake flow to tidal prism was 0.46 to $8.8 \%$. The range of Chorro Creek flow was from 1.1 to $457 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ ( 0.0012 to $4.57 \%$ of the tidal prism). Total freshwater inflow to the bay was likely 0.2 to $\sim 80 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ larger than this, because of the input from Los Osos Creek. Still, these river flow levels are modest, corresponding to about one-third of the two-year return flow level. The river flow levels are also less than the MBPP intake flow, which can reach ca. $1,000 \mathrm{ft}^{3} \mathrm{~s}^{-1}$ (which corresponds to 668 MGD ). Nonetheless, it will be seen that the river flow has a larger effect on tidal processes in the bay than the MBPP intake flow, because the mean flow due to the river flow occurs throughout a large part of the bay, including relatively shallow areas where tidal currents are weak. River flow appreciably increases friction in these areas. In contrast, the mean flow related MBPP intake flow occurs only in a deep part of the bay between the MBPP and the ocean entrance. Tidal currents are relatively strong in this part of the bay, and the MBPP intake flow has little effect on friction.

A long time series is advantageous for understanding the interaction of the tides with a mean flow (Hypothesis H2), but provides so much information that a qualitative discussion of the many physical processes that occurred in the 1995-97 period would be quite lengthy. As such it is beyond the scope of this work. The discussion that follows considers, therefore, only the relationship of the tidal currents with the MBPP intake flow and the river flow.

### 7.4.1. The Major Tidal Species, $D_{1}$ and $D_{2}$

The interaction of the major tidal constituents $\left(\mathrm{D}_{1}\right.$ and $\left.\mathrm{D}_{2}\right)$ with the mean flow is shown in Figures 7.18-7.19 (tides vs. MBPP intake flow) and 7.20-7.21 (tides vs. river flow). The plots of $D_{1}$ and $D_{2}$ impedance vs. MBPP intake flow give a superficial appearance that the strength of the tides actually increases with increasing MBPP intake flow. This interpretation is contrary to physical reasoning - if a mean flow is significant in the dynamics of an estuary, increased mean flow increases friction and decreases tidal currents. Moreover, a closer examination of the data does not bear out this initial impression. Most of the $\sim 1500$ points represent a limited range of low-moderate MBPP intake flow levels, and the scatter of the data at these intake flow levels is quite large. Thus, a regression analysis cannot yield a slope significantly different from zero at any reasonable confidence level. The implication is simple - there are other processes that create this scatter and are more important than MBPP intake flow in governing tidal processes. As discussed below, river flow is the primary factor involved. This negative result for H 2 a with regard to $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ is important, because the range of MBPP intake flow levels for this current meter data set covers almost the entire range of possible intake flows. Moreover, the current meter was located near Fairbank Point, the boundary between the outer part of the bay and the delta and back bay. If no effects of the MBPP can be observed in a current record collected at Fairbank Point, then it is very unlikely that any effects would be observed further landward.

The relationship between river flow and the major tidal species in Morro Bay is different - river flow has a significant effect on tidal processes (Figures 7.20 and 7.21). For the higher river flows, $D_{1}$ and especially $D_{2}$ impedance amplitudes are outside of the range established by the bulk of the data that correspond to low river flow. The phase differences are more ambiguous, and no clear inference could be drawn from the phase differences alone. Still, the increase in phase difference with increased river flow suggested by Figure 7.21 is consistent with enhanced friction; because friction slows wave propagation and increases phase differences relative to an external coastal station not affected by river flow.

The evident decrease in $D_{2}$ with increasing river flow is ecologically significant $-D_{2}$ is the largest tidal species and in large part determines tidal range. The fact that tidal range and tidal exchange decrease during high flow periods is, moreover, favorable for sediment retention in
back bay. That is, high river flow increases salinity differences between the bay and the ocean, increasing the tendency toward development of a two-layer estuarine exchange, with inflow near the bed. This inflow tends to trap sediment in back bay and the area of the deltas, where much sediment accretion has occurred over the last century. Weak tidal currents enhance two-layer estuarine circulation, by reducing the turbulent mixing that decreases estuarine salinity gradients. The fact that high river inflow reduces tidal currents at the same time that it increases salinity gradients means that estuarine circulation will be greatly enhanced during and after flood events, when sediment supply is high.

### 7.4.2. The Overtides, $D_{4}$ and $D_{6}$

Results for the overtides support the picture developed above - river inflow has an important effect on the tidal dynamics of Morro Bay, while the MBPP intake flow is unimportant. Figures 7.22 and 7.23 test the relationship of $\mathrm{D}_{4}$ and $\mathrm{D}_{6}$ properties to MBPP intake flow. In addition to the impedance amplitude and phase difference relative to LA tides, local $\mathrm{D}_{4}$ and $\mathrm{D}_{6} \mathrm{im}$ pedance amplitudes have been provided. ${ }^{6}$ These are the ratio of Fairbank $D_{4}$ (or $D_{6}$ ) amplitude to Fairbank (not LA) $D_{2}{ }^{2}$ (to $D_{2}{ }^{3}$ for $D_{6}$ ). There is little or no variation in $D_{4}$ and $D_{6}$ impedance amplitudes and phase differences with MBPP intake flow, except that there are a few very high values of impedance amplitude (low values of phase difference) for low-moderate values of MBPP intake flow. These are most evident in the middle plot (of local impedance amplitude) in both Figures 7.22 and 7.23. These exceptionally high values correspond, as discussed in the next paragraph, to periods of high river inflow. The results for tidal current overtides confirm, therefore, the results for the tidal elevations and for tidal current $D_{1}$ and $D_{2}$ - there is simply no relationship between tidal processes in the interior of the bay and MBPP intake flow. Thus, there is a clear negative result for Hypothesis H2a.

Figures 7.24 and 7.25 show the effects of river inflow on overtide properties. As with Figures 7.22 and 7.23, a local impedance amplitude is shown along with the impedance amplitude and phase difference relative to LA tides. Fairbank Point $\mathrm{D}_{4}$ current amplitude shows a strong increase (and phase difference a definite decrease) as river flow increases. The local impedance amplitude and phase difference (relative to LA) both show this effect clearly - values

[^9]for high river flow are outside the range established by low to moderate river flows. This is consistent both with predictions (in Section 4.3), and with the decrease in $D_{1}$ and $D_{2}$ amplitudes with river flow discussed above. That is, increased river flow causes energy to be lost from the main tidal species $\left(D_{1}\right.$ and $\left.D_{2}\right)$; it is transferred by bed friction to overtide species such as $D_{3}$ and $D_{4}$.

The result for $\mathrm{D}_{6}$ in Figure 7.25 is similarly consistent with predictions. The predicted behavior of $\mathrm{D}_{6}$ was that it should decrease with increasing river flow, relative to a coastal reference station. This behavior is evident in the top panel of Figure 7.25, which shows the impedance amplitude relative to LA tides. The middle panel (local impedance amplitude) shows, however, that the decrease in D 6 is less rapid than the local energy loss by $\mathrm{D}_{2}$. The phase data are too scattered in this case to provide a clear result. Clearly, overtides $D_{4}$ and $D_{6}$ are affected by river flow in a way that is not the case for MBPP intake flow. These results for the overtide species confirm earlier results for the main tidal species, $D_{1}$ and $D_{2}$.

### 7.4.3. Summary for Hypothesis H2 - Analyses of Current Meter Data

A extensive S 4 current meter record was available from Fairbank Point. It covers the period from November 1995 to January 1997, with a several month gap in the middle (March-July, 1996). This current meter record is especially valuable because a wide variety of MBPP intake flow levels occurred during this record, $\sim 50-612 \mathrm{MGD}$ (compared to a total range of $0-668$ MGD). There was also a modest Chorro Creek inflow range from 1.1 to $457 \mathrm{ft}^{3} \mathrm{~s}^{-1}$; i.e., up to about one-third of the two-year return flow. Even though the river inflow was only about half the maximum MBPP intake flow level during this period, river flow exerted a strong effect on tidal currents (and therefore, tidal exchange) in the interior of Morro Bay. In contrast, effects of variations of MBPP intake flow were below the "noise level". That is, they wer enough less than variations due to natural processes, that no effect of MBPP operation on the interior of the bay could be detected. The negative result for Hypothesis H2a (the effects of the MBPP intake flow on tidal exchange) means that there are no significant effects of the MBPP intake flow on sedimentary processes of the interior of Morro Bay, including sediment transport and the historic shoaling of the bay.

Conversely, the positive result for Hypothesis H2b (the effects of river inflow on tidal exchange) has implications for shoaling of the bay. Variations in river flow definitely affect tidal
range in the interior of the bay and sediment retention, not just because high river flows supply sediment, but through modulation of tidal exchange and two-layer estuarine circulation by the river flow. This is an effect of considerable ecological importance. The positive result for Hy pothesis H 2 a also serves to validate the analysis methods used - even though river inflow levels were only half the maximum MBPP intake flow level, strong effects of river flow on tidal processes were detected. Were there any effects of the MBPP intake flow on tidal processes on the interior of the bay, they also would have been detected.

### 7.5. Summary of Analyses of Tidal Heights and Currents

A thorough analysis of tidal properties of Morro Bay has been carried out, using both surface elevation and tidal current data. Two forms of tidal analysis were used. First, harmonic analysis was used to define the average amplitude and phase of major tidal constituents, for both tides and currents. Datum levels were estimated from harmonic analysis results, and were consistent with previous estimates. Second, wavelet analyses of tidal properties provide a detailed view of the time-evolution of the frequency structure of tidal processes. The wavelet results were used for hypothesis tests.

Two hypotheses were tested in this section:
H1: The daily tidal exchange and tidal prism of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow.

H2: Specific tidal species and tidal constituent of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow. Hypothesis H1 tests impacts on quantities of primary ecological significance, the tidal range and tidal exchange. Hypothesis H 2 clarifies and validates results for H 1 . If a positive result is obtained for H 1 , then it must be explicable in terms of the individual tidal constituents considered in H2. Moreover, tests of individual tidal species are more sensitive than tests of the tidal range, which is a net result of all tidal species acting together. Hypothesis H 1 was (for methodological reasons) tested using surface elevation data only, while Hypothesis H 2 was tested using both surface elevation and current meter data.

Results for Hypotheses H1a and H2a (the effects of MBPP intake flow on tidal processes in the bay) were consistent. No effects of MBPP operation were detectable in the interior of the bay (using both surface elevation and current data) or near the MBPP itself (where only surface elevation data were available). This test is conclusive in that the current meter data cover almost the range of MBPP intake flow, $\sim 50-612$ MGD (compared to a total range of $0-668$ MGD). This negative result for Hypotheses H1a and H2a means that adverse effects of the MBPP intake flow on shoaling processes in the interior of the bay are excluded. It is not possible for the MBPP to effect sediment transport in the shallow areas landward of Fairbank Point without acting through the tidal currents. This analysis does not, however, exclude the possibility that current data in the vicinity of the MBPP would reveal subtle effects on tidal currents near the estuary mouth.

There is a very strong contrast between the negative results for Hypotheses H1a and H2a and the positive results for Hypotheses H2b (the effects of river inflow on tidal processes in the bay). It is clear that the tidal dynamics of the bay respond strongly to river inflow - a decrease in tidal exchange was evident for river flow levels less than half of the maximum MBPP intake flow level. River inflow also strongly influences the sediment dynamics of the bay, both because high river inflow brings with it large amounts of sediment, and because river inflow changes the tidal dynamics and estuarine circulation of the bay in such a way as to favor sediment retention.

There is, furthermore, a physical reason why river inflow from Chorro and Los Osos Creeks affects Morro Bay's tidal dynamics in a way that MBPP intake flow does not. River flow enters the bay in a shallow area that has weak tidal currents and is a considerable distance from the mouth. Thus, river flow affects the entire bay from the deltas to the ocean. River inflow causes, therefore, a substantial increase in bed friction throughout much of the bay. In contrast, the MBPP intake flow exists in only between the MBPP and the mouth of the estuary. This part of the estuary is relatively deep and has much stronger tidal currents than most of the interior of the bay. The MBPP intake flow causes, therefore, only a relatively small increase in bed friction.

Finally, the analysis methods employed to test Hypotheses H1 and H2 were quite sensitive, as is evident for the positive results for Hypotheses H 2 b for relatively low river inflow levels of about one-third of the two-year return flow. If there were adverse effects of the MBPP intake flow on the tidal dynamics of the interior of the bay, they would have been detected.


Figure 7.1: Tidal ranges at stations MBN and MBS (above) and PSL (below).


Figure 7.2: Tidal range ratios for MBN to Port San Luis (PSL), MBS to PSL, and MBS to MBN. The tidal range is usually larger inside the bay at station MBS than near the entrance.
MBN:PSL vs Sqrt[MBPP Intake:Tidal Prism Volume]




Figure 7.3: Scatterplots of tidal range ratios against the square root of non-dimensional MBPP intake volume, for (top to bottom) MBN to PSL, MBS to PSL, and MBN to MBS. Tidal range is plotted against the square root of flow, because any variation in tidal range should depend on the square root of mean flow.


Figure 7.4: Scatterplots of tidal range ratios against square root of non-dimensional river inflow for (top to bottom) MBN to PSL, MBS to PSL, and MBN:MBS.


Figure 7.5a: Amplitude scaleograms for (top to bottom) Port San Luis (PSL), and the Morro Bay stations MBN and MBS. Time in days (d) is on the horizontal (x) axis, $\log _{2}$ frequency (in ${ }^{-1}$ ) is on the vertical (y) axis. The $D_{1}$ wave has a frequency (y-axis value) of $1 d^{1}$ (with $\log _{2}[1]=0$ ). The corresponding y-axis values for $D_{2}, D_{3}, D_{4}$ and $D_{6}$ are: 1, 1.58, 2, and 2.58, respectively.


Figure 7.5b: Amplitude scaleograms for (top) and (bottom) alongchannel current from the two $P G \& E$ deployments of an S4 current meter. Time in days from 11/1/95 (d) is on the horizontal (x) axis, $\log _{2}$ frequency $\left(\right.$ in $d^{-1}$ ) is on the vertical ( $y$ ) axis. The $D_{l}$ wave has a frequency ( $y$-axis value) of $1 d^{-1}$ (with $\log _{2}[1]=0$ ). The corresponding $y$-axis values for $D_{2}, D_{3}, D_{4}$ and $D_{6}$ are: 1 , 1.58, 2, and 2.58, respectively. There is a gap in the PG\&E current data from ca.d 170 to 290 that is indicated by the solid blue background (amplitude $<0.001 \mathrm{ft}$ ).


Figure 7.6: Time series (top to bottom) of: $D_{1}$ impedance amplitude and phase difference for stations MBN and MBS. All amplitudes and phases are relative to station PSL.


Figure 7.7: Time series (top to bottom) of: $D_{2}$ impedance amplitude and phase difference for stations MBN and MBS. All amplitudes and phases are relative to station PSL.


Figure 7.8: Scatterplot of $M B S D_{1}$ impedance amplitude (top) and $D_{1}$ phase difference (bottom) vs. square root of ratio of MBPP intake flow to tidal prism. All impedance amplitudes and phases are relative to PSL.


Figure 7.9: Scatterplot of $M B S D_{2}$ impedance amplitude (top) and $D_{2}$ phase difference (bottom) vs. ratio of MBPP intake flow to tidal prism. All impedance amplitudes and phases are relative to PSL.


Figure 7.10: Scatterplot of $M B S D_{1}$ impedance amplitude (top) and $D_{1}$ phase difference (bottom) vs. square root of ratio of river flow to tidal prism. All impedance amplitudes and phases are for station MBS relative to PSL.


Figure 7.11: Scatterplot of MBS $D_{2}$ impedance amplitude (top) and $D_{2}$ phase difference (bottom) vs. ratio of river flow to tidal prism. All impedance amplitudes and phases are for station MBS relative to Port San Luis.


Figure 7.12: Time series (top to bottom) of: $D_{4}$ impedance amplitude and phase difference for stations MBN and MBS. All amplitudes and phase are relative to station PSL


Figure 7.13: Time series (top to bottom) of: $D_{4}$ impedance amplitude and phase difference for stations MBN and MBS. All amplitudes and phases are relative to station PSL


Figure 7.14: Scatterplot of (top to bottom): MBS:PSL $D_{4}$ impedance amplitude, local $D_{4}$ impedance amplitude, and $D_{4}$ PSL phase difference (bottom) vs. square root of the ratio of MBPP intake flow to tidal prism.


Figure 7.15: Scatterplot of (top to bottom): MBS:PSL $D_{6}$ impedance amplitude, local $D_{6}$ impedance amplitude, and $D_{6}$ PSL phase difference (bottom) vs. square root of the ratio of MBPP intake flow to tidal prism.


Figure 7.16s: Scatterplot of (top to bottom): MBS:PSL $D_{4}$ impedance amplitude, local $D_{4}$ impedance amplitude, and $D_{4}$ PSL phase difference vs. square root of the ratio of river flow to tidal prism.


Figure 7.17: Scatterplots of (top to bottom): MBS:PSL $D_{6}$ impedance amplitude, local $D_{6}$ impedance amplitude, and $D_{6}$ phase difference vs. square root of the ratio of river flow to tidal prism.


Figure 7.18: Scatterplot of $P G \& E D_{1}$ impedance amplitude (top) and $D_{1}$ phase difference (bottom) vs. square root of ratio of MBPP intake flow to tidal prism. Impedance amplitude and phase difference are relative to Los Angeles tidal elevation.


Figure 7.19: Scatterplot of $P G \& E D_{2}$ impedance amplitude (top) and $D_{2}$ phase difference (bottom) vs. square root of ratio of MBPP intake flow to tidal prism. Impedance amplitude and phase difference are relative to Los Angeles tidal elevation.


Figure 7.20: Scatterplot of $P G \& E D_{1}$ impedance amplitude (top) and $D_{1}$ phase difference (bottom) vs. square root of ratio of river flow to tidal prism. All impedance amplitudes and phases are relative to Los Angeles tidal elevation.


Figure 7.21: Scatterplot of $P G \& E D_{2}$ impedance amplitude (top) and $D_{2}$ phase difference (bottom) vs. square root of ratio of river flow to tidal prism. All impedance amplitudes and phases are relative to Los Angeles tidal elevation.


Figure 7.22: Scatterplots of (top to bottom): PG\&E:LA $D_{4}$ impedance amplitude, local $D_{4}$ impedance amplitude, and $P G \& E D_{4}$ phase difference relative to $L A$ vs. square root of the ratio of MBPP intake flow to tidal prism.


Figure 7.23: Scatterplots of (top to bottom): PG\&E:LA $D_{6}$ impedance amplitude, local $D_{6}$ impedance amplitude, and $P G \& E D_{6}$ phase difference relative to $L A$ vs. square root of the ratio of MBPP intake flow to tidal prism.


Figure 7.24: Scatterplots of (top to bottom): PG\&E:LA $D_{4}$ impedance amplitude, local $D_{4}$ impedance amplitude, and $P G \& E D_{4}$ phase difference relative to $L A$ vs. square root of the ratio of river flow to tidal prism.


Figure 7.25: Scatterplots of (top to bottom): PG\&E:LA $D_{6}$ impedance amplitude, local $D_{6}$ impedance amplitude, and PG\&E $D_{6}$ phase difference relative to $L A$ vs. square root of the ratio of river flow to tidal prism.

## 8. Summary of Conclusions

The possible impacts of the MBPP intake flow on tidal processes in Morro Bay have arisen as an issue in the Application for Certification process. The concern is that the MBPP intake flow might decrease the tidal prism and tidal exchange of the bay or in some other way affects tidal processes. If tidal processes were impacted by the MBPP, then the plant might have some role in the observed shoaling of the bay. This report describes analyses that evaluate the validity of this concern. To insure a rigorous and decisive result, the analyses are posed in terms of formal hypotheses, and state-of-the-art tidal analysis methods were used for hypothesis tests. The focus is on tidal processes (instead of sediment transport per se) because: a) tidal processes can be easily quantified, and b) any impacts on sediment transport must be a result of the physical circulation. If impacts on physical circulation are absent, then there can be no impacts on sediment transport.

The data analyses summarized below utilized two data sets:

- One month of tidal elevation data collected by Tetra Tech during March-April 1998 (Tetra Tech, 1999). Stations were located near the MBPP (station MBN) and in the interior of the bay (station MBS). Data from multiple locations is quite advantageous in understanding tidal dynamics.
- Data from a current meter deployed by PG\&E near Fairbank Point between November 1995 and January 1997 (with a $\sim 4$ month gap between March and July 1996). Although data are available from only one location, the data set covers a large range of MBPP intake flow and river inflow. Furthermore, Fairbank Point is a crucial location - if no effects of the MBPP can be detected at Fairbank Point, then effects will also be absent at more landward points in back bay.

Two hypotheses were considered; the first hypothesis tested was:
H1: The daily tidal exchange and tidal prism of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow.

Hypothesis H1 was tested using the month of tidal elevation data collected by Tetra Tech in spring 1998. Results for H1 were negative, for both MBPP intake flow and river inflow. MBPP
intake flow varied from $\sim 150$ to 360 MGD during the March-April 1998 period during which the Tetra Tech tidal elevation data were collected. This intake flow range corresponds to a range in the ratio of intake flow to tidal prism of $\sim 1.2$ to $4.2 \%$. The total possible range of the ratio of intake flow to tidal prism is zero (no plant operation) to $\sim 9 \%$ (full operation during the weakest neap tide). The range of plant operation that occurred during March-April 1998 did not produce any detectable perturbations to the tidal prism at station MBN (near the MBPP plant) or at station MBS (in the interior of the bay). The ratio of tidal range at station MBS to that at MBN was also unaffected. This test is not conclusive, because it covered only a portion of the total range of MBPP intake flow. The result achieved is, however, supported by analyses of tidal current data involving essentially the total range of MBPP intake flow, as described under Hypothesis H2, below. River flow into Morro Bay during the March-April 1998 period was only $\sim 0.02$ to $1 \%$ of the tidal prism. This is not high enough to produce any noticeable perturbation of the tides. Higher river flows in the range of $5-30 \%$ of the tidal prism do occur at intervals of $\sim 6$ mo to 5 yrs and do perturb the tides, thereby affecting sediment transport.

Hypothesis H1 was not tested with the 1995-97 current meter data, because there is no commonly accepted parameter that can be derived from current meter data analogous to tidal range, as derived from tidal elevation.

The second hypothesis tested was:
H2: Specific tidal species and tidal constituents of Morro Bay are measurably affected by the presence of mean flow processes in the bay: a) the MBPP intake flow and b) river inflow.

Results for H2a were negative for both the 1998 tidal elevation data and the 1995-97 current meter data. This negative outcome for the primary components of the tide (the diurnal $\left[\mathrm{D}_{1}\right]$ and semidiurnal or $\left[\mathrm{D}_{2}\right]$ tidal species) strongly reinforces the conclusions for H 1 , because the behavior of $D_{1}$ and $D_{2}$ waves governs the size of the tidal prism. Tests were also conducted for nonlinearly generated overtides, because these are quite sensitive to non-tidal perturbations. These tests focused on the two largest overtides in the bay, the quarterdiurnal and six-diurnal species $\left(D_{4}\right.$ and $\left.D_{6}\right)$. Also, specific predictions were available as to the reactions of $D_{4}$ and $D_{6}$ to the presence of a mean flow. If a mean flow actually influences tidal dynamics of a bay, it should cause $D_{4}$ to increase and $D_{6}$ to decrease, after normalization to the tide at a coastal reference sta-
tion. If the $D_{4}$ and $D_{6}$ species are normalized to the local $D_{2}$ tide at the location of observations, then the overtide species should increase, because tidal energy is transferred from $D_{2}$ to the overtides as part of the process of frictional energy loss by $\mathrm{D}_{2}$.

Results for Hypotheses H1a and H2a (the effects of MBPP intake flow on tidal processes in the bay) were consistent. No effects of MBPP operation were detectable in the interior of the bay (using both surface elevation and current data) or near the MBPP itself (where only surface elevation data were available). This test is conclusive in that the current meter data cover almost the entire range of MBPP intake flow, $\sim 50-612$ MGD (compared to a total range of $0-668$ MGD). This negative for Hypotheses H1a and H2a means that adverse effects of the MBPP intake flow on shoaling processes in the interior of the bay are excluded. It is not possible for the MBPP to affect sediment transport in the very shallow waters landward of Fairbank Point without acting through the tidal currents. This analysis does not, however, exclude the possibility that current data in the vicinity of the MBPP would reveal subtle effects on tidal exchange, sediment transport and currents near the estuary entrance.

There is a strong contrast between the negative results for Hypotheses H1a and H2a and the positive results for Hypotheses H 2 b (the effects of river inflow on tidal processes in the bay). The tidal dynamics of the bay respond strongly to river inflow - a decrease in tidal exchange was evident for river flow levels less than half of the maximum MBPP intake flow level. River inflow also strongly influences the sediment dynamics of the bay, both because high river inflow brings with it large amounts of sediment, and because river inflow changes the tidal dynamics and estuarine circulation of the bay in such a way as to favor sediment retention.

There is, furthermore, a clear physical reason why river inflow from Chorro and Los Osos Creeks affects Morro Bay's tidal dynamics in a way that MBPP intake flow does not. River inflow enters the bay in a shallow area that has weak tidal currents and is a considerable distance from the mouth. Thus, river flow affects the entire bay from the deltas to the ocean. River inflow causes, therefore, a substantial increase in bed friction throughout much of the bay. In contrast, the MBPP intake flow exists only in a small area between the MBPP and the mouth of the estuary. This part of the estuary is relatively deep and has much stronger tidal currents than most of
the interior of the bay. The MBPP intake flow causes, therefore, only a relatively small increase in bed friction.

Finally, the analysis methods employed to test Hypotheses H1 and H2 were quite sensitive, as is evident from the positive results for Hypotheses H 2 b for relatively low river inflow levels (one-third of the two-year return flow). If there were adverse effects of the MBPP intake flow on the tidal dynamics of the interior of the bay, they would have been detected.

In summary, careful analyses of tidal properties during the 1995-98 period do not support the idea that MBPP intake flow has any effects, positive or negative, on the tidal regime, sediment transport or shoaling of Morro Bay. The data analyzed covered most of the dynamic range of the ratio of MBPP intake flow to tidal prism, but did not include periods with no plant operation. Since a negative outcome was achieved for periods of almost full plant operation, it is unlikely that the MBPP intake flow has any adverse effects on the sediment transport and shoaling processes of the interior of the bay at low operation levels. In contrast, river inflow was found to have very strong effects on the tidal properties of the bay. Not only do periods of strong river inflow provide large amounts of sediment to the bay, strong river inflow decreases tidal exchange and increases two-layer estuarine circulation in such a way as to foster retention of sediment. This retention of sediment is a natural process, but it has contributed to the shoaling of back bay.

## 9. References

Dronkers, J. J., 1964, Tidal Computations in Rivers and Coastal Waters, North-Holland, Amsterdam.

Dyer, K. R., 1997, Estuaries, a Physical Introduction, ${ }^{\text {nd }}$ Ed, Wiley, New York.
Foreman, M. G. G., 1977, Manual for Tidal Heights Analysis and Prediction, Pacific Marine Science Report 77-10, Institute of Ocean Sciences, Patricia Bay, Victoria, B. C., 101 pp.

Friedrichs, C. T., and D. G. Aubrey, 1994, Tidal propagation in strongly convergent channels, J. Geophys. Res. 99: 3321-3336.

Gerdes, G. L., E. R. J. Primbs, and B. M. Browning, 1974, Natural Resources of Morro Bay Their Status and Future, California Department of Fish and Game, Coastal Wetland Series \#8.

Haltiner, J. and D. Thor, 1988, Sedimentation processes in Morro Bay, California, Phillip Williams and Associates, various paginations.

Haltiner, J. and D. Thor, 1991, Sedimentation processes in Morro Bay, California, Sedimentation and Physical Processes, ASCE Coastal Sediment Conference, Seattle, WA, pp. 7-1.1-7.1.21.

Flinchem, E. P. and D. A. Jay, 2000, An introduction to wavelet transform tidal analysis methods, Coast. Estuar. Shelf Sci. 51: 177-200.

Jay, D. A., 1991, Green's law revisited: tidal long wave propagation in channels with strong topography. J. Geophys. Res. 96: 20,585-20,598.

Jay, D. A. and Flinchem, E. P., 1997, Interaction of fluctuating river flow with a barotropic tide: A test of wavelet tidal analysis methods, J. Geophys. Res. 102: 5705-5720.

Jay, D. A. and Flinchem, E. P., 1999, A comparison of methods for analysis of tidal records containing multi-scale non-tidal background energy, Contin. Shelf Res. 19: 1695-1732.

Lanzoni and Seminara, 1998, On tide propagation in convergent estuaries, J. Geophys. Res. 103: 30,793-30,812.

Orme, A. R., 1991, Evolution of the Morro barrier-lagoon system: a synthesis, ASCE Coastal Sediment Conference, Seattle, WA, pp. 7-3.39-7.3.48.

Parker, B. B., 1991, The relative importance of the various non-linear mechanisms in a wide range of tidal interactions, in: B. B. Parker (ed.), Progress in Tidal Dynamics, pp. 237-268, John Wiley, New York.

Tetra Tech, Inc., 1998, Morro Bay National Estuary Program Sediment Loading Study, Lafeyette, CA., various paginations.

Tetra Tech, Inc., 1999, Morro Bay National Estuary Program Hydrodynamic Circulation Model, Lafeyette, CA., various paginations.

## 10. Glossary

Baroclinic, barotropic: Barotropic currents are those caused by a slope of the water surface. Baroclinic currents are those caused by sloping density surfaces within a body of water.

Bedstress: The horizontal frictional force exerted on flowing water by the seabed.

Diurnal (Semidiurnal, quarterdiurnal, six-diurnal, etc): Tidal components with periods of about one day; semidiurnal for twice daily, etc.

Harmonic: Consisting of many different frequency components, each represented by a sinusoid with a frequency, amplitude and phase.

Impedance: The ratio of the complex numbers representing the amplitude and phase of a tidal species.

Intertidal: The region where wetting and drying of the seabed occurs due to tidal motions.

Mean flow: A net water movement; that is, a motion that can be seen in current data after the tidal motion has been averaged out. Such a current may have a zero value and may evolve slowly over time, e.g., over a tidal month of $\sim 29.5 \mathrm{~d}$.

MLLW, MHHW: Mean lower-low water or MLLW refers to the average (over a long period time) of the lowest water surface elevation of each tidal day. Mean higher-high water or MHHW is the average of the highest tides.

Neap-spring cycle: The "fortnightly" lunar cycle, with a period of about 15 days. Days with the smallest ranges are neap tides, those with the largest ranges are spring tides. There is typically a stronger and a weaker neap and a stronger and a waker spring tide during a tidal month of $\sim 29.5$ d.

Shoaling: Filling in with sediment; the opposite of erosion.

Subtidal: At a lower frequency lower than that of the diurnal; i.e., a motion having a period of 25 hours or longer.

Overtides: Non-linearly generated components of the tide that are generated upon propagation of a tide into shallow water, through interactions of the main tidal species. They can be defined by analysis of data or modeled from the fundamental equations governing tidal motion. Such non-linear tidal species or "overtides" are weak or absent in the open ocean.

Stationary and non-Stationary: A process is stationary, if its statistical properties are constant over time. In a non-stationary process, statistical properties vary over time. Since river flow and MBPP intake flow are irregular processes, they will, to the extent that they affect the tides in the bay, render them non-stationary.

Tidal constituent: One of the harmonic elements in a mathematical expression for the tideproducing force and in corresponding formulas for the tide or tidal current.

Tidal exchange: The volume of water that moves in and out of the mouth of the estuary to fill and empty the tidal prism.

Tidal-month: The 29.5-day lunar monthly tidal cycle, caused by orbit of the moon around the earth.

Tidal prism: Volume between the MLLW and MHHW datum levels.

Tidal range: Height between the lowest and highest tides of the day.

Tidal species: Major components of the astronomical tide. Each tidal species has a mathematical representation, in terms of a complex number with time-variable amplitude and phase.

Morro Bay Power Plant Modernization Project 316(b) Resource Assessment

## Appendix F

## Entrainment and Source Water Larval Fish and Megalopal Cancer Crab Results

Table F-1. Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Total All Surveys | Survey 1 <br> June $21-22,1999$ <br> $\mathrm{~N}=12$ <br> Ct. |  | $\begin{gathered} \text { Survey } 2 \\ \text { June } 28-29 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 3July 8-9$\mathrm{N}=12$ |  | Survey 4 <br> July 14-15 <br> $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 5 \\ \text { July 19-20 } \\ \mathrm{N}=12 \end{gathered}$ |  | Survey 6 <br> July 30-31 <br> $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 7 \\ \text { Aug. 3-4 } \\ \mathrm{N}=12 \end{gathered}$ |  | Survey 8 <br> Aug. 9-10 $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. |
| Gobiidae unid. | gobies | 26,703 | 753 | 1157.1 | 406 | 757.3 | 489 | 925.2 | 420 | 664.1 | 386 | 712.4 | 258 | 420.0 | 156 | 244.4 | 520 | 699.0 |
| Hypsoblennius spp. | blennies | 1,991 | 49 | 75.9 | 45 | 78.9 | 112 | 225.3 | 207 | 338.6 | 170 | 357.1 | 485 | 766.6 | 252 | 398.1 | 99 | 145.1 |
| Leptocottus armatus | Pacific staghorn sculpin | 1,896 | - |  | - |  | - |  | - |  | 1 | 2.0 | - |  | 1 | 1.3 | - |  |
| Stenobrachius leucopsarus | northern lampfish | 1,048 | - |  |  |  | 1 | 1.4 | - |  | - |  | - |  | - |  | - |  |
| Eucyclogobius newberryi | tidewater goby | 992 |  |  | 29 | 47.2 | 8 | 12.5 | 48 | 82.8 | 3 | 5.7 | 13 | 23.8 |  |  | 46 | 55.9 |
| Coryphopterus nicholsi | blackeye goby | 515 | 13 | 20.3 | 15 | 24.7 | 6 | 13.3 | 72 | 118.6 | 24 | 48.2 | 95 | 153.8 | 37 | 60.7 | 27 | 31.7 |
| Atherinopsis californiensis | jacksmelt | 396 | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| larval fish fragment | unidentified larval fishes | 384 | - |  | 1 | 1.8 | 27 | 55.3 | 6 | 10.0 | 1 | 2.3 | 1 | 1.3 | 1 | 1.5 | 6 | 8.7 |
| Sebastes spp. V_De | rockfishes | 360 | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Clupea pallasii | Pacific herring | 277 | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Gillichthys mirabilis | longjaw mudsucker | 242 | 2 | 2.8 | 10 | 20.0 | 5 | 11.0 | 1 | 1.6 | 2 | 4.0 | 1 | 1.9 | 1 | 1.7 | 29 | 36.5 |
| Genyonemus lineatus | white croaker | 238 | - |  | - |  | 1 | 1.4 | - |  | - |  | - |  | - |  | - |  |
| ${ }^{\text {Atherinops affinis }}$ | topsmelt | 222 | 3 | 4.8 | 7 | 11.8 | 8 | 14.4 | 10 | 15.8 | - |  | 4 | 7.5 | - |  | 37 | 42.1 |
| Lepidogobius lepidus | bay goby | 200 | - |  | 3 | 6.5 | 1 | 2.0 | 2 | 3.1 | - |  | 6 | 8.7 | 4 | 6.0 | 1 | 1.5 |
| Atherinidae unid. | silversides | 187 | - |  | 1 | 1.8 | 11 | 19.1 |  | 8.6 | - |  | - |  | 1 | 1.6 | 6 | 7.9 |
| Engraulis mordax | northern anchovy | 175 | - |  | 1 | 1.4 | 1 | 1.6 | 2 | 3.8 | 6 | 11.4 | - |  | 1 | 1.6 | 5 | 6.3 |
| Scorpaenichthys marmoratus | cabezon | 174 | - | - | 1 | 1.7 | - |  | - |  | - |  | - | - | - | - | - |  |
| Sebastes spp. V | rockfishes | 150 | - | - | - | - | - |  | - | - | - |  | - | - | - | - | - |  |
| Tarletonbeania crenularis | blue lanternfish | 143 | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Gibbonsia spp. | clinid kelpfishes | 103 | - |  | , | 1.5 | - |  | - | - | - |  | - |  | 1 | 1.5 | - |  |
| Bathymasteridae unid. | ronquils | 82 | 1 | 1.5 | 2 | 3.1 | - |  | 10 | 17.5 | 1 | 1.8 | - | - | - |  | 1 | 1.6 |
| larval fish - damaged | unidentified larval fishes | 79 | - |  | - |  | 2 | 4.7 | - |  | 1 | 1.7 | 1 | 1.1 | - |  | - |  |
| Cottidae unid. | sculpins | 75 | - |  | , | 4.4 | 1 | 2.0 | 5 | 7.9 | - |  | 1 | 1.5 | - |  | 2 | 2.9 |
| Chaenopsidae unid. | tube blennies | 57 | 2 | 3.4 | 2 | 3.9 | 2 | 3.9 | 2 | 3.3 | - | - | 9 | 13.6 | 4 | 5.9 | 5 | 6.7 |
| Stichaeidae unid. | pricklebacks | 53 | - |  | 2 | 3.1 | - |  | 2 | 3.4 | - | - | - |  | - |  | 2 | 2.8 |
| Artedius lateralis | smoothhead sculpin | 47 | - |  | 1 | 1.4 | - |  | - |  | - |  | - |  | - |  | - |  |
| Sebastes spp. VD | rockfishes | 46 | - | - | - | - | - |  | - | - | - |  | - | - | - | - | - |  |
| Oligocottus spp. | sculpins | 41 | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Cebidichthys violaceus | monkeyface eel | 33 | - |  | 2 | 3.5 | 3 | 4.2 | - | - | - |  | - |  | - | - | - |  |
| Typhlogobius californiensis | blind goby | 31 | 2 | 3.0 | 3 | 6.3 | - |  | 3 | 5.4 | - |  | 1 | 1.8 | - | - | 2 | 2.7 |
| Bathylagus ochotensis | popeye blacksmelt | 29 | 1 | 1.7 | - |  | - |  | - |  | - | - | - |  | - | - | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | 28 | - |  | 3 | 5.2 | - | - | - | - | - | - | 1 | 1.3 | 1 | 1.5 | 1 | 1.5 |
| Artedius spp. | sculpins | 27 | 1 | 1.4 | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Clinocotus analis | wooly sculpin | 26 | - |  | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Oxylebius pictus | painted greenling | 25 | - | - | 1 | 2.1 | - |  | 1 | 1.9 | - | - | 2 | 3.5 | - | - | 1 | 1.0 |
| Liparis spp. | snailfishes | 24 | - |  | - |  | 1 | 2.3 | - |  | - |  | - |  | - | - | 1 | 1.6 |
| Osmeridae unid. | smelts | 24 | - |  | - |  | - |  | - | - | - |  | - |  | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | 20 | 1 | 1.6 | 2 | 2.8 | - |  | 1 | 1.9 | - |  | 1 | 1.5 | - | - | - | - |
| Syngnathus spp. | pipefishes | 20 | - |  | - |  | - | - | - | - | 1 | 2.0 | - | - | - | - | - |  |
| Pleuronectidae unid. | flounders | 19 | - |  | - |  | - |  | - | - | - |  | - |  | - | - | - |  |
| Orthonopias triacis | snubnose sculpin | 18 | - | - | - | - | - |  | - | - | - |  | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | 16 | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | 16 | - | - | - | - | - |  | - | - | - |  | - | - | - | - | - |  |
| Hexagrammidae unid. | greenlings | 14 | - | - | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Ammodytes hexapterus | Pacific sand lance | 13 | - |  | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Citharichthys sordidus | Pacific sanddab | 12 | - |  | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Sebastes spp. V_D | rockfishes | 12 | - |  | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Blennioidei | blennies | 11 | 2 | 3.0 | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | 9 | - |  | - | - | - |  | - | - | - | - | - | - | - | - | - | - |
| Pholididae unid. | gunnels | 9 | - |  | - |  | - |  | - | - | - |  | - |  | - |  | - |  |
| Syngnathidae unid. | pipefishes | 9 | - |  | - |  | 1 | 2.0 | 1 | 1.9 | - |  | - |  | 1 | 1.8 | 3 | 3.5 |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Total All Surveys | $\begin{gathered} \text { Survey } 1 \\ \text { June } 21-22,1999 \\ \mathrm{~N}=12 \end{gathered}$ | Survey 2 <br> June 28-29 $\mathrm{N}=12$ | Survey 3 <br> July 8-9 <br> $\mathrm{N}=12$ | $\begin{gathered} \hline \text { Survey } 4 \\ \text { July } 14-15 \\ \mathrm{~N}=12 \end{gathered}$ | Survey 5 July 19-20 $\mathrm{N}=12$ | $\begin{gathered} \text { Survey } 6 \\ \text { July } 30-31 \\ \mathrm{~N}=12 \end{gathered}$ | Survey 7 <br> Aug. 3-4 <br> $\mathrm{N}=12$ | Survey 8 <br> Aug. 9-10 $\mathrm{N}=12$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ct . Conc. | Ct. Conc. |
| Citharichthys stigmaeus | speckled sanddab | 7 | - - | - - | - - | - - | - - | - - | - - | - - |
| Sciaenidae unid. | croaker | 7 | - - | - - | - - | 11.6 | - - | - - | - - | - |
| Syngnathus leptorhynchus | bay pipefish | 7 | - - | - - | - - | - - | - - | - - | - - | - |
| Agonidae unid. | poachers | 6 | - - | - - | - - | - - | - - | - - | - - | - - |
| Paralichthys californicus | California halibut | 6 | - - | - - | - - | - - | - - | - - | - - | - |
| Parophrys vetulus | English sole | 6 | - - | 1.5 | - - | - - | - - | - - | - - | - - |
| Seriphus politus | queenfish | 6 | - - | - - | - - | - - | $4 \quad 7.8$ | - - | - - | - - |
| Cottus asper | prickly sculpin | 5 | - - | - - | - - | - - | - - | - - | - - | - - |
| Gobiesox spp. | clingfishes | 5 | - - | - - | - - | - - | - - | - - | - - | - - |
| Icichthys lockingtoni | medusa fish | 5 | - - | - - | - - | - - | - - | - - | - - | - - |
| Pleuronectes bilineatus | rock sole | 4 | - - | - - | - - | - - | - - | - - | - - | - - |
| Zaniolepis spp. | combfishes | 4 | - - | - - | - - | - - | - - | - - | - - | - |
| Nannobrachium ritteri | broadfin lampfish | 3 | - - | - - | - | - - | - - | - - | - - | - - |
| Oligocotus maculosus | tidepool sculpin | 3 | - - | - - | - | - - | - - | - - | - - | - - |
| Psettichthys melanostictus | sand sole | 3 | - - | - - | - - | - - | - - | - | - - | - |
| Sardinops sagax | Pacific sardine | 3 | - - | - - | - - | - - | - - | - - | - - | - |
| Sebastes spp. V_D_ | rockfishes | 3 | - - | - - | - - | - - | - - | - - | - - | - - |
| Aulorhynchus flavidus | tubesnout | 2 | - - | - - | - | - - | - - | - - | - - | - - |
| Citharichthys spp. | sanddabs | 2 | - - | - - | - | - - | - - | - - | - - | - |
| Neoclinus spp. | fringeheads | 2 | - - | - - | - | - - | - - | - - | - - | - - |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | 2 | - - | - - | - | - - | - - | - - | - - | - - |
| Pleuronectiformes unid. | flatfishes | 2 | - - | - - | - - | - - | - - | - - | - - | - - |
| Sebastes spp. V_ | rockfishes | 2 | - - | - - | - - | - - | - - | - - | - - | - - |
| Argentina sialis | Pacific argentine | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Brosmophycis marginata | red brotula | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Clinidae unid. | clinid kelpfishes | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Clupeiformes | herrings and anchovies | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Diogenichthys atlanticus | longfin lanternfish | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Haemulidae |  | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Hypsopsetta spp. |  | 1 | - - | - - | - - | - - | - - | - - | - - | - |
| Icelinus spp. | sculpins | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Merluccius productus | Pacific hake | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Myctophidae unid. | lanternfishes | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Nannobrachium spp. | lanternfishes | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Pleuronichthys verticalis | honeyhead turbot | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Ruscarius spp. |  | , | - - | - - | - - | - - | - - | - - | - - | - - |
| Sebastes aurora | aurora rockfish | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Sternoptyx spp. | hatchetfishes | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Trachipteridae | ribbon fishes | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Trachipterus altivelis | king-of-the-salmon | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
| Zaniolepis frenata | shortspine combfish | 1 | - - | - - | - - | - - | - - | - - | - - | - - |
|  | Total: | 37,434 | 830 | 542 | 681 | 799 | 600 | 879 | 461 | 794 |
| Crabs |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | 564 | - - | - - | - - | - - | - - | 1.8 | 1.8 | - - |
| Cancer jordani (megalops) | hairy rock crab | 116 | - - | - - | - - | 1.6 | - - | - - | - - | - |
| Cancer anthonyi (megalops) | yellow rock crab | 77 | - - | - - | - - | - - | - - | - - | - - | 1.0 |
| Cancer gracilis (megalops) | slender rock crab | 31 | 23.1 | - - | - - | - - | - - | - - | 23.3 | - - |
| Carcinus maenas (megalops) | European green crab | 24 | - - | - - | - - | - - | - - | - - | - - | - |
| Cancer magister (megalops) | dungeness crab | 14 | $11 \quad 16.9$ | - - | - - | - - | - - | - - | - - | - - |
| Cancer productus (megalops) | red rock crab | 10 | $4 \quad 5.9$ | - - | 1.4 | - - | - - | - - | - - | - - |
| Cancer spp. (megalops) | cancer crabs | 9 | - - | - - | - - | $1 \quad 1.9$ | - - | - - | - - | - - |
|  | Total: | 845 | 17 | 0 | 1 | 2 | 0 | 1 | 3 | 1 |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 9 <br> Dec. 14-15 <br> $\mathrm{N}=11$ |  | $\begin{aligned} & \text { Survey } 10 \\ & \text { Dec. } 20-21 \\ & \mathrm{~N}=12 \end{aligned}$ |  | Survey 11 Dec. 28-29 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 12 \\ \text { Jan. } 3-4,2000 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 13 <br> Jan. 10-11 $\mathrm{N}=12$ |  | Survey 14 <br> Jan. 17-18 <br> $\mathrm{N}=12$ |  | Survey 15 <br> Jan. 24-25 <br> $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 16 \\ \text { Jan. } 31 \text {-Feb. } 1 \\ \mathrm{~N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ct. | Conc. | Ct. | Conc. | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. | Ct. | Conc. |
| Gobiidae unid. | gobies | 351 | 539.9 | 518 | 664.9 | 75 | 112.1 | 117 | 182.2 | 211 | 328.4 | 333 | 519.8 | 263 | 459.1 | 433 | 569.0 |
| Hypsoblennius spp. | blennies |  |  |  |  | - |  |  |  |  |  | 2 | 3.3 |  |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 765 | 1263.1 | 55 | 94.0 | 26 | 40.5 | 144 | 210.7 | 105 | 164.3 | 25 | 38.6 | 35 | 59.4 | 14 | 22.6 |
| Stenobrachius leucopsarus | northern lampfish | 29 | 50.3 | 85 | 145.0 | 11 | 14.8 | 569 | 921.0 | 50 | 72.6 | 27 | 40.8 | 10 | 15.5 | 2 | 3.0 |
| Eucyclogobius newberryi | tidewater goby |  |  | - |  | - |  |  |  | - |  | - |  | - |  |  |  |
| Coryphopterus nicholsi | blackeye goby | - |  |  |  | - |  |  |  | - |  |  |  | - |  | - |  |
| Atherinopsis californiensis | jacksmelt | 12 | 20.2 | 2 | 3.7 | 1 | 1.3 | 32 | 46.2 | 128 | 196.8 | 7 | 10.1 | 43 | 68.1 | 27 | 41.4 |
| larval fish fragment | unidentified larval fishes | 3 | 4.7 | 4 | 5.6 | - |  | 9 | 14.1 | 6 | 8.6 | 2 | 2.9 | 19 | 30.5 | 6 | 9.0 |
| Sebastes spp. V_De | rockfishes | - |  |  |  | 1 | 1.6 | 1 | 1.6 | - |  | 1 | 1.7 | 3 | 4.4 | 1 | 1.5 |
| Clupea pallasii | Pacific herring | 35 | 53.8 | 12 | 20.3 | 2 | 3.1 | 2 | 3.2 | - |  | 6 | 9.2 | 1 | 1.4 | - |  |
| Gillichthys mirabilis | longjaw mudsucker | 5 | 8.0 | 6 | 8.0 |  |  | 2 | 3.3 | 6 | 9.2 | 3 | 5.2 | - |  |  |  |
| Genyonemus lineatus | white croaker | 3 | 5.5 | 1 | 2.1 | 54 | 69.6 | 8 | 12.2 | 1 | 1.3 | 2 | 3.5 | 26 | 43.4 | 17 | 26.3 |
| Atherinops affinis | topsmelt | - |  |  |  |  |  |  |  | 1 | 1.6 | - |  | - |  | 1 | 1.7 |
| Lepidogobius lepidus | bay goby | 2 | 3.1 | 1 | 1.2 | - |  | 2 | 3.6 | - | - | 3 | 4.7 | 2 | 3.7 | - |  |
| Atherinidae unid. | silversides |  |  | 4 | 5.6 | 2 | 3.3 | 13 | 18.2 | 20 | 33.5 | 2 | 3.5 | 1 | 2.0 | 2 | 2.8 |
| Engraulis mordax | northern anchovy | 4 | 7.4 | 5 | 8.0 | 22 | 29.5 | 14 | 24.0 | 11 | 17.7 | 2 | 3.2 | 1 | 2.0 | - |  |
| Scorpaenichthys marmoratus | cabezon | 2 | 3.2 | - | - | 3 | 4.2 | 8 | 13.1 | 7 | 10.2 | 15 | 23.1 | 5 | 7.7 | 27 | 43.2 |
| Sebastes spp. V | rockfishes | - |  | - | - | 7 | 10.5 | 5 | 7.5 | 2 | 2.9 | 6 | 8.5 | 110 | 172.4 | 6 | 9.7 |
| Tarletonbeania crenularis | blue lanternfish | 1 | 1.8 | 6 | 11.0 | - |  | 63 | 99.2 | 2 | 3.0 | 1 | 1.3 | , | 3.3 |  |  |
| Gibbonsia spp. | clinid kelpfishes | 3 | 4.7 | - |  | 28 | 43.4 | 6 | 8.8 | - |  | 1 | 1.6 | 2 | 3.0 | 2 | 3.3 |
| Bathymasteridae unid. | ronquils | - |  | - | - | - |  | - |  | - | - | - |  | 5 | 7.5 | 3 | 4.2 |
| larval fish - damaged | unidentified larval fishes | 1 | 1.6 | - | - | - |  | 1 | 1.3 | - | - | 1 | 1.8 | 9 | 14.6 | - |  |
| Cottidae unid. | sculpins | 4 | 6.4 | - | - | 1 | 1.6 | 2 | 3.1 | - | - | - |  | 1 | 2.0 | 1 | 1.2 |
| Chaenopsidae unid. | tube blennies | - |  | - | - | - |  | - | - | - | - | - | - | - |  | - |  |
| Stichaeidae unid. | pricklebacks | 6 | 12.0 |  | - | 5 | 7.2 | 5 | 6.8 | 1 | 1.6 | - | - |  | - |  |  |
| Artedius lateralis | smoothhead sculpin | - |  |  |  |  |  | - |  | - | - |  | - |  |  | 2 | 3.2 |
| Sebastes spp. VD | rockfishes | 2 | 3.5 | 12 | 22.6 | 11 | 16.6 | 6 | 8.7 | 3 | 4.6 | - | - | 3 | 4.6 | 4 | 6.5 |
| Oligocotus spp. | sculpins | 1 | 1.3 | 1 | 2.1 | 2 | 2.7 | 3 | 4.5 | 1 | 1.6 | - | - | - | - | 3 | 4.2 |
| Cebidichthys violaceus | monkeyface eel | - |  | - | - | - |  | - | - | - | - | - | - |  | - | - |  |
| Typhlogobius californiensis | blind goby | - | - | - | - | - |  | - | - | - | - | - | - | 2 | 3.1 | - |  |
| Bathylagus ochotensis | popeye blacksmelt | - | - | - | - | - |  | 1 | 1.7 | - | - | - | - | 3 | 4.6 | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | - | - | - | - | - | - | - | - | - | - | - | - |  | - | - |  |
| Artedius spp. | sculpins | - | - | - | - | - |  | - | - | - | - | - |  | 1 | 1.5 | - |  |
| Clinocottus analis | wooly sculpin | - | - | - | - | - |  | 2 | 3.2 | - | - | - | - | - |  | - |  |
| Oxylebius pictus | painted greenling | - | - | - | - | - |  | - | - | - | - | - | - | - |  | 3 | 4.9 |
| Liparis spp. | snailfishes | - | - | - | - | 3 | 4.2 | - | - | - | - | - | - | - | - | - |  |
| Osmeridae unid. | smelts | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Syngnathus spp. | pipefishes | - | - | - | - | - |  | - | - | - | - | - |  | 1 | 1.6 | 1 | 1.2 |
| Pleuronectidae unid. | flounders | - |  | - |  | 3 | 4.2 | 1 | 1.9 | - | - | - | - | - | - | - |  |
| Orthonopias triacis | snubnose sculpin | - | - | - | - | - |  | - | - | - | - | - | - | - | - | 1 | 1.6 |
| Platichthys stellatus | starry flounder | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | 1 | 1.7 | - | - | 1 | 1.6 | - | - | - | - | - | - | 3 | 4.6 | - |  |
| Hexagrammidae unid. | greenlings | - |  | 3 | 5.4 | 3 | 4.8 | - | - | - | - | 1 | 1.6 | - | - | 1 | 1.6 |
| Ammodytes hexapterus | Pacific sand lance | - | - | - | - | - |  | - | - | - | - | - | - | - | - | 12 | 18.2 |
| Citharichthys sordidus | Pacific sanddab | 1 | 4.0 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. V_D | rockfishes | - |  | - | - | 1 | 1.2 | - | - | - | - | - |  | - | - | - |  |
| Blennioidei | blennies | - | - | - | - | 1 | 1.6 | 1 | 1.8 | - | - | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pholididae unid. Syngnathidae unid. | gunnels | - | - | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | 1 | 1.5 |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Citharichthys stigmaeus | speckled sanddab | - |  | - |  | 1 | 1.6 | - |  | - |  | - |  | 2 | 2.9 |  | Conc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sciaenidae unid. | croaker | - |  | - |  | . |  | - | - | - | - | - |  | . | - | - |  |
| Syngnathus leptorhynchus | bay pipefish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Agonidae unid. | poachers | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Paralichthys californicus | California halibut | - |  | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Parophrys vetulus | English sole | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Seriphus politus | queenfish | - |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Cotus asper | prickly sculpin | - |  | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
| Gobiesox spp. | clingfishes | - |  | - |  |  |  | - | - | - |  | - | - | - |  | - |  |
| Icichthys lockingtoni | medusa fish | 2 | 5.8 | - | - | 2 | 2.9 | - | - | - | - | - | - | - | - | - |  |
| Pleuronectes bilineatus | rock sole |  |  | - |  | - |  | - |  | - |  |  |  | - |  |  |  |
| Zaniolepis spp. | combfishes |  | - | - |  | 4 | 6.2 | - |  | - |  |  |  | - |  |  |  |
| Nannobrachium ritteri | broadfin lampfish |  | - | - |  |  |  | - | - | 1 | 1.9 | 1 | 1.5 | - |  | - |  |
| Oligocotus maculosus | tidepool sculpin | - | - | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
| Psettichthys melanostictus | sand sole | - | - | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
| Sardinops sagax | Pacific sardine | - | - | - |  | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. V_D_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Aulorhynchus flavidus | tubesnout | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Citharichthys spp. | sanddabs | - | - | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Neoclinus spp. | fringeheads | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Pleuronectiformes unid. | flatfishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Sebastes spp. V_ | rockfishes | - | - | - |  | - | - | - |  | - | - | - | - | - |  |  |  |
| Argentina sialis | Pacific argentine | - | - | 1 | 1.7 | - | - | - | - | - | - | - | - | - | - | - |  |
| Brosmophycis marginata | red brotula | - | - | - |  | - | - | - | - | - | - | - | - | - |  | - |  |
| Clinidae unid. | clinid kelpfishes | - | - | - | - | 1 | 1.5 | - | - | - | - | - | - | - |  | - |  |
| Clupeiformes | herrings and anchovies | - | - | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - | - | - | - | - |  | 1 | 1.3 | - | - | - | - | - |  |
| Haemulidae |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Hypsopsetta spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Icelinus spp. | scupins | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Merluccius productus | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Myctophidae unid. | lanternfishes | - | - | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Nannobrachium spp. | lanternfishes | - | - | - | - | - |  | 1 | 1.7 | - | - | - | - | - |  | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Ruscarius spp. |  | - | - | - | - | - | - | - |  | - |  | - | - | - |  | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - |  | 1 | 1.3 | - |  | - | - | - |  | - |  |
| Sternoptyx spp. | hatchetfishes | - | - | - | - | - | - | - | - | - |  | 1 | 1.3 | - | - | - |  |
| Trachipteridae | ribbon fishes | - | - | - | - | - | - | - | - | 1 | 1.6 | - | - | - | - | - |  |
| Trachipterus altivelis | king-of-the-salmon | - | - | - | - | 1 | 1.3 | - | - | - |  | - |  | - |  | - |  |
| Zaniolepis frenata | shortspine combfish | - | - | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
|  | Total: | 1,233 |  | 716 |  | 273 |  | 1,019 |  | 558 |  | 442 |  | 553 |  | 570 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | - |  | 1 | 1.7 | 2 | 2.5 | 2 | 2.9 | 2 | 3.4 | - |  | - |  | - |  |
| Cancer jordani (megalops) | hairy rock crab | - |  | 1 | 1.5 | - |  | 2 | 3.0 | 7 | 9.1 | 3 | 5.1 | 1 | 1.4 | - | - |
| Cancer anthonyi (megalops) | yellow rock crab | 4 | 6.1 | - |  | 2 | 2.3 | - |  | - |  | - |  | - |  | - |  |
| Cancer gracilis (megalops) | slender rock crab | 1 | 1.4 | - |  | - |  | 1 | 1.7 | 4 | 5.8 | 2 | 3.0 | - |  | 2 | 3.4 |
| Carcinus maenas (megalops) | European green crab | - |  | - |  | - |  | - |  | - |  | - | - | - | - | - |  |
| Cancer magister (megalops) | dungeness crab | - |  | - | - | - | - | - |  | - | - | - | - | - | - | - |  |
| Cancer productus (megalops) | red rock crab | - |  | - | - | - |  | - |  | - |  | - |  | - |  | - |  |
| Cancer spp. (megalops) | cancer crabs | - |  | - |  | - |  | - |  | - |  | - | - | - | - | - |  |
|  | Total: | 5 |  | 2 |  | 4 |  | 5 |  | 13 |  | 5 |  | 1 |  | 2 |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | $\begin{aligned} & \text { Survey } 17 \\ & \text { Feb. } 7-8 \\ & \mathrm{~N}=12 \end{aligned}$ |  | Survey 18 <br> Feb. 14-15 $\mathrm{N}=12$ |  | $\begin{aligned} & \text { Survey } 19 \\ & \text { Feb. } 21-22 \\ & \mathrm{~N}=12 \end{aligned}$ |  | $\begin{gathered} \hline \text { Survey } 20 \\ \text { Feb. } 28-29 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 21 <br> March 6-7 $\mathrm{N}=12$ |  | Survey 22 March 13-14 $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 23 \\ \text { March 20-21 } \\ \mathrm{N}=12 \end{gathered}$ |  | Survey 24 <br> March 27-28 $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ct . | Conc. | Ct. | Conc. |
| Gobiidae unid. | gobies | 442 | 750.5 | 858 | 1531.7 | 731 | 1348.0 | 603 | 905.0 | 623 | 783.8 | 473 | 646.3 | 625 | 963.3 | 668 | 1154.7 |
| Hypsoblennius spp. | blennies | 3 | 4.9 | - |  | - |  | - |  | - |  | - |  | - |  | 3 | 5.0 |
| Leptocottus armatus | Pacific staghorn sculpin | 71 | 115.5 | 6 | 9.8 | 1 | 1.6 | 14 | 19.8 | 3 | 4.0 | 5 | 6.8 | 9 | 13.8 | 51 | 82.6 |
| Stenobrachius leucopsarus | northern lampfish |  |  | - |  | 1 | 1.7 | 6 | 8.0 | 7 | 9.2 | 33 | 44.7 | 13 | 19.1 | 6 | 9.6 |
| Eucyclogobius newberryi | tidewater goby |  |  | 8 | 14.7 | 1 | 1.6 | 13 | 19.6 | 16 | 19.6 | 1 | 1.3 | 4 | 6.1 | 10 | 18.5 |
| Coryphopterus nicholsi | blackeye goby |  |  | - |  | - |  | - |  | - |  | 1 | 1.5 | 1 | 1.7 | 1 | 1.9 |
| Atherinopsis californiensis | jacksmelt | 23 | 34.7 | 15 | 27.5 | - |  | 16 | 22.4 | 4 | 5.0 | 31 | 42.1 | - | - | 12 | 21.5 |
| larval fish fragment | unidentified larval fishes |  |  | 19 | 32.2 | 1 | 1.7 | 24 | 34.9 | 11 | 13.8 | 3 | 3.8 |  |  | 2 | 3.6 |
| Sebastes spp. V_De | rockfishes |  |  | - |  | 8 | 10.5 | 1 | 1.3 | 17 | 22.7 | - |  | 15 | 26.3 | - |  |
| Clupea pallasii | Pacific herring | - |  | 4 | 6.6 | 2 | 3.2 | - | - | - | - | - |  | 1 | 1.6 | - |  |
| Gillichthys mirabilis | longjaw mudsucker | - |  | - |  | 1 | 2.1 | - |  | 4 | 4.9 | - |  | 4 | 6.2 | 2 | 3.2 |
| Genyonemus lineatus | white croaker | 5 | 8.1 | 10 | 15.4 | 2 | 3.2 | - |  | 1 | 1.4 | - |  |  |  | 16 | 28.5 |
| Atherinops affinis | topsmelt | 1 | 1.7 | - |  | - |  | - |  | 6 | 7.2 | - |  | 1 | 1.4 | 4 | 7.2 |
| Lepidogobius lepidus | bay goby | 2 | 3.4 | 1 | 1.9 | - |  | - |  | - |  | - |  |  |  | 1 | 1.9 |
| Atherinidae unid. | silversides | 24 | 42.3 | 11 | 18.3 | 1 | 1.6 | - |  | 1 | 1.2 | 4 | 5.1 | - |  | 1 | 1.9 |
| Engraulis mordax | northern anchovy | 1 | 1.9 | - |  | - |  | - |  | 4 | 5.0 | - |  | - |  | - |  |
| Scorpaenichthys marmoratus | cabezon | 5 | 7.9 | 34 | 57.8 |  |  | 4 | 5.7 | 4 | 5.3 | 8 | 11.7 |  | - | 3 | 5.3 |
| Sebastes spp. V | rockfishes |  |  | 2 | 3.5 | 1 | 1.7 | 1 | 1.3 | - |  |  |  |  | - | - |  |
| Tarletonbeania crenularis | blue lanternfish |  |  | - |  | - |  | - |  | 1 | 1.4 | 4 | 5.7 | 3 | 4.3 | 10 | 17.5 |
| Gibbonsia spp. | clinid kelpfishes | 8 | 12.3 | 1 | 2.0 | 3 | 4.5 | 6 | 8.9 | 9 | 11.6 | 2 | 2.5 | 4 | 6.3 | 1 | 1.9 |
| Bathymasteridae unid. | ronquils | 2 | 3.4 | 2 | 3.7 | 6 | 8.9 | - |  | 1 | 1.1 | - |  | - |  | - |  |
| larval fish - damaged | unidentified larval fishes | 7 | 12.5 | - |  | 1 | 1.7 | - |  | 3 | 3.6 | 2 | 2.6 | 1 | 1.3 | - |  |
| Cottidae unid. | sculpins | 1 | 2.0 | - |  | 5 | 9.4 | 2 | 3.2 | 3 | 4.3 | - |  | - | - | 1 | 1.6 |
| Chaenopsidae unid. | tube blennies | - |  | - |  | - |  | 1 | 1.3 | - |  | - |  |  | - | - |  |
| Stichaeidae unid. | pricklebacks | 1 | 1.6 | 11 | 20.4 | 1 | 2.1 | - |  | - |  | 1 | 1.2 | 1 | 1.7 | 5 | 7.2 |
| Artedius lateralis | smoothhead sculpin | - |  | - | - | 9 | 12.3 | 1 | 1.5 | - | - | 1 | 1.2 | 1 | 1.7 | - |  |
| Sebastes spp. VD | rockfishes | 2 | 3.6 | - | - | 1 | 2.1 | - |  | - | 6 | - |  | 1 | 1.6 | - |  |
| Oligocotus spp. | sculpins | 1 | 1.9 | - | - | 2 | 3.6 | 3 | 5.1 | 5 | 6.7 | 2 | 3.0 | - |  | 1 | 1.5 |
| Cebidichthys violaceus | monkeyface eel | - |  | - | - | 1 | 2.1 | - |  | 1 | 1.4 | - |  | 5 | 9.5 | - |  |
| Typhlogobius californiensis | blind goby | - |  | - | - | - |  | - |  | - |  | - |  | - | - | - |  |
| Bathylagus ochotensis | popeye blacksmelt | - |  | - | - | - |  | - | - | 1 | 1.5 | - |  | 2 | 3.6 | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | - |  | - |  | 1 | 2.1 | - |  | - |  | - |  | 2 | 3.1 | - |  |
| Artedius spp. | sculpins | 4 | 6.4 | 1 | 1.5 | 1 | 1.9 | - | - | 2 | 2.8 | 2 | 2.8 | - | - | - |  |
| Clinocotus analis | wooly sculpin | - |  | - | - | 1 | 2.1 | 1 | 1.8 | 1 | 1.3 | 1 | 1.3 | 1 | 1.6 | - |  |
| Oxylebius pictus | painted greenling | - |  | - |  | 1 | 1.0 | 1 | 1.5 | - | - | - |  | - | - | - |  |
| Liparis spp. | snailfishes | 1 | 1.7 | 1 | 1.3 | 2 | 3.8 | - |  | - |  | - |  | - | - | - |  |
| Osmeridae unid. | smelts | - |  | - |  | - | - | 1 | 1.3 | 15 | 20.3 | 1 | 1.4 | 5 | 7.0 | 1 | 1.8 |
| Ruscarius creaseri | rouchcheek sculpin | 1 | 1.6 | 1 | 1.9 | 1 | 1.6 | 1 | 1.8 | - |  | 1 | 1.8 | 1 | 1.8 | - |  |
| Syngnathus spp. | pipefishes | - |  | - |  | - |  | - |  | - |  | - |  |  |  |  |  |
| Pleuronectidae unid. | flounders | - | - | 1 | 1.5 | - | - | - | - | 1 | 1.4 | 3 | 4.0 | - | - | 2 | 3.2 |
| Orthonopias triacis | snubnose sculpin | - | - | 1 | 2.0 | 6 | 10.8 | 1 | 1.4 | - | - | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | - | - | - | - | - |  | - |  | - | - | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | - |  | - | - | - |  | - |  | - | - | - |  | - |  | - |  |
| Hexagrammidae unid. | greenlings | 3 | 5.0 | - | - | - | - | - | - | - | - | - | - | 1 | 1.3 | - |  |
| Ammodytes hexapterus | Pacific sand lance | 1 | 2.0 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Citharichthys sordidus | Pacific sanddab | - |  | - | - | - |  | - |  | - | - | - |  | - | - | - |  |
| Sebastes spp. V_D | rockfishes | - |  | - | - | - | - | - |  | - | - | - | - | 1 | 1.4 | - |  |
| Blennioidei | blennies | - | - | 1 | 1.7 | - | - | - | - | - | - | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | 1 | 1.9 | - |  | - | - | - | - | 6 | 7.2 | - | - | - | - | 1 | 1.4 |
| Pholididae unid. | gunnels | - |  | 1 | 1.9 | 1 | 1.9 | 3 | 4.5 | 2 | 2.6 | - |  | - | - | - |  |
| Syngnathidae unid. | pipefishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 17 <br> Feb. 7-8 $\mathrm{N}=12$ <br> Ct. Conc. |  | Survey 18 <br> Feb. 14-15 $\mathrm{N}=12$ |  | Survey 19 <br> Feb. 21-22 $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 20 \\ \text { Feb. } 28-29 \\ \mathrm{~N}=12 \end{gathered}$ |  | $\begin{gathered} \hline \text { Survey } 21 \\ \text { March 6-7 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 22 \\ \text { March 13-14 } \\ \mathrm{N}=12 \end{gathered}$ |  | Survey 23 <br> March 20-21 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 24 \\ \text { March } 27-28 \\ \mathrm{~N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ct. | Conc. |
| Citharichthys stigmaeus Sciaenidae unid. | speckled sanddab | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Sciaenidae unid. | croaker | - |  | - |  | - | - | - |  | - |  | - |  | - | - | - |  |
| Syngnathus leptorhynchus | bay pipefish | - |  | - |  | - |  | - |  |  |  | - |  | - | - | - |  |
| Agonidae unid. | poachers | - |  | - |  | - | - | - |  | 3 | 4.1 | - |  | - | - | - |  |
| Paralichthys californicus | California halibut | - | - | - | - | - | - | - | - | - |  | - | - | - | - | 1 | 1.6 |
| Parophrys vetulus | English sole | - |  | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Seriphus politus | queenfish | - | - | - | - | - | - | - |  | - | - | - | - | - |  | - |  |
| Cotus asper | prickly sculpin | - | - | - | - | - | - | - |  | - | - | - |  | 1 | 1.6 | - |  |
| Gobiesox spp. | clingfishes | - | - | - | - | - | - | 2 | 2.9 | - | - | - | - | - |  | 2 | 3.8 |
| Icichthys lockingtoni | medusa fish | - |  | - | - | - | - | - |  | - | - | - |  | - | - | - |  |
| Pleuronectes bilineatus | rock sole | - |  | - | - | - | - | - | - | - | - | - |  | - | - |  |  |
| Zaniolepis spp. | combfishes | - |  | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Nannobrachium ritteri | broadfin lampfish | - |  | - |  |  |  | - |  | - | - | - | - | - | - | - |  |
| Oligocotus maculosus | tidepool sculpin | 2 | 3.1 | - |  | 1 | 2.1 | - |  | - | - | - |  | - | - | - |  |
| Psettichthys melanostictus | sand sole | - |  | - |  | - |  | - |  | - | - | - |  | - | - | - |  |
| Sardinops sagax | Pacific sardine | - | - | - | - | - | - | - | - | 3 | 3.6 | - | - | - | - | - |  |
| Sebastes spp. V_D_ | rockfishes | - | - | - | - | - | - | - |  | - |  | - | - | - |  | - |  |
| Aulorhynchus flavidus | tubesnout | - | - | - | - | - | - | 1 | 1.8 | - | - | - | - | - | - | - |  |
| Citharichthys spp. | sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Neoclinus spp. | fringeheads | - | - | - | - | - | - | - |  | - | - | - |  | - | - | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 2 | 3.7 |
| Pleuronectiformes unid. | flatfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. V_ | rockfishes | - | - | - | - | - | - | - |  | - |  | - |  | - |  |  |  |
| Argentina sialis | Pacific argentine | - | - | - |  | - | - | - | - | - | - | - |  | - |  | - |  |
| Brosmophycis marginata | red brotula | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Clinidae unid. | clinid kelpfishes | - | - | - |  | - | - | - | - | - | - | - |  | - |  | - |  |
| Clupeiformes | herrings and anchovies | - | - | - |  | - | - | - | - | - | - | - | - | - |  | - |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - |  | - | - | - | - | - | - | - | - | - |  |  |  |
| Haemulidae |  | - | - | - | - | - | - | - | - |  | - | - | - | - |  | - |  |
| Hypsopsetta spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Icelinus spp. | sculpins | - |  | - |  | - | - | - |  | - |  | - | - | - |  | - |  |
| Merluccius productus | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Myctophidae unid. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Nannobrachium spp. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Ruscarius spp. |  | - | - | - | - | - | - | - | - | 1 | 1.3 | - | - | - | - | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Sternoptyx spp. | hatchetfishes | - |  | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Trachipteridae | ribbon fishes | - |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Trachipterus altivelis | king-of-the-salmon | - | - | - | - | - | - | - |  | - | - | - | - | - | - | - |  |
| Zaniolepis frenata | shortspine combfish | - | - | - | - | - | - | - |  | - |  | - | - | - |  | - |  |
|  | Total: | 612 |  | 989 |  | 794 |  | 706 |  | 759 |  | 579 |  | 703 |  | 807 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | - | - | - |  | - | - | - | - | - | - | - | - | - |  | - |  |
| Cancer jordani (megalops) | hairy rock crab | - |  | - |  | - | - | - |  | - |  | - | - | - | - | - |  |
| Cancer anthonyi (megalops) | yellow rock crab | 1 | 1.6 | - | - | - | - | - | - | 1 | 1.2 | - | - | - | - | - |  |
| Cancer gracilis (megalops) | slender rock crab | - | - | - |  | 7 | 11.6 | - | - | 1 | 1.4 | - | - | - | - | 1 | 1.9 |
| Carcinus maenas (megalops) | European green crab | - | - | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Cancer magister (megalops) | dungeness crab | - |  | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Cancer productus (megalops) | red rock crab | - |  | - | - | - | - | - |  | - | - | - | - | - |  | - | - |
| Cancer spp. (megalops) | cancer crabs | - |  | - |  | - |  | - |  | - |  | - | - | - | - | - |  |
|  | Total: | 1 |  | 0 |  | 7 |  | 0 |  | 2 |  | 0 |  | 0 |  | 1 |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 25  <br> April 3-4  <br> $\mathrm{N}=12$  <br> Ct. Conc. |  | $\begin{gathered} \text { Survey } 26 \\ \text { April } 10-11 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 27 <br> April 18-19 $\mathrm{N}=12$ |  | Survey 28 <br> April 24-25 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 29 \\ \text { May 1-2 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey 30 } \\ \text { May 8-9 } \end{gathered}$$\mathrm{N}=11$ |  | Survey 31 <br> May 15-16 $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 32 \\ \text { May } 22-23 \\ \mathrm{~N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ct. | Conc. |
| Gobiidae unid. | gobies | 915 | 1483.1 | 200 | 312.2 | 749 | 1190.8 | 333 | 489.8 | 1,002 | 1525.1 | 484 | 778.9 | 406 | 643.4 | 1,623 | 2788.5 |
| Hypsoblennius spp. | blennies |  |  |  |  |  |  |  |  |  |  | 2 | 3.1 | 1 | 1.9 | 6 | 10.1 |
| Leptocottus armatus | Pacific staghorn sculpin | 80 | 128.2 | 79 | 128.3 | 52 | 84.8 | 88 | 126.7 | 8 | 10.6 | 4 | 6.0 | 6 | 9.4 | 4 | 7.2 |
| Stenobrachius leucopsarus | northern lampfish | 135 | 224.5 | 3 | 4.8 | 15 | 20.6 | 21 | 29.2 | 3 | 3.7 | 2 | 2.8 | 1 | 1.6 | - |  |
| Eucyclogobius newberryi | tidewater goby | 11 | 16.9 | 29 | 49.4 | 2 | 3.0 | 17 | 25.0 | 27 | 42.8 | 23 | 39.0 | 32 | 50.2 | 15 | 26.2 |
| Coryphopterus nicholsi | blackeye goby | 1 | 1.4 | 1 | 1.6 | 1 | 1.8 | 7 | 10.7 | 1 | 1.6 | 6 | 8.4 | 2 | 2.8 | 4 | 6.3 |
| Atherinopsis californiensis | jacksmelt |  |  | 5 | 8.0 |  |  | 2 | 3.2 |  |  |  |  |  |  | 1 | 1.3 |
| larval fish fragment | unidentified larval fishes | 27 | 46.2 | 16 | 26.1 | 1 | 1.5 | 1 | 1.6 | 24 | 36.3 | 10 | 16.0 | 18 | 29.4 | 2 | 3.3 |
| Sebastes spp. V_De | rockfishes | 17 | 29.4 | 15 | 23.0 | 200 | 332.7 | 16 | 23.5 | 6 | 8.0 | 18 | 27.4 | 2 | 2.8 | 28 | 51.5 |
| Clupea pallasii | Pacific herring | - |  | 1 | 1.6 | - |  | - |  | - |  | - |  | - |  | - |  |
| Gillichthys mirabilis | longjaw mudsucker | 1 | 1.7 | - |  | 4 | 6.9 | - |  | 4 | 6.5 | 1 | 1.2 | 4 | 6.1 | 1 | 1.6 |
| Genyonemus lineatus | white croaker | 10 | 17.5 | 8 | 12.3 | - |  | 1 | 1.4 |  |  | - |  |  |  | - |  |
| Atherinops affinis | topsmelt | 1 | 1.4 | 4 | 7.4 | 1 | 1.4 | 7 | 11.1 | 36 | 51.6 | 31 | 53.8 | 7 | 10.4 | 12 | 19.7 |
| Lepidogobius lepidus | bay goby | - |  | - |  |  |  | - |  | 2 | 2.8 | 2 | 2.8 |  |  | 1 | 1.7 |
| Atherinidae unid. | silversides | 3 | 5.0 |  |  |  |  | 2 | 3.1 | 5 | 8.1 | 8 | 11.8 | 6 | 9.4 | 1 | 1.7 |
| Engraulis mordax | northern anchovy | 3 | 5.1 | 6 | 10.1 | 2 | 3.0 | - |  | - |  | 1 | 1.3 |  |  | 3 | 5.6 |
| Scorpaenichthys marmoratus | cabezon | 2 | 3.6 | - |  | - |  | - |  |  |  | - |  |  | - | - |  |
| Sebastes spp. V | rockfishes | 2 | 3.5 |  |  | - |  |  |  |  |  | 1 | 4.0 | 1 | 1.4 | - |  |
| Tarletonbeania crenularis | blue lanternfish | 42 | 68.9 | 1 | 1.4 | - |  | 2 | 2.7 | - | - | - |  |  |  | - |  |
| Gibbonsia spp. | clinid kelpfishes | - |  | - |  | 7 | 11.2 | - |  | - | - | - |  | - | - | - |  |
| Bathymasteridae unid. | ronquils | 3 | 5.0 | 4 | 6.3 | - |  | 1 | 1.5 | 10 | 12.6 | 3 | 7.3 | - |  | 7 | 11.7 |
| larval fish - damaged | unidentified larval fishes | 3 | 5.2 | 1 | 1.5 | - |  | - |  | 13 | 19.0 | 2 | 2.8 |  | - | - |  |
| Cottidae unid. | sculpins | 5 | 8.7 | 1 | 1.5 | 1 | 1.5 | 2 | 2.9 | 3 | 4.1 | 3 | 4.2 | 5 | 7.9 | 4 | 7.1 |
| Chaenopsidae unid. | tube blennies | 1 | 2.1 | - | - | - |  | - |  | - |  | 6 | 9.3 | - | - | 3 | 5.3 |
| Stichaeidae unid. | pricklebacks | - |  | - |  | 2 | 2.9 | 2 | 2.6 | 1 | 1.2 | 1 | 1.4 | 1 | 1.9 | - |  |
| Artedius lateralis | smoothhead sculpin | 1 | 1.8 | - | - | 6 | 8.9 | 1 | 1.4 | 10 | 13.3 | 1 | 4.0 | - | - | 5 | 8.3 |
| Sebastes spp. VD | rockfishes | - |  | - | - | 1 | 1.8 | - |  | - |  | - |  | - | - | - |  |
| Oligocottus spp. | sculpins | - |  | - | - | 3 | 5.1 | 1 | 1.4 | - |  | 1 | 1.6 | 4 | 5.5 | 2 | 3.7 |
| Cebidichthys violaceus | monkeyface eel | 3 | 5.1 | - | - | 2 | 3.1 | 3 | 4.2 | 4 | 5.6 | - |  | 5 | 7.6 | 3 | 5.6 |
| Typhlogobius californiensis | blind goby | - |  | - | - | - |  | - |  | - | - | 3 | 4.7 | - | - | 3 | 5.3 |
| Bathylagus ochotensis | popeye blacksmelt | 5 | 8.1 | - | - | 2 | 2.8 | 1 | 1.3 | - | - | 4 | 8.2 | 2 | 3.1 | 4 | 7.0 |
| larval/post-larval fish, unid. | unidentified larval fishes | - |  | - | - | - |  | 1 | 1.6 | 1 | 1.7 | - |  | 9 | 15.9 | 2 | 3.2 |
| Artedius spp. | sculpins | 1 | 1.4 | - |  | - |  | - |  | 1 | 1.4 | - |  | - |  | 10 | 17.4 |
| Clinocottus analis | wooly sculpin | 2 | 3.4 | 1 | 1.4 | 1 | 1.5 | - | - | 1 | 1.6 | 1 | 1.3 | 2 | 2.4 | 3 | 5.4 |
| Oxylebius pictus | painted greenling | - |  | - |  | 1 | 1.8 | - |  |  |  | - |  |  |  | - |  |
| Liparis spp. | snailfishes | - | - | - | - | - |  | 3 | 4.3 | 1 | 1.2 | - |  | - |  | 3 | 5.3 |
| Osmeridae unid. | smelts | - | - | - | - | - |  | - | - | - | - | - |  | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | - | - | - |  | 1 | 1.6 | - | - | - | - | - |  | - |  | 2 | 4.1 |
| Syngnathus spp. | pipefishes | - |  | 1 | 1.4 | - |  | - | - | - |  | - |  | - |  | - |  |
| Pleuronectidae unid. | flounders | 2 | 3.4 | - | - | 2 | 3.2 | 2 | 2.9 | 1 | 1.3 | - |  | - | - | - |  |
| Orthonopias triacis | snubnose sculpin | - |  | - | - | - |  | - |  | - |  | - |  | - |  | 1 | 1.7 |
| Platichthys stellatus | starry flounder | - |  | 7 | 11.4 | - | - | 8 | 11.6 | 1 | 1.3 | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | 1 | 1.8 | - | - | 5 | 8.0 | - |  | - | - | 2 | 2.8 | - | - | - |  |
| Hexagrammidae unid. | greenlings | - |  | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Ammodytes hexapterus | Pacific sand lance | - |  | - | - | - |  | - |  | - | - | - |  | - | - | - |  |
| Citharichthys sordidus | Pacific sanddab | - | - | - | - | - | - | - | - | - | - | - |  | 1 | 1.6 | - |  |
| Sebastes spp. V_D | rockfishes | - | - | - | - | - | - | 1 | 1.4 | - | - | - |  | - | - | 6 | 11.6 |
| Blennioidei | blennies | - | - | - | - | - | - | - | - | 1 | 1.6 | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - |  | - | - | - |  | - | - | - |  | - |  |  | - | - |  |
| Pholididae unid. | gunnels | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Syngnathidae unid. | pipefishes | - | - | - | - | - | - | - | - | 1 | 1.3 | - |  | - | - | - |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 25 <br> April 3-4 $\mathrm{N}=12$ |  | Survey 26 April 10-11$\mathrm{N}=12$ |  | Survey 27 <br> April 18-19 <br> $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 28 \\ \text { April 24-25 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 29 \\ \text { May 1-2 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 30 \\ \text { May 8-9 } \\ \mathrm{N}=11 \end{gathered}$ |  | Survey 31 <br> May 15-16 <br> $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 32 \\ \text { May } 22-23 \\ \mathrm{~N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. |
| Citharichthys stigmaeus | speckled sanddab | - |  | - |  | - |  | - |  | - |  | 1 | 1.6 | - |  | - |  |
| Sciaenidae unid. | croaker | - | - | - | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Syngnathus leptorhynchus | bay pipefish | - |  |  | - | - |  | - | - | - |  | - | - | - |  | - |  |
| Agonidae unid. | poachers | - |  |  |  | - |  | 1 | 1.4 | - |  | - | - | - |  |  |  |
| Paralichthys californicus | California halibut | 4 | 6.3 | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Parophrys vetulus | English sole | 3 | 5.3 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Seriphus politus | queenfish | - |  | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Cottus asper | prickly sculpin | 1 | 1.7 | - | - | 2 | 3.0 | 1 | 1.5 | - | - | - | - | - | - | - |  |
| Gobiesox spp. | clingfishes | - |  | - | - | - | - | 1 | 1.2 | - | - | - | - | - | - | - |  |
| Icichthys lockingtoni | medusa fish | 1 | 1.4 | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Pleuronectes bilineatus | rock sole | 2 | 4.1 | - | - | - | - | - | - | 1 | 1.2 | - | - | - | - | 1 | 1.9 |
| Zaniolepis spp. | combfishes | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Nannobrachium ritteri | broadfin lampfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Psettichthys melanostictus | sand sole | 1 | 1.8 | - | - | - | - | - | - | 1 | 1.3 | - | - | - | - | - |  |
| Sardinops sagax | Pacific sardine | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Sebastes spp. V_D_ | rockfishes | - |  | - | - | - | - | - | - | 3 | 3.6 | - | - | - | - |  |  |
| Aulorhynchus flavidus | tubesnout | - | - | - | - | - | - | - | - | - |  | - | - | - |  |  |  |
| Citharichthys spp. | sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Neoclinus spp. | fringeheads | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectiformes unid. | flatishes | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. V_ | rockfishes | - | - | - | - | 2 | 3.2 | - | - | - | - | - | - | - |  | - |  |
| Argentina sialis | Pacific argentine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Brosmophycis marginata | red brotula | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Clinidae unid. | clinid kelpfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Clupeiformes | herrings and anchovies | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Haemulidae |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Hypsopsetta spp. Icelinus spp. |  | - | - | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Icelinus spp. | sculpins | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Merluccius productus Myctophidae unid. | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Myctophidae unid. Nannobrachium spp. | lanternfishes lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Ruscarius spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sternoptyx spp. | hatchet fishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Trachipteridae | ribbon fishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Trachipterus altivelis | king-of-the-salmon | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Zaniolepis frenata | shortspine combfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
|  | Total: | 1,289 |  | 383 |  | 1,065 |  | 526 |  | 1,172 |  | 621 |  | 515 |  | 1,760 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | - |  | 4 | 6.0 | 2 | 3.3 | 5 | 7.3 | 6 | 8.6 | 24 | 40.4 | 3 | 4.1 | 8 | 14.3 |
| Cancer jordani (megalops) | hairy rock crab | 10 | 17.8 | 30 | 45.3 | 5 | 8.1 | 2 | 2.9 | 4 | 6.0 | 5 | 8.6 | - | - |  | 5.0 |
| Cancer anthonyi (megalops) | yellow rock crab | - |  | 1 | 1.5 | 2 | 3.0 | - | - | 1 | 1.6 | - | - | - | - | 1 | 1.7 |
| Cancer gracilis (megalops) | slender rock crab | - | - | - | - | - |  | - | - | - |  | - | - | - | - | - |  |
| Carcinus maenas (megalops) | European green crab | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Cancer magister (megalops) | dungeness crab | - |  | - | - | - | - | - | - | - | - | - | - | 2 | 3.3 | 1 | 1.7 |
| Cancer productus (megalops) | red rock crab | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Cancer spp. (megalops) | cancer crabs | - | - | - | - | - | - | - | - | 1 | 1.3 | - | - | - | - | - |  |
|  | Total: | 10 |  | 35 |  | 9 |  | 7 |  | 12 |  | 29 |  | 5 |  | 13 |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | $\begin{gathered} \text { Survey } 33 \\ \text { May } 30-31 \\ \mathrm{~N}=12 \end{gathered}$ |  | $\begin{aligned} & \text { Survey } 34 \\ & \text { June 5-6 } \\ & \mathrm{N}=12 \end{aligned}$ |  | Survey 35 June 12-13 $\mathrm{N}=12$ |  | $\begin{aligned} & \text { Survey } 36 \\ & \text { June 19-20 } \end{aligned}$$\mathrm{N}=11$ |  | Survey 37 June 26-27$\mathrm{N}=12$ |  | Survey 38 July 3-4 $\mathrm{N}=12$ |  | Survey 39 July 10-11$\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 40 \\ \text { July } 17-18 \\ \mathrm{~N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gobiidae unid. | gobies | 1,207 | Conc. | ${ }_{7} \mathrm{Ct}$. | Conc. | Ct. | Conc. |
| Hypsoblennius spp. | blennies | 2 |  | 4 | 6.0 | 4 | 6.6 | 46 | 67.5 | 45 | 80.0 | 24 | 40.9 | 36 | 53.7 | 70 | 105.6 |
| Leptocottus armatus | Pacific staghorn sculpin | - |  | 6 | 8.8 | - |  | - |  | - |  | - |  | - |  | - |  |
| Stenobrachius leucopsarus | northern lampfish | - |  | 1 | 1.3 | - |  | - |  |  |  | - |  |  |  | - |  |
| Eucyclogobius newberryi | tidewater goby | 147 | 197.8 | 182 | 217.1 | 2 | 2.8 | 8 | 14.2 | 14 | 20.1 | 47 | 82.2 | 6 | 8.6 | 20 | 30.2 |
| Coryphopterus nicholsi | blackeye goby | 3 | 5.0 | 4 | 5.5 | 2 | 3.2 | 9 | 15.0 | 6 | 11.3 | 5 | 7.2 | 19 | 27.4 | 4 | 6.6 |
| Atherinopsis californiensis | jacksmelt | - |  |  |  | - |  | - |  |  |  | 1 | 1.6 | - |  | - |  |
| larval fish fragment | unidentified larval fishes | 22 | 32.0 | 16 | 20.8 | 1 | 1.2 | 5 | 7.2 | 8 | 13.7 | 1 | 1.6 | 4 | 5.7 | - |  |
| Sebastes spp. V_De | rockfishes | , | 4.4 | 7 | 9.9 | - |  | - |  | - |  | - |  |  |  | - |  |
| Clupea pallasii | Pacific herring | - |  | - |  | - |  | - |  |  |  | - |  |  |  | - |  |
| Gillichthys mirabilis | longjaw mudsucker | 11 | 15.8 | 4 | 4.6 | 3 | 4.7 | 1 | 1.4 | 2 | 2.8 | 2 | 3.5 | - |  | 2 | 3.1 |
| Genyonemus lineatus | white croaker |  |  |  |  | - |  |  |  |  |  | 1 | 1.6 | - |  | - |  |
| Atherinops affinis | topsmelt | 23 | 33.4 | 7 | 10.4 | - |  | 1 | 2.5 | 3 | 4.3 | 2 | 3.7 | 2 | 2.9 | - |  |
| Lepidogobius lepidus | bay goby | - |  |  |  | - |  | - |  | 5 | 7.7 | - |  | - |  | - |  |
| Atherinidae unid. | silversides | 8 | 11.6 | 14 | 21.5 | 2 | 3.0 | - |  | 2 | 2.9 | 3 | 5.5 |  |  | - |  |
| Engraulis mordax | northern anchovy | - |  | - |  | - |  | - |  | 2 | 2.9 | 34 | 55.7 | 1 | 1.4 | - |  |
| Scorpaenichthys marmoratus | cabezon | - |  | - | - | - | - | - | - | - | - | - |  |  |  | - |  |
| Sebastes spp. V | rockfishes | - |  | - | - | - |  | - | - | - |  | - |  |  |  | - |  |
| Tarletonbeania crenularis | blue lanternfish | - |  | - | - | - |  | - | - | - | - | - |  | 2 | 2.4 | - |  |
| Gibbonsia spp. | clinid kelpfishes | 2 | 2.7 | - |  | - |  | - | - | - | - | - |  |  |  | - |  |
| Bathymasteridae unid. | ronquils | - |  | 5 | 8.6 | 8 | 11.3 | 1 | 1.5 | - | - | - |  | 2 | 3.1 | - |  |
| larval fish - damaged | unidentified larval fishes | 3 | 4.9 | 2 | 2.3 | - |  | - |  |  |  |  |  |  |  |  |  |
| Cottidae unid. | sculpins | 1 | 1.7 | 1 | 1.1 | 1 | 1.9 | 1 | 1.4 | 5 | 7.5 | 3 | 4.6 |  | - | - |  |
| Chaenopsidae unid. | tube blennies | - |  | - |  | - |  | - |  | - | - | 1 | 1.6 | 3 | 4.5 | - |  |
| Stichaeidae unid. | pricklebacks | - |  |  |  | 2 | 2.5 | - |  | - |  | 1 | 1.9 |  |  | - |  |
| Artedius lateralis | smoothhead sculpin | 1 | 1.7 | 2 | 2.6 | 2 | 3.4 | 1 | 1.4 | 1 | 1.4 | - | - | - | - | - |  |
| Sebastes spp. VD | rockfishes | - |  | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Oligocotus spp. | sculpins | - |  | - | - | - |  | - | - | - | - | - | - | - | - | 2 | 2.8 |
| Cebidichthys violaceus | monkeyface eel | - |  | 1 | 1.9 | - |  | - | - | - | - | - | - |  |  | - |  |
| Typhlogobius californiensis | blind goby | 1 | 1.6 | 2 | 2.7 | 1 | 1.7 | - | - | - | - | - | - | - | - | - |  |
| Bathylagus ochotensis | popeye blacksmelt | - |  | 2 | 3.2 | 1 | 1.7 | - | - | - | - | - | - | - | - | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | 1 | 1.8 | - |  | - | - | 1 | 2.0 | 1 | 1.4 | - | - | - | - | - |  |
| Artedius spp. | sculpins | - |  | 1 | 1.7 | - |  | 2 | 2.7 | - | - | - |  | - |  | - |  |
| Clinocottus analis | wooly sculpin | - |  | 1 | 1.3 | - | 1.5 | 3 | 4.1 | - | - | - | - | 1 | 1.8 | 2 | 3.5 |
| Oxylebius pictus | painted greenling | 1 | 1.7 | - | - | 1 | 1.5 | - | - | - | - | 4 | 6.3 | - | - | 1 | 1.8 |
| Liparis spp. | snailfishes | - |  | - | - | 1 | 1.7 | - | - | - | - | 1 | 1.6 | - | - | - |  |
| Osmeridae unid. | smelts | - |  | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | 1 | 1.7 | - | - | - | - | 3 | 4.1 | - | - | - | - | - | - | 1 | 1.5 |
| Syngnathus spp. | pipefishes | - |  | - | - | - | - | 1 | 1.5 | - | - | - | - | 2 | 2.6 | - |  |
| Pleuronectidae unid. | flounders | - |  | - | - | 1 | 1.9 | - | - | - | - | - | - | - | - | - |  |
| Orthonopias triacis | snubnose sculpin | - | - | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | - | - | 1 | 1.3 | - | - | 1 | 1.5 | - | - | - | - | - | - | - |  |
| Hexagrammidae unid. | greenlings | - | - | - | - | - | - | - |  | - | - | - |  | - |  | 2 | 2.4 |
| Ammodytes hexapterus | Pacific sand lance | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Citharichthys sordidus | Pacific sanddab | - | - | - | - | - |  | 3 | 4.6 | - | - | - | - | - | - | - |  |
| Blennioidei | blennies | - | - | - | - | 2 | 3.0 | $\stackrel{ }{ }$ | 4.6 | - | - | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - | - | - | - | . | - | - | - | - | - | - | - | - | - | - |  |
| Pholididae unid. | gunnels | - |  | - | - | - |  | - |  | - | - | - |  | - |  | - |  |
| Syngnathidae unid. | pipefishes | - |  | - | $-$ | - | , | - |  | - | $-$ | - | - | - | $-$ | - |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 33 <br> May 30-31 $\mathrm{N}=12$ |  | $\begin{gathered} \hline \text { Survey } 34 \\ \text { June 5-6 } \end{gathered}$$\mathrm{N}=12$ |  | $\begin{aligned} & \hline \text { Survey } 35 \\ & \text { June 12-13 } \end{aligned}$$\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 36 \\ \text { June 19-20 } \\ \mathrm{N}=11 \end{gathered}$ |  | $\begin{gathered} \text { Survey 37 } \\ \text { June 26-27 } \end{gathered}$$\mathrm{N}=12$ |  | Survey 38 July 3-4 $\mathrm{N}=12$ |  | Survey 39 <br> July 10-11 $\mathrm{N}=12$ |  | Survey 40 <br> July 17-18 $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Citharichthys stigmaeus | speckled sanddab |  |  |  |  | - |  |  |  |  | 1.2 |  |  |  |  | C. | Conc. |
| Sciaenidae unid. | croaker | - | - | - | - | - | - | - | - | - |  | 1 | 1.7 | - | - | - |  |
| Syngnathus leptorhynchus | bay pipefish | - | - | - | - | - | - | - | - | - | - |  | - | - | - | - |  |
| Agonidae unid. | poachers | - | - | - | - | - | - | - | - | - |  |  |  | - | - |  |  |
| Paralichthys californicus | California halibut | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Parophrys vetulus | English sole | - | - | - | - | - | - | - | - | - | - |  |  | - | - | - |  |
| Seriphus politus | queenfish | - | - | - | - | - | - | - | - | - | - | 1 | 1.2 | - | - | - |  |
| Cottus asper | prickly sculpin | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Gobiesox spp. | clingfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Icichthys lockingtoni | medusa fish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectes bilineatus | rock sole |  | - | - |  | - | - | - |  | - | - |  | - |  |  |  |  |
| Zaniolepis spp. | combfishes |  | - | - | - | - | - | - |  | - | - |  | - |  |  |  |  |
| Nannobrachium ritteri | broadfin lampfish |  | - | - | - | - | - | - | - | - | - |  | - |  |  | - |  |
| Oligocotus maculosus | tidepool sculpin | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Psettichthys melanostictus | sand sole | - |  | - |  | - | - | - | - | - | - | - | - | - | - | - |  |
| Sardinops sagax | Pacific sardine | - |  | - | - | - | - | - |  | - | - |  | - | - | - | - |  |
| Sebastes spp. V_D_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Aulorhynchus flavidus | tubesnout | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Citharichthys spp. | sanddabs | - | - | - | - | - | - | - | - | - | - |  | - | - | - | - |  |
| Neoclinus spp. | fringeheads | - | - | - | - | - | - | - | - | - | - |  | - | - | - | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectiformes unid. | flatishes | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 1.2 | - |  |
| Sebastes spp. V_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Argentina sialis | Pacific argentine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Brosmophycis marginata | red brotula | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Clinidae unid. | clinid kelpfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Clupeiformes | herrings and anchovies | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Haemulidae |  | - | - | - | - | - | - | - | - | - | - | 1 | 1.2 | - | - | - |  |
| Hypsopsetta spp. |  | - | - | - | - | - | - | - | - | - |  |  | - | - | - | - |  |
| Icelinus spp. | sculpins | - | - | - | - | - | - | - | - | 1 | 1.2 | - | - | - | - | - |  |
| Merluccius productus | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Myctophidae unid. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Nannobrachium spp. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 1.2 |
| Ruscarius spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sternoptyx spp. | hatchetfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Trachipteridae | ribbon fishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Trachipterus altivelis | king-of-the-salmon | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Zaniolepis frenata | shortspine combfish | 1 | 1.4 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
|  | Total: | 1,438 |  | 1,015 |  | 239 |  | 558 |  | 840 |  | 356 |  | 264 |  | 428 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | 77 | 124.8 | 358 | 565.6 | 26 | 41.8 | 9 | 13.8 | 5 | 7.3 | 4 | 5.5 | - |  | 1 | 1.3 |
| Cancer jordani (megalops) | hairy rock crab | 2 | 3.1 | 14 | 23.6 | 1 | 1.7 | 2 | 3.0 | 2 | 2.4 | 3 | 5.4 | 1 | 1.6 | 1 | 1.4 |
| Cancer anthonyi (megalops) | yellow rock crab | 2 | 3.3 | 4 | 5.8 | 2 | 3.1 | 1 | 1.4 | - |  | 6 | 9.8 | - | - | - |  |
| Cancer gracilis (megalops) | slender rock crab |  |  | - |  | 1 | 1.1 | - |  | - |  | - | - | - | - | - |  |
| Carcinus maenas (megalops) | European green crab | - |  | 1 | 1.3 | - |  | - | - | - | - | - | - | - | - | - | - |
| Cancer magister (megalops) | dungeness crab | - | - | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Cancer productus (megalops) | red rock crab | - | - | - |  | - |  | 1 | 1.5 | - |  | - | - | - |  | - |  |
| Cancer spp. (megalops) | cancer crabs | - |  | 2 | 3.4 | 1 | 1.7 | - | - | - |  | 1 | 1.8 | - | - | - |  |
|  | Total: | 81 |  | 379 |  | 31 |  | 13 |  | 7 |  | 14 |  | 1 |  | 2 |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 41 <br> July 24-25 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 42 \\ \text { July 31-Aug. } 1 \\ \mathrm{~N}=12 \end{gathered}$ |  | $\begin{aligned} & \text { Survey } 43 \\ & \text { Aug. } 8-9 \end{aligned}$$\mathrm{N}=12$ |  | Survey 44 Aug. 14-15 $\mathrm{N}=12$ |  | Survey 45 <br> Aug. 21-22 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 46 \\ \text { Aug. } 28-29 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 47 <br> Sept. 5-6 $\mathrm{N}=12$ |  | Survey 48 <br> Sept. 11-12 $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gobiidae unid. | gobies | 294 | Conc. | Ct. | Conc. |
| Hypsoblennius spp. | blennies | 73 | 110.6 | 19 | 30.2 | 57 | 97.9 | 21 | 31.4 | 51 | 84.5 | 13 | 19.8 | 36 | 58.5 | 15 | 23.1 |
| Leptocotus armatus | Pacific staghorn sculpin | 1 | 1.7 | - |  | 2 | 3.5 | - |  | - |  | 1 | 1.3 | - |  | - |  |
| Stenobrachius leucopsarus | northern lampfish | - |  | - |  | - |  |  |  | - |  | - |  |  |  | - |  |
| Eucyclogobius newberryi | tidewater goby | 11 | 13.8 | - |  | 33 | 55.3 | 140 | 215.8 | 4 | 6.8 | 5 | 8.3 | 4 | 6.8 | 6 | 9.4 |
| Coryphopterus nicholsi | blackeye goby | 23 | 30.1 | 15 | 23.5 | 5 | 8.1 | 8 | 11.4 | 16 | 26.4 | 2 | 3.3 | 3 | 5.1 | 16 | 24.4 |
| Atherinopsis californiensis | jacksmelt | - |  | - |  | 1 | 1.8 | - |  | - |  | - |  |  |  | - |  |
| larval fish fragment | unidentified larval fishes |  |  | 4 | 6.7 | 8 | 13.4 | 10 | 14.8 | - |  | 2 | 3.5 | 2 | 3.1 | 1 | 1.5 |
| Sebastes spp. V_De | rockfishes |  |  | - |  |  |  | - |  |  |  |  |  |  |  |  |  |
| Clupea pallasii | Pacific herring |  |  | - |  |  |  |  |  |  |  |  |  |  |  | - |  |
| Gillichthys mirabilis | longjaw mudsucker |  |  | 4 | 6.8 |  |  | 4 |  | 1 | 1.6 | 5 | 8.2 | - |  | 16 | 25.3 |
| Genyonemus lineatus | white croaker |  |  | - |  |  |  | 5 | 7.6 | - |  | 1 | 1.3 | 1 | 1.6 | - |  |
| Atherinops affinis | topsmelt |  |  | 2 | 3.1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Lepidogobius lepidus | bay goby | 3 | 4.1 | 2 | 3.8 | 9 | 15.9 | 14 | 23.3 | 7 | 9.5 |  | - | 1 | 1.6 | 4 | 6.1 |
| Atherinidae unid. | silversides | - |  | 3 | 5.0 | 1 | 1.6 | 1 | 1.5 | 5 | 8.6 |  |  |  |  |  |  |
| Engraulis mordax | northern anchovy | - | - | - |  | - |  | 2 | 2.8 | 2 | 3.1 |  | - | 1 | 1.6 | - |  |
| Scorpaenichthys marmoratus | cabezon | - | - | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Sebastes spp. V | rockfishes | - | - | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
| Tarletonbeania crenularis | blue lanternfish | - |  | - |  | - | - | - |  | - |  |  |  | - |  |  |  |
| Gibbonsia spp. | clinid kelpfishes | 1 | 1.5 | - | - | - | - | - | - | - |  |  | - | - | - | - |  |
| Bathymasteridae unid. | ronquils | - |  | 1 | 1.5 | - | - |  | - | - | - | 3 | 4.3 |  |  | - |  |
| larval fish - damaged | unidentified larval fishes | - |  | 1 | 1.5 | - |  | 3 | 5.7 | - |  | 5 | 8.3 | 3 | 5.2 | 1 | 1.4 |
| Cottidae unid. | sculpins | - |  | - |  | - |  | 2 | 2.6 | 1 | 1.6 |  |  | - |  |  |  |
| Chaenopsidae unid. | tube blennies | 2 | 2.5 | - | - | 1 | 1.6 | 1 | 2.1 | - |  | 1 | 2.0 | 2 | 3.5 | - |  |
| Stichaeidae unid. | pricklebacks | - |  | - | - | - |  | - | - | - | - | - |  | - |  |  |  |
| Artedius lateralis | smoothhead sculpin | - | - | - |  | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. VD | rockfishes | - | - | - |  | - | - | - | - | - |  | - | - | - | - | - |  |
| Oligocottus spp. | sculpins | - | - | 1 | 1.6 | - | - | - | - | 1 | 1.6 | - | - | - | - | - |  |
| Cebidichthys violaceus | monkeyface eel | - |  | - |  | - | - | - | - | - |  |  |  | - |  | - |  |
| Typhlogobius californiensis | blind goby | 1 | 1.5 | 3 | 4.6 | - | - | - | - | - |  | 2 | 3.1 | - |  | - |  |
| Bathylagus ochotensis | popeye blacksmelt | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Artedius spp. | sculpins | - | - | - |  | - | - | - | - | - |  | - |  | - | - | - |  |
| Clinocotus analis | wooly sculpin | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | - | - | - |  |
| Oxylebius pictus | painted greenling | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | - | - | - |  |
| Liparis spp. | snailfishes | 1 | 1.2 | - | - | - | - | - | - | 4 | 6.1 | - | - | - | - | - |  |
| Osmeridae unid. | smelts | - | - | - | - | - | - | - | - | - |  | - | - | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | - | - | 1 | 1.5 | - | - | - | - | - | - | - | - | - | - | - |  |
| Syngnathus spp. | pipefishes | 1 | 1.2 | - | - | 2 | 2.8 | 2 | 3.6 | - | - | - | - | 2 | 3.3 | - |  |
| Pleuronectidae unid. | flounders | - |  | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Orthonopias triacis | snubnose sculpin | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Hexagrammidae unid. | greenlings | - | - | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Ammodytes hexapterus | Pacific sand lance | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Citharichthys sordidus | Pacific sanddab | - | - | - | - | - | - | - | - | - | - | 1 | 1.6 | - | - | - |  |
| Sebastes spp. V_D | rockfishes | - |  | - | - | - | - | - | - | - | - | - |  | - |  | - |  |
| Blennioidei | blennies | 1 | 1.3 | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pholididae unid. | gunnels | - |  | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Syngnathidae unid. | pipefishes | - | - |  | - | - | $-$ | - |  | - |  | - | $-$ | - | - | - |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 41 <br> July 24-25 $\mathrm{N}=12$ <br> Ct. Conc |  | $\begin{gathered} \text { Survey } 42 \\ \text { July 31-Aug. } 1 \\ \mathrm{~N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 43 \\ \text { Aug. 8-9 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 44 \\ \text { Aug. } 14-15 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 45 Aug. 21-22 $\mathrm{N}=12$ |  | Survey 46 <br> Aug. 28-29 $\mathrm{N}=12$ |  | Survey 47 <br> Sept. 5-6 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey } 48 \\ \text { Sept. 11-12 } \\ \mathrm{N}=12 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Citharichthys stigmaeus | speckled sanddab |  |  |  |  | - |  |  |  |  |  |  |  |  |  | C. | Conc. |
| Sciaenidae unid. | croaker | - |  | - | - | - | - | - | - | - |  | - |  | - | - | . |  |
| Syngnathus leptorhynchus | bay pipefish | 1 | 1.8 | - | - | - | - | - | - | 1 | 1.3 | - | - | - | - | - |  |
| Agonidae unid. | poachers | - |  | - | - | - |  | - | - | - |  |  |  | - | - |  |  |
| Paralichthys californicus | California halibut | - |  | - | - | - | - | - | - | - |  | 1 | 1.3 | - | - | - |  |
| Parophrys vetulus | English sole | - | - | - | - | - | - | - | - | - |  |  |  | - | - | - |  |
| Seriphus politus | queenfish | - | - | - | - | - | - | - | - | - | - | 1 | 1.6 | - | - | - |  |
| Cottus asper | prickly sculpin | - | - | - | - | - | - | - | - | - | - |  |  | - | - | - |  |
| Gobiesox spp. | clingfishes | - | - | - | - | - | - | - | - | - | - | - |  | - | - | - |  |
| Icichthys lockingtoni | medusa fish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectes bilineatus | rock sole | - | - |  |  | - | - |  | - | - | - | - |  | - |  |  |  |
| Zaniolepis spp. | combfishes | - |  | - | - | - | - | - | - | - | - | - |  |  |  |  |  |
| Nannobrachium ritteri | broadfin lampfish | - |  |  |  | - | - |  | - | - | - | - | - | - | - |  |  |
| Oligocotus maculosus | tidepool sculpin | - |  | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Psettichthys melanostictus | sand sole | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | - | - | - |  |
| Sardinops sagax | Pacific sardine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Sebastes spp. V_D_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Aulorhynchus flavidus | ubesnout | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Citharichthys spp. | sanddabs | - | - | 2 | 3.2 | - | - | - | - | - | - | - |  | - | - |  |  |
| Neoclinus spp. | fringeheads | - | - | - | - | - | - | - | - | - | - | 1 | 1.3 | - | - | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectiformes unid. | flatishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| Sebastes spp. V_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Argentina sialis | Pacific argentine | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Brosmophycis marginata | red brotula | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |  |
| Clinidae unid. | clinid kelpfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Clupeiformes | herrings and anchovies | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Haemulidae |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  |  |  |
| Hypsopsetta spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Icelinus spp. | sculpins | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Merluccius productus | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Myctophidae unid. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Nannobrachium spp. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Ruscarius spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sternoptyx spp. | hatchetfishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Trachipteridae | ribbon fishes | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Trachipterus altivelis | king-of-the-salmon | - | - | - | - | - | - | - | - | - | - | - |  | - |  | - |  |
| Zaniolepis frenata | shortspine combfish | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
|  | Total: | 413 |  | 130 |  | 279 |  | 1,023 |  | 124 |  | 141 |  | 165 |  | 426 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | - |  | - | - | - |  | - | - | - | - | - |  | - |  | - |  |
| Cancer jordani (megalops) | hairy rock crab | - |  | 5 | 7 4 | - | - | - | - | - | - | - | - | - | - | - |  |
| Cancer anthonyi (megalops) | yellow rock crab | 1 | 1.7 | - |  | 1 | 1.5 | 1 | 1.4 | - | - | - | - | - | - | 1 | 1.4 |
| Cancer gracilis (megalops) | slender rock crab | - |  | - |  | - |  | 1 | 1.4 | 1 | 1.8 | - | - | - | - | - |  |
| Carcinus maenas (megalops) | European green crab | 2 | 2.5 | - | - | 1 | 1.9 | 2 | 2.9 | - | - | 2 | 2.6 | 7 | 11.9 | 9 | 13.4 |
| Cancer magister (megalops) | dungeness crab | - |  | - | - | - |  | - |  | - | - | - |  | - | - | - |  |
| Cancer productus (megalops) | red rock crab | - |  | - | - | - |  | 1 | 1.4 | - |  | - |  | 1 | 1.6 | - |  |
| Cancer spp. (megalops) | cancer crabs | - |  | - | - | - |  | - |  | - | - | - | - | - | - | - |  |
|  | Total: | 3 |  | 5 |  | 2 |  | 5 |  | 1 |  | 2 |  | 8 |  | 10 |  |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | $\begin{gathered} \hline \text { Survey } 49 \\ \text { Sept. } 17-18 \\ N=12 \end{gathered}$ |  | $\begin{gathered} \hline \text { Survey } 50 \\ \text { Sept. } 25-26 \\ \mathrm{~N}=11 \end{gathered}$ |  | $\begin{gathered} \hline \text { Survey } 51 \\ \text { Oct. 3-4 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 52 \\ \text { Oct. } 9-10 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 53 <br> Oct. 16-17 <br> Not Sampled |  | Survey 54 <br> Oct. 25-26 $\mathrm{N}=12$ |  | Survey 55 <br> Oct. 30-31 <br> $\mathrm{N}=12$ |  | Survey 56 <br> Nov. 6-7 <br> $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ct. | Conc. | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. |  |  | Ct. | Conc. | Ct . | Conc. | Ct. | Conc. |
| Gobiidae unid. | gobies | 47 | 78.1 | 437 | 733.0 | 96 | 155.2 | 721 | 1219.6 |  |  | 480 | 651.4 | 399 | 558.0 | 156 | 264.8 |
| Hypsoblennius spp. | blennies | 14 | 22.2 | 6 | 8.8 | 7 | 11.7 | 6 | 10.2 |  |  | 1 | 1.1 | 2 | 2.7 | - |  |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 1.6 | - |  | 1 | 1.4 | 3 | 5.1 |  |  | 11 | 14.9 | 38 | 53.0 | 25 | 40.2 |
| Stenobrachius leucopsarus | northern lampfish |  |  |  |  | - |  | 2 | 3.1 |  |  | - |  |  |  |  |  |
| Eucyclogobius newberryi | tidewater goby |  |  | 5 | 11.1 | - |  | 2 | 3.2 |  |  | - |  |  |  |  |  |
| Coryphopterus nicholsi | blackeye goby | 25 | 37.8 | 8 | 10.1 | 5 | 7.1 | 2 | 3.5 |  |  | 5 | 6.6 | 4 | 6.2 | 1 | 1.9 |
| Atherinopsis californiensis | jacksmelt | - |  | - |  | - |  | - |  |  |  | 1 | 1.2 | 1 | 1.1 | 2 | 3.0 |
| larval fish fragment | unidentified larval fishes | 2 | 3.3 | 1 | 3.1 | 2 | 3.0 | 1 | 1.8 |  |  | 21 | 29.1 | - | - | 8 | 14.0 |
| Sebastes spp. V_De | rockfishes | - |  | - |  | - |  | - |  |  |  | - |  |  |  |  |  |
| Clupea pallasii | Pacific herring | - |  | - |  | - |  | - |  |  |  | - |  |  | - | - |  |
| Gillichthys mirabilis | longjaw mudsucker | - |  | 38 | 63.6 | - |  | 11 | 18.4 |  |  | 5 | 7.0 | 3 | 4.1 | 1 | 1.9 |
| Genyonemus lineatus | white croaker | - |  | - |  | 1 | 1.4 | - |  |  |  | - |  | 26 | 40.4 | 1 | 1.8 |
| Atherinops affinis | topsmelt | - |  | - |  | - |  | - |  |  |  |  |  | - |  | - |  |
| Lepidogobius lepidus | bay goby | 1 | 1.7 | 1 | 1.5 | 9 | 17.2 | 6 | 10.2 |  |  | 15 | 19.2 | 2 | 3.1 | 12 | 20.4 |
| Atherinidae unid. | silversides | - |  | - |  | - |  | - |  |  |  | 1 | 1.1 | 3 | 5.2 | 1 | 1.3 |
| Engraulis mordax | northern anchovy | - |  | - |  | 1 | 1.4 | 1 | 1.3 |  |  | 1 | 1.3 | 17 | 25.0 | - |  |
| Scorpaenichthys marmoratus | cabezon | - |  | - | - | 1 | 1.4 | - |  |  |  | 1 | 1.6 | - | - | 2 | 3.5 |
| Sebastes spp. V | rockfishes | - |  | - | - | - |  | - | - |  |  | - |  |  | - | - |  |
| Tarletonbeania crenularis | blue lanternfish | - |  | - | - | - |  | - | - |  |  | - |  |  | - | - |  |
| Gibbonsia spp. | clinid kelpfishes | - |  | 1 | 1.7 | - |  | - | - |  |  | 1 | 1.1 | 6 | 9.6 | - |  |
| Bathymasteridae unid. | ronquils | - |  | - | - | - |  | - | - |  |  | - |  |  |  | - |  |
| larval fish - damaged | unidentified larval fishes | 1 | 1.6 | - | - | 2 | 3.7 | - | - |  |  | 2 | 3.0 | 1 | 1.7 | - |  |
| Cottidae unid. | sculpins | - |  | - | - | - |  | - | - |  |  | - |  |  |  | - |  |
| Chaenopsidae unid. | tube blennies | - | - | - | - | 2 | 2.6 | - | - |  |  | - |  |  | - | 2 | 3.1 |
| Stichaeidae unid. | pricklebacks | - | - | - | - | - |  | - | - |  |  | - |  |  | - | - |  |
| Artedius lateralis | smoothhead sculpin | - | - | - | - | - |  | - | - |  |  | - | - |  | - | - |  |
| Sebastes spp. VD | rockfishes | - |  | - |  | - |  | - | - |  |  | - |  |  | - |  |  |
| Oligocotus spp. | sculpins | - |  | 1 | 1.4 | - | - | - | - |  |  | - | - |  | - |  |  |
| Cebidichthys violaceus | monkeyface eel | - | - | - |  | - | - | - | - |  |  | - | - |  | - |  |  |
| Typhlogobius californiensis | blind goby | - |  | - |  | - |  | - | - |  |  | - | - |  | - |  |  |
| Bathylagus ochotensis | popeye blacksmelt | - | - | - | - | - |  | - | - |  |  | - | - |  | - | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | - | - | - |  | 2 | 2.8 | - | - |  |  | - | - |  | - |  |  |
| Artedius spp. | sculpins | - | - | - | - | - |  | - | - |  |  | - | - |  | - | - |  |
| Clinocottus analis | wooly sculpin | - |  | - |  | - |  | - | - |  |  | - |  |  |  |  |  |
| Oxylebius pictus | painted greenling | - |  | - |  | - |  | 1 | 1.8 |  |  | - |  | - | - | - |  |
| Liparis spp. | snailfishes | - |  | - |  | - |  | - | - |  |  | - |  | - | - | - |  |
| Osmeridae unid. | smelts | - |  | - | - | - |  | - | - |  |  | - | - | - | - | - |  |
| Ruscarius creaseri | rouchcheek sculpin | - |  | - |  | - |  | - |  |  |  | - |  | - | - | - |  |
| Syngnathus spp. | pipefishes | - |  | 1 | 1.7 | 2 | 3.2 | 1 | 1.8 |  |  | 1 | 1.6 | - | - | - |  |
| Pleuronectidae unid. Orthonopias triacis | flounders <br> snubnose sculpin | - | - | - |  | - | - | - | - |  |  | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | - |  | - |  | - | - | - | - |  |  | - |  | - |  | - |  |
| Sebastes spp. | rockfishes | - | - | - | - | - | - | - | - |  |  | - | - | - | - | - | - |
| Hexagrammidae unid. | greenlings | - | - | - | - | - | - | - | - |  |  | - | - | - | - | - | - |
| Ammodytes hexapterus | Pacific sand lance | - | 1.7 | - | - | - | - | - | - |  |  | - | - | - | - | - | - |
| Citharichthys sordidus | Pacific sanddab | 1 | 1.7 | - | - | - | - | - | - |  |  | - | - |  | - | - | - |
| Sebastes spp. V_D | rockfishes | - | - | - | - | - | - | - | - |  |  | - | - | - | - | - |  |
| Blennioidei | blennies | - | - | - | - | - | - | - | - |  |  | - | - | - | - | 1 | 1.6 |
| Labrisomidae unid. | labrisomid kelpfishes | - | - | - | - | - |  | - | - |  |  | - |  |  | - | - | - |
| Pholididae unid. | gunnels | - | - | - | ${ }^{-7}$ | - |  | - | - |  |  | - |  | - | - | - |  |
| Syngnathidae unid. | pipefishes | - | - | 1 | 1.7 | - |  | - | - |  |  | - | - | - | - | - | - |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | Survey 49 <br> Sept. 17-18 $\mathrm{N}=12$ <br> Ct Conc | $\begin{aligned} & \text { Survey } 50 \\ & \text { Sept. 25-26 } \\ & \mathrm{N}=11 \\ & \mathrm{Ct.} \quad \text { Conc. } \end{aligned}$ | Survey 51 <br> Oct. 3-4 $\mathrm{N}=12$ <br> Ct. Conc. | Survey 52 <br> Oct. 9-10 $\mathrm{N}=12$ <br> Ct. Conc | Survey 53 <br> Oct. 16-17 <br> Not Sampled <br> Ct. Conc. | Survey 54 <br> Oct. 25-26 $\mathrm{N}=12$ <br> Ct Conc | Survey 55 <br> Oct. 30-31 $\mathrm{N}=12$ <br> Ct. Conc | Survey 56 <br> Nov. 6-7 $\mathrm{N}=12$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sciaenidae unid. | croaker | - - | - - | - - | - - |  | - - | 23.5 | - |
| Syngnathus leptorhynchus | bay pipefish | - - | - - | - - | 1.7 |  | 1.1 | - - | - |
| Agonidae unid. | poachers | - - | - - | - - | - - |  | - - | 11.1 | - |
| Paralichthys californicus | California halibut | - - | - - | - - | - - |  | - - | - - | - |
| Parophrys vetulus | English sole | - - | - - | - - | - - |  | - - | - | - - |
| Seriphus politus | queenfish | - - | - - | - - | - - |  | - - | - | - - |
| Cottus asper | prickly sculpin | - - | - - | - - | - - |  | - - | - | - - |
| Gobiesox spp. | clingfishes | - - | - - | - - | - - |  | - - | - | - - |
| Icichthys lockingtoni | medusa fish | - - | - - | - - | - - |  | - - | - - | - |
| Pleuronectes bilineatus | rock sole | - - | - - | - - | - - |  | - - |  | - |
| Zaniolepis spp. | combfishes | - - | - - | - - | - - |  | - - | - - | - |
| Nannobrachium ritteri | broadfin lampfish | - - | - - | - - | - - |  | - - | - - | - - |
| Oligocotus maculosus | tidepool sculpin | - - | - - | - - | - - |  | - - | - - | - - |
| Psettichthys melanostictus | sand sole | - - | - - | - - | - - |  | - - | - - | - - |
| Sardinops sagax | Pacific sardine | - - | - - | - - | - - |  | - - | - - | - - |
| Sebastes spp. V_D_ | rockfishes | - - | - - | - - | - - |  | - - | - - | - - |
| Aulorhynchus flavidus | tubesnout | - - | - - | - - | - - |  | 1.1 | - - | - - |
| Citharichthys spp. | sanddabs | - - | - - | - - | - - |  | - - | - - | - - |
| Neoclinus spp. | fringeheads | - - | - - | - - | - - |  | - - | - - | - - |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - - | - - | - - | - - |  | - - | - - | - - |
| Pleuronectiformes unid. | flatfishes | - - | - - | - - | - - |  | - - | - - | - - |
| Sebastes spp. V_ | rockfishes | - - | - - | - - | - - |  | - - | - - | - - |
| Argentina sialis | Pacific argentine | - - | - - | - - | - - |  | - - | - - | - - |
| Brosmophycis marginata | red brotula | - - | - - | 1.4 | - - |  | - - | - - | - - |
| Clinidae unid. | clinid kelpfishes | - - | - - | - - | - - |  | - - | - - | - |
| Clupeiformes | herrings and anchovies | - - | - - | - - | - - |  | - - | - - | - |
| Diogenichthys atlanticus | longfin lanternfish | - - | - - | - - | - - |  | - - | - - | - - |
| Haemulidae |  | - - | - - | - - | - - |  | - | - - | - - |
| Hypsopsetta spp. |  | - - | - - | - - | - - |  | 1.2 | - - | - - |
| Icelinus spp. | sculpins | - - | - - | - - | - - |  | - - | - - | - - |
| Merluccius productus | Pacific hake | - - | - - | - - | - - |  | - - | - - | - - |
| Myctophidae unid. | lanternfishes | - - | - - | - - | - - |  | - - | - - | - |
| Nannobrachium spp. | lanternfishes | - - | - - | - - | - - |  | - - | - - | - |
| Pleuronichthys verticalis | honeyhead turbot | - - | - - | - - | - - |  | - - | - - | - - |
| Ruscarius spp. |  | - - | - - | - - | - - |  | - - | - - | - - |
| Sebastes aurora | aurora rockfish | - - | - - | - - | - - |  | - - | - - | - - |
| Sternoptyx spp. | hatchetfishes | - - | - - | - - | - - |  | - - | - - | - - |
| Trachipteridae | ribbon fishes | - - | - - | - - | - - |  | - - | - - | - - |
| Trachipterus altivelis | king-of-the-salmon | - - | - - | - - | - - |  | - - | - - | - |
| Zaniolepis frenata | shortspine combfish | - - | - - | - - | - - |  | - - | - - | - - |
|  | Total: | 92 | 500 | 132 | 758 | 0 | 549 | 505 | 212 |
| Crabs |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | - - | - - | - - | - - |  | - | 1.1 | - |
| Cancer jordani (megalops) | hairy rock crab | - - | 2.7 | ( | - - |  | 1.4 |  | 1.3 |
| Cancer anthonyi (megalops) | yellow rock crab | - - |  | 11.8 |  |  |  | 34.1 | - - |
| Cancer gracilis (megalops) | slender rock crab | - - | 11.5 | - - | 1.1 .7 |  | 1.6 | - - | - |
| Carcinus maenas (megalops) | European green crab | - - | - - | - - | - - |  | - - | - - | - - |
| Cancer magister (megalops) | dungeness crab | - - | - - | - - | - - |  | - - | - - | - - |
| Cancer productus (megalops) | red rock crab | - - | - - | - - | - - |  | - - | - - | - |
| Cancer spp. (megalops) | cancer crabs | - - | - - | - - | - - |  | - - | - - | - |
|  | Total: | 0 | 3 | 1 | 1 | 0 | 2 | 4 | 1 |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at 4-hour Intervals over a 24-hour period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through
December 29, 2000.

| Taxon | Common Name | $\begin{aligned} & \hline \text { Survey } 57 \\ & \text { Nov. } 13-14 \\ & \mathrm{~N}=12 \end{aligned}$ |  | $\begin{gathered} \hline \text { Survey } 58 \\ \text { Nov. 20-21 } \\ \mathrm{N}=12 \end{gathered}$ |  | Survey 59 Nov. 27-28 $\mathrm{N}=12$ |  | Survey 60 <br> Dec. 4-5 $\mathrm{N}=12$ |  | Survey 61 <br> Dec. 11-12 $\mathrm{N}=12$ |  | Survey 62 <br> Dec. 18-19 $\mathrm{N}=12$ |  | $\begin{gathered} \text { Survey 63 } \\ \text { Dec. 28-29 } \end{gathered}$$\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gobiidae unid. | gobies | 144 | Conc. | Ct. | Conc. |
| Hypsoblennius spp. | blennies | - |  | 1 | 1.1 | - |  | - |  |  | 2.4 | . |  | - |  |
| Leptocottus armatus | Pacific staghorn sculpin | 6 | 9.2 | 27 | 40.0 | 62 | 90.3 | 14 | 18.8 | 22 | 26.8 | 3 | 4.4 | 21 | 27.3 |
| Stenobrachius leucopsarus | northern lampfish | - |  | 2 | 2.6 | - |  | 2 | 2.7 | 1 | 1.3 | 5 | 6.1 | 5 | 5.8 |
| Eucyclogobius newberryi | tidewater goby | - |  | - |  | - |  | - |  | - |  | - |  | - |  |
| Coryphopterus nicholsi | blackeye goby | 1 | 1.3 | 1 | 1.5 | 7 | 9.3 | - |  | - |  | - |  | 1 | 1.6 |
| Atherinopsis californiensis | jacksmelt | 3 | 4.5 | 1 | 1.3 | 10 | 14.3 | 4 | 5.6 | 1 | 1.1 | 1 | 1.1 | 9 | 10.2 |
| larval fish fragment | unidentified larval fishes | 5 | 6.5 | 1 | 1.7 | 2 | 2.6 | 1 | 1.5 | - |  | 5 | 6.9 | - |  |
| Sebastes spp. V_De | rockfishes | - |  |  |  |  |  | - |  |  |  |  |  |  |  |
| Clupea pallasii | Pacific herring | - |  | 3 | 4.2 | 3 | 4.4 | 8 | 12.3 | 191 | 218.5 | - |  | 6 | 8.5 |
| Gillichthys mirabilis | longjaw mudsucker | 12 | 16.7 | - |  | 6 | 8.6 | 2 | 2.9 | 10 | 11.3 | - |  | - |  |
| Genyonemus lineatus | white croaker | 4 | 6.0 | 3 | 3.6 | 2 | 2.6 | 1 | 1.5 | 14 | 19.3 | - |  | 12 | 13.6 |
| Atherinops affinis | topsmelt | - |  |  |  | - |  |  |  |  |  |  |  |  |  |
| Lepidogobius lepidus | bay goby | 1 | 1.4 | 3 | 5.0 | 4 | 7.0 | 31 | 49.0 | 24 | 30.9 | 10 | 12.9 | - |  |
| Atherinidae unid. | silversides | 4 | 6.0 | - |  | - |  | - |  | - |  | 4 | 5.0 |  |  |
| Engraulis mordax | northern anchovy | - |  | 7 | 10.8 | 4 | 4.9 | - |  | 6 | 7.5 |  |  | 1 | 1.5 |
| Scorpaenichthys marmoratus | cabezon | 12 | 20.7 | 6 | 9.4 | 2 | 3.8 | 2 | 3.0 | 14 | 17.5 | 5 | 6.6 | 1 | 1.1 |
| Sebastes spp. V | rockfishes | - |  | 3 | 5.0 | - |  | - |  | - |  | - |  | 3 | 4.2 |
| Tarletonbeania crenularis | blue lanternfish | - |  | 1 | 1.6 | 2 | 3.5 | - |  |  |  | - |  |  |  |
| Gibbonsia spp. | clinid kelpfishes | - |  | 1 | 1.5 | 3 | 5.9 | - | - | 3 | 3.8 | - |  |  |  |
| Bathymasteridae unid. | ronquils | - |  | - | - | - |  | - | - | - |  | - |  |  |  |
| larval fish - damaged | unidentified larval fishes |  |  | - | - | 6 | 8.6 | - | - | - |  |  |  |  |  |
| Cottidae unid. | sculpins | 1 | 1.8 | - | - | - |  | - | - | - |  | 1 | 1.2 | 1 | 1.4 |
| Chaenopsidae unid. | tube blennies | 3 | 4.4 | - | - | 2 | 3.3 | - | - | - | - | - | - |  |  |
| Stichaeidae unid. | pricklebacks | - |  | - | - | - |  | - | - | - |  | - |  |  |  |
| Artedius lateralis | smoothhead sculpin | - |  | - | - | - | - | - | - | 1 | 1.1 | - | - |  |  |
| Sebastes spp. VD | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Oligocottus spp. | sculpins | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Cebidichthys violaceus | monkeyface eel | - |  | - | - | - |  | - | - | - |  |  |  |  |  |
| Typhlogobius californiensis | blind goby | - | - | - | - | - | - | - | - | - | - | 1 | 1.6 | 1 | 0.9 |
| Bathylagus ochotensis | popeye blacksmelt | - | - | - | - | - | - | - | - | - | - | - |  |  |  |
| larval/post-larval fish, unid. | unidentified larval fishes sculpins | - | - | - | - | - | - | - | - | 1. | 1.3 | - |  |  |  |
| Clinocotus analis | wooly sculpin | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Oxylebius pictus | painted greenling | - | - | - | - | - | - | - | - | - | - | - |  | 5 | 7.3 |
| Liparis spp. | snailfishes | 1 | 1.5 | - | - | - | - | - | - | - | - | - |  | - |  |
| Osmeridae unid. | smelts | - |  | - | - | - | - | - | - | - | - | 1 | 1.3 |  |  |
| Ruscarius creaseri | rouchcheek sculpin | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Syngnathus spp. | pipefishes | - | - | 1 | 1.5 | - | - | - | - | - | - | - | - | - |  |
| Pleuronectidae unid. | flounders | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Orthonopias triacis | snubnose sculpin | - | - | - | - | 5 | 8.2 | - | - | 1 | 1.5 | - |  | 2 | 2.9 |
| Platichthys stellatus | starry flounder | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. | rockfishes | - | - | - | - | - | - | 1 | 1.3 | - | - | - |  | - |  |
| Hexagrammidae unid. | greenlings | - |  | - |  | - |  | - |  | - |  | - |  |  |  |
| Ammodytes hexapterus | Pacific sand lance | - | - | - | - | - | - | - | - | - | - | - |  |  |  |
| Citharichthys sordidus | Pacific sanddab | - | - | 4 | 6.4 | - | - | 1 | 1.5 | 2 | 2.6 | - | - | 1 | 1.5 |
| Sebastes spp. V_D | rockfishes | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
| Blennioidei | blennies | - | - | - | - | - | - | - | - | - | 1.5 | - | - | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - | - | - | - | - | - | - | - | 1 | 1.5 | - | - | - |  |
| Pholididae unid. | gunnels | - |  | - |  | - |  | - | - | - |  | - |  | - |  |
| Syngnathidae unid. | pipefishes | - | $-$ | - | - | - | $-$ | - | $-$ | - |  | - | - | 1 | 1.6 |

Table F-1 (continued). Weekly Survey Mean Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crab Collected at 4-hour Intervals over a 24-hour Period at the MBPP Intake Station: June 21 through August 10, 1999 and December 14, 1999 through December 29, 2000.

| Taxon | Common Name | $\begin{aligned} & \text { Survey } 57 \\ & \text { Nov. } 13-14 \\ & \mathrm{~N}=12 \end{aligned}$ |  | $\begin{gathered} \hline \text { Survey } 58 \\ \text { Nov. 20-21 } \\ \mathrm{N}=12 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 59 \\ \text { Nov. } 27-28 \\ \mathrm{~N}=12 \end{gathered}$ |  | Survey 60 Dec. 4-5 $\mathrm{N}=12$ |  | Survey 61 <br> Dec. 11-12 $\mathrm{N}=12$ |  | Survey 62 <br> Dec. 18-19 $\mathrm{N}=12$ |  | Survey 63 <br> Dec. 28-29 $\mathrm{N}=12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ct . | Conc. | Ct. | Conc. | Ct . | Conc. |
| Citharichthys stigmaeus | speckled sanddab | - |  | - |  | - |  | 1 | 1.5 | $\bar{\square}$ |  | - |  | - |  |
| Sciaenidae unid. | croaker | - |  | - |  | - |  | - |  | 3 | 3.4 | - |  | - |  |
| Syngnathus leptorhynchus | bay pipefish | 2 | 2.7 | - |  | - |  | 1 | 1.4 | - | - | - |  | - |  |
| Agonidae unid. | poachers | 1 | 1.4 | - |  | - | - | - |  | - |  | - |  |  |  |
| Paralichthys californicus | California halibut | - |  | - |  | - | - | - |  | - | - | - | - | - |  |
| Parophrys vetulus | English sole | - |  | - |  | - | - | - |  | 1 | 1.5 | - | - | 1 | 1.2 |
| Seriphus politus | queenfish | - | - | - | - | - | - | - | - | - | - | - | - |  |  |
| Cottus asper | prickly sculpin | - |  | - |  | - | - | - | - | - | - | - |  |  |  |
| Gobiesox spp. | clingfishes | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Icichthys lockingtoni | medusa fish | - | - | - | - | - | - | - | - | - | - | - |  |  |  |
| Pleuronectes bilineatus | rock sole | - | - | - | - | - | - | - |  | - | - | - |  |  |  |
| Zaniolepis spp. | combfishes | - | - | - | - | - | - | - | - | - |  | - |  |  |  |
| Nannobrachium ritteri | broadfin lampfish | - | - | - | - | - | - | - | - | - | - | 1 | 1.3 | - |  |
| Oligocottus maculosus | tidepool sculpin | - | - | - | - | - | - | - | - | - | - |  |  |  |  |
| Psettichthys melanostictus | sand sole |  | - | - |  | - |  | - | - |  |  |  |  |  |  |
| Sardinops sagax | Pacific sardine | - | - | - |  | - | - | - | - | - | - | - |  | - |  |
| Sebastes spp. V_D_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Aulorhynchus flavidus | tubesnout | - | - | - |  | - | - | - | - | - | - | - |  |  |  |
| Citharichthys spp. | sanddabs | - | - | - |  | - | - | - | - | - | - | - | - | - |  |
| Neoclinus spp. | fringeheads | - | - | 1 | 1.6 | - | - | - | - | - | - | - | - | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronectiformes unid. | flatfishes | - | - | - |  | - | - | - | - | 1 | 1.5 | - | - | - |  |
| Sebastes spp. V_ | rockfishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Argentina sialis | Pacific argentine | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Brosmophycis marginata | red brotula | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Clinidae unid. | clinid kelpfishes | - |  | - | - | - | - | - |  | - |  | - | - | - |  |
| Clupeiformes | herrings and anchovies | - | - | - | - | - | - | - | - | 1 | 1.3 | - | - | - |  |
| Diogenichthys atlanticus | longfin lanternfish | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Haemulidae |  | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Hypsopsetta spp. |  | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Icelinus spp. | sculpins | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Merluccius productus | Pacific hake | - | - | - | - | - | - | - | - | - | - | - | - | 1 | 1.2 |
| Myctophidae unid. | lanternfishes | - | - | - | - | - | - | - | - | 1 | 1.3 | - | - | - |  |
| Nannobrachium spp. | lanternfishes | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Ruscarius spp. |  | - | - | - | - | - | - | - | - | - | - | - | - | - |  |
| Sebastes aurora | aurora rockfish | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Sternoptyx spp. | hatchetfishes | - | - | - | - | - | - | - | - | - | - | - |  | - |  |
| Trachipteridae | ribbon fishes | - | - | - | - | - | - | - |  | - | - | - |  | - |  |
| Trachipterus altivelis | king-of-the-salmon | - |  | - | - | - | - | - |  | - | - | - |  | - |  |
| Zaniolepis frenata | shortspine combfish | - | - | - | - | - | - | - |  | - |  | - |  | - |  |
|  | Total: | 200 |  | 497 |  | 383 |  | 324 |  | 679 |  | 314 |  | 220 |  |
| Crabs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cancer antennarius (megalops) | brown rock crab | 1 | 1.8 | 10 | 14.2 | - | - | 3 | 4.6 | - |  | - |  | 8 | 10.3 |
| Cancer jordani (megalops) | hairy rock crab | 1 | 1.3 | 5 | 7.1 | - | - | - |  | - | - | 1 | 1.5 | - |  |
| Cancer anthonyi (megalops) | yellow rock crab | 7 | 10.2 | 17 | 23.9 | 3 | 4.0 | 4 | 5.5 | 1 | 1.3 | 2 | 2.4 | 6 | 7.0 |
| Cancer gracilis (megalops) | slender rock crab | - |  | 1 | 1.4 | - |  | - |  | - |  | 1 | 1.5 | - |  |
| Carcinus maenas (megalops) | European green crab | - |  | - |  | - | - | - |  | - | - | - | - | - |  |
| Cancer magister (megalops) | dungeness crab | - |  | - |  | - | - | - | - | - | - | - | - | - |  |
| Cancer productus (megalops) | red rock crab | 1 | 1.8 | 1 | 1.3 | - | - | - |  | - | - | - | - | - |  |
| Cancer spp. (megalops) | cancer crabs | 1 | 1.8 | 2 | 2.8 | - | - | - |  | - | - | - | - | - |  |
|  | Total: | 11 |  | 36 |  | 3 |  | 7 |  | 1 |  | 4 |  | 14 |  |

Table F-2. Monthly* Mean Survey Concentrations (\#/1,000 m3) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.

| Taxon | Common Name | Total All Surveys | $\begin{gathered} \text { Survey } 1 \\ \text { June } 21,1999 \\ N=16 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 2 \\ \text { July } 19,1999 \\ \mathrm{~N}=16 \end{gathered}$ |  | $\begin{gathered} \text { Survey 3 } \\ \text { Dec. } 14 \& \text { Dec. 20, } 1999 \\ \mathrm{~N}=16 \end{gathered}$ |  | $\begin{gathered} \text { Survey 4 } \\ \text { January } 17,2000 \\ \mathrm{~N}=16 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 5 \\ \text { February } 28-29,2000 \\ \mathrm{~N}=32 \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Count | Conc. |
| Gobiidae unid. | gobies | 35,848 | 326 | 328.3 | 826 | 934.1 | 429 | 510.5 | 2,659 | 2632.7 | 4,556 | 2309.1 |
| Eucyclogobius newberryi | tidewater goby | 6,287 | - |  | 53 | 58.1 |  |  |  |  | 64 | 34.8 |
| Leptocottus armatus | Pacific staghorn sculpin | 638 | - |  |  |  | 49 | 57.8 | 77 | 72.0 | 23 | 11.3 |
| larval fish fragment | unidentified larval fishes | 458 | 1 | 0.6 | 4 | 4.4 | 9 | 11.5 | 7 | 7.4 | 75 | 42.6 |
| Atherinopsis californiensis | jacksmelt | 334 | - |  |  |  | 3 | 4.0 | 41 | 43.7 | 164 | 87.1 |
| Atherinops affinis | topsmelt | 267 | 3 | 3.0 | 6 | 6.9 |  |  |  |  | 1 | 0.5 |
| Stenobrachius leucopsarus | northern lampfish | 243 | 1 | 0.5 |  |  | 20 | 21.2 | 20 | 17.4 | 7 | 2.8 |
| Engraulis mordax | northern anchovy | 189 | - |  |  | 3.7 |  |  |  |  | 2 | 0.8 |
| Hypsoblennius spp. | blennies | 156 | 16 | 16.2 | 33 | 34.5 |  |  |  |  | 1 | 0.5 |
| Clupea pallasii | Pacific herring | 149 | - |  |  |  | 20 | 23.8 | 18 | 17.5 | 20 | 10.8 |
| Sebastes spp. V_De | rockfishes | 143 | 1 | 0.8 |  |  |  |  |  |  | 3 | 1.3 |
| Coryphopterus nicholsi | blackeye goby | 136 | 1 | 0.9 | 5 | 5.0 | 1 | 1.0 |  |  | 1 | 0.4 |
| Lepidogobius lepidus | bay goby | 112 | - |  |  |  |  |  | 2 | 1.6 | 4 | 1.7 |
| Gillichthys mirabilis | longjaw mudsucker | 98 | 1 | 1.0 | 3 | 3.3 | 2 | 2.5 | 8 | 7.9 | - |  |
| larval fish - damaged | unidentified larval fishes | ${ }_{93}^{93}$ | - |  |  |  |  |  | 7 | 6.8 | 42 | 21.2 |
| Genyonemus lineatus | white croaker | 83 | - |  |  | - | 2 | 2.1 |  |  | 3 | 1.7 |
| Scorpaenichthys marmoratus | cabezon | 80 | - |  |  | - | - |  | 5 | 4.6 | 27 | 14.9 |
| Bathymasteridae unid. | ronquils | 64 | 1 | 0.9 |  | 1. |  |  | - |  | - |  |
| Chaenopsidae unid. | tube blennies | 60 | - |  | 1 | 1.1 |  |  | 1 | 1.1 | 1 | 0.5 |
| Atherinidae unid. | silversides | 57 | 1 | 1.0 | 2 | 2.5 |  |  | 16 | 16.6 | 2 | 1.2 |
| Cottidae unid. | sculpins | 55 | 2 | 1.6 | 2 | 1.8 | - |  | 1 | 0.8 | 8 | 4.4 |
| Gibbonsia spp. | clinid kelpfishes | 44 | - |  |  |  | 1 | 1.2 | 2 | 1.6 | 20 | 10.7 |
| Tarletonbeania crenularis | blue lanternfish | 43 | - |  |  | - | - |  | 2 | 1.7 | 1 | 0.4 |
| Liparis spp. | snailfishes | 42 | 1 | 0.8 |  |  | - |  | 1 | 0.8 | - |  |
| Cebidichthys violaceus | monkeyface eel | 34 | - |  | 1 | 0.9 | - |  |  |  | 2 | 0.9 |
| Stichaeidae unid. | pricklebacks | 31 | - | - | - |  | 3 | 3.5 | - |  | 3 | 1.5 |
| Sebastes spp. V | rockfishes | 30 | - | - |  | - | 1 | 0.9 | 1 | 0.8 | - |  |
| Syngnathus spp. | pipefishes | 29 | - | - |  | - | 1 | 1.3 |  |  | 1 | 0.7 |
| Oligocottus spp. | sculpins | 25 | - | - |  | - | 1 | 1.1 | 2 | 2.0 | 7 | 3.3 |
| Syngnathus leptorhynchus | bay pipefish | 25 | - | - |  | - | - |  |  |  | - |  |
| Artedius lateralis | smoothhead sculpin | 24 | - | 0.9 |  | - | - | - | - |  | 4 | 2.0 |
| larval/post-larval fish, unid. Sebastes spp. V D | unidentified larval fishes rockfishes | 22 21 | 1 | 0.9 | - | - | - | - | - | - | - |  |
| Pleuronectidae unid. | flounders | 19 | - | - | - | - | - |  | - |  |  |  |
| Bathylagus ochotensis | popeye blacksmelt | 18 | - | - |  | - | - |  | 2 | 1.7 |  |  |
| Clinocottus analis | wooly sculpin | 16 | - | - |  | - | - |  |  |  | 2 | 0.9 |
| Citharichthys sordidus | Pacific sanddab | 14 | - | - | - | - | - |  | - |  |  |  |
| Sebastes spp. | rockfishes | 14 | - | - |  | - | - | - | - | - | - |  |
| Typhlogobius californiensis | blind goby | 14 | 2 | 1.6 |  | - | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | 13 | - | - | - | - | - |  | - | - | - |  |
| Sebastes spp. VD | rockfishes | 12 | - | - | - | , | 6 | 7.0 | - | - | - |  |
| Artedius spp. | sculpins | 11 | - | - |  | 0.9 | - | - | - | - | - |  |
| Pholididae unid. | gunnels | 10 |  | - |  | - | - | - | - | - | 8 | 4.2 |
| Parophrys vetulus | English sole | 8 | - |  |  | - | - |  | - |  | - |  |

*Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24-hour period.

Table F-2 (continued). Monthly* Mean Survey Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.


* Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24 -hour period.

Table F-2 (continued). Monthly* Mean Survey Concentrations (\#/1,000 $\mathrm{m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.

| Taxon | Common Name | Survey 6March 27-28 \& April 3-4, 2000$\mathrm{~N}=44$ |  | Survey 7April 24-25 \& May 3-4, 2000$\mathrm{~N}=44$ |  | Survey 8May 15-16 \& May 22-23, 2000$\mathrm{~N}=44$ |  | $\begin{gathered} \text { Survey } 9 \\ \text { June } 12-15,2000 \\ \mathrm{~N}=47 \end{gathered}$ |  | Survey 10July $10-12,2000$$\mathrm{~N}=48$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Conc. |
| Gobiidae unid. | gobies | 2,455 | 900.2 | 4,575 | 1723.1 | 3,384 | 1362.8 | 2,912 | 1130.8 | 2,378 | 834.7 |
| Eucyclogobius newberryi | tidewater goby | 63 | 22.4 | 519 | 197.6 | 578 | 228.5 | 246 | 98.9 | 1,297 | 447.7 |
| Leptocottus armatus | Pacific staghorn sculpin | 117 | 43.5 | 100 | 37.4 | 10 | 4.0 | 4 | 1.6 |  |  |
| larval fish fragment | unidentified larval fishes | 48 | 17.9 | 42 | 15.8 | 153 | 60.7 | 16 | 6.6 | 21 | 7.2 |
| Atherinopsis californiensis | jacksmelt | 27 | 10.3 | 4 | 1.6 |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 33 | 11.9 | 30 | 11.4 | 106 | 41.2 | 45 | 17.7 | 38 | 12.9 |
| Stenobrachius leucopsarus | northern lampfish | 123 | 47.3 | 48 | 16.6 | 12 | 4.6 | 2 | 0.9 | - |  |
| Engraulis mordax | northern anchovy | 50 | 20.0 | 11 | 4.5 | 7 | 2.6 | 12 | 4.6 | 45 | 15.1 |
| Hypsoblennius spp. | blennies | 1 | 0.4 | 1 | 0.3 | 2 | 0.8 | 7 | 2.9 | 24 | 8.6 |
| Clupea pallasii | Pacific herring | 1 | 0.2 | ${ }_{10}$ |  |  |  |  |  |  |  |
| Sebastes spp. V_De | rockfishes | 14 | 5.5 | 107 | 39.2 | 15 | 5.3 | 3 | 1.3 | - |  |
| Coryphopterus nicholsi | blackeye goby | 1 | 0.4 | 8 | 3.0 | 49 | 19.9 | 4 | 2.0 | 7 | 2.4 |
| Lepidogobius lepidus | bay goby | 1 | 0.4 |  |  | , |  | 7 | 2.7 | 10 | 3.9 |
| Gillichthys mirabilis | longjaw mudsucker | 2 | 0.8 | 10 | 3.7 | 13 | 4.9 | 18 | 6.9 |  |  |
| larval fish - damaged | unidentified larval fishes | 1 | 0.2 | 2 | 0.7 | 29 | 11.9 | 2 | 0.9 | 6 | 2.0 |
| Genyonemus lineatus | white croaker | 30 | 10.6 | 8 | 3.1 | - |  |  |  |  |  |
| Scorpaenichthys marmoratus | cabezon | 3 | 0.9 | - |  | 1 | 0.3 | 9 | 4 | $\overline{-}$ |  |
| Bathymasteridae unid. | ronquils | 32 | 11.9 | 4 | 1.5 | 13 | 4.7 | 9 | 4.4 | 4 | 1.6 |
| Chaenopsidae unid. | tube blennies | 1 | 0.1 | 1 | 0.3 | 2 | 0.8 | 14 | 5.9 | 9 | 3.2 |
| Atherinidae unid. | silversides | 9 | 3.4 | 3 | 1.0 | 11 | 4.9 |  | 1.2 | 3 | 1.0 |
| Cottidae unid. | sculpins | 6 | 2.2 |  | 1.3 | 13 | 5.3 | 5 | 1.9 | 2 | 0.7 |
| Gibbonsia spp. | clinid kelpfishes | 1 | 0.4 | 1 | 0.4 | 12 | 4.0 | - | - | 1 | 0.4 |
| Tarletonbeania crenularis | blue lanternfish | 25 | 9.4 |  | 0.6 | 3 | 1.1 | - |  | - |  |
| Liparis spp. | snailfishes | 5 | 1.9 | 2 | 0.7 | 16 | 5.9 | 15 | 9.3 | - |  |
| Cebidichthys violaceus | monkeyface eel | - |  | 5 | 1.8 | 23 | 7.9 | 3 | 1.0 | - |  |
| Stichaeidae unid. | pricklebacks | 4 | 1.6 | 3 | 1.0 | 5 | 1.8 | 10 | 3.2 | 2 | 0.7 |
| Sebastes spp. V | rockfishes | 2 | 0.8 | 2 | 0.6 | 5 | 1.7 | 14 | 5.4 | 1 | 0.5 |
| Syngnathus spp. | pipefishes | - |  | - |  | 1 | 0.5 | 2 | 0.7 | 8 | 2.7 |
| Oligocotus spp. | sculpins | 1 | 0.4 | 1 | 0.3 | 13 | 4.8 | - | - | - |  |
| Syngnathus leptorhynchus Artedius lateralis | lin $\begin{aligned} & \text { bay pipefish } \\ & \text { smoothhead sculpin }\end{aligned}$ | 4 |  | 2 | 0.7 | 9 | 3.5 | 3 |  | i |  |
| Artedius lateralis <br> larval/post-larval fish, unid. | smoothhead sculpin unidentified larval fishes | 4 | 1.5 0.7 | 2 | 0.7 | 9 5 | 3.5 2.2 | 3 1 | 1.2 0.4 | 1 | 0.3 |
| Sebastes spp. V_D | rockfishes | - |  | 14 | 6.9 | 5 | 1.8 | 2 | 0.6 | - |  |
| Pleuronectidae unid. | flounders | 11 | 4.2 |  | 1.9 | 1 | 0.4 | 1 | 0.4 | 1 | 0.5 |
| Bathylagus ochotensis | popeye blacksmelt | 10 | 4.1 | 2 | 0.7 | 4 | 1.5 | - |  | - |  |
| Clinocotus analis | wooly sculpin | 1 | 0.4 | - |  | 7 | 2.4 | 1 | 0.4 | 3 | 1.2 |
| Citharichthys sordidus | Pacific sanddab |  |  | - | - | - |  | - | - | - |  |
| Sebastes spp. | rockfishes | 3 | 1.1 | 4 | 1.2 | 2 | 0.7 | 3 | 2.2 | - |  |
| Typhlogobius californiensis | blind goby | 1 | 0.4 | 1 | 0.3 | - | - | - | - | - |  |
| Platichthys stellatus | starry flounder | 10 | 3.5 | 3 | 1.0 | - | - | - | $0-$ | - |  |
| Sebastes spp. VD | rockfishes | 4 | 1.6 | - | - | - | - | 1 | 0.4 | - |  |
| Artedius spp. | sculpins | 3 | 1.0 | - | - | 2 | 0.8 | 4 | 1.4 | - |  |
| Pholididae unid. Parophrys vetulus | gunnels | 6 |  | 1 | 0.4- | 2 | $\begin{array}{r}0.7 \\ \hline\end{array}$ | 1 | 0.5 | - |  |
| Parophrys vetulus | English sole | 6 | 2.4 | 1 | 0.4 | - | - | 1 | 0.5 | - | $-$ |

* Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24 -hour period.

Table F-2 (continued). Monthly* Mean Survey Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.

| Taxon | Common Name | Survey 6March $27-28 \&$ April 3-4, 2000$\mathrm{~N}=44$ |  | $\begin{gathered} \text { Survey } 7 \\ \text { April } 24-25 \& \text { May 3-4, } 2000 \\ \mathrm{~N}=44 \end{gathered}$ |  | $\begin{gathered} \text { Survey 8 } \\ \text { May 15-16 \& May 22-23, } 2000 \\ \mathrm{~N}=44 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 9 \\ \text { June } 12-15,2000 \\ \mathrm{~N}=47 \end{gathered}$ |  | $\begin{gathered} \text { Survey } 10 \\ \text { July } 10-12,2000 \\ \mathrm{~N}=48 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Conc. | Count | Conc. | Count | Conc. | Count | Conc. | Count |  | Conc. |
| Ruscarius creaseri | rouchcheek sculpin | - |  | 1 | 0.3 | 2 | 0.6 | 2 | 0.8 |  | 1 | 0.4 |
| Hexagrammidae unid. | greenlings | - |  | 1 | 0.3 | - |  | 1 | 0.5 |  | - |  |
| Pleuronectiformes unid. | flatishes | 1 | 0.4 | - |  | - | - | - | - |  | - |  |
| Syngnathidae unid. | pipefishes | - |  | - |  | - | - | - |  |  | 1 | 0.4 |
| Citharichthys stigmaeus | speckled sanddab | 1 | 0.4 | 1 | 0.5 | - |  | - | - |  | - |  |
| Oxylebius pictus | painted greenling | - |  | - |  | 1 | 0.4 | - |  |  | - |  |
| Pleuronichthys verticalis | honeyhead turbot | - |  | - |  | - |  | - | - |  | 3 | 1.1 |
| Pleuronectes bilineatus | rock sole | - |  | 4 | 1.7 | - |  | - | - |  |  |  |
| Gobiesox spp. | clingfishes | 1 | 0.4 | 1 | 0.4 | - |  | - |  |  | - |  |
| Paralichthys californicus | California halibut | 1 | 0.4 | 1 | 0.4 | - |  | - |  |  | - |  |
| Psettichthys melanostictus | sand sole | 3 | 1.2 | - |  | - | - | - | - |  |  |  |
| Sciaenidae unid. | croaker | - |  | - |  | - | - | 1 | 0.4 |  | 1 | 0.4 |
| Agonidae unid. | poachers | - |  | - |  | - | - | - |  |  |  |  |
| Clupeidae unid. | herrings | - |  | 1 | 0.3 | - | - | - | - |  | - |  |
| Clupeiformes | herrings and anchovies | 1 | 0.4 | - |  | - | - | - | - |  | - |  |
| Cottus asper | prickly sculpin | 1 | 0.4 | 1 | 0.4 | - | - | - | - |  | - |  |
| Labrisomidae unid. | labrisomid kelpfishes | - |  | 2 | 0.8 | - | - | - | - |  |  |  |
| Liparis fucensis | slipskin snailfish | - |  |  |  | - | - |  | - |  |  |  |
| Microstomus pacificus | Dover sole | 2 | 0.8 | - |  | - | - | - | - |  | - |  |
| Orthonopias triacis | snubnose sculpin | - |  | - |  | - | - | - | - |  | - |  |
| Osmeridae unid. | smelts | 1 | 0.6 | 1 | 0.3 | - | $0 \cdot$ | - | - |  |  |  |
| Sardinops sagax Citharichthys spp | Pacific sardine | 1 | 0.4 | - |  | 1 | 0.3 | - | - |  | - |  |
| Citharichthys spp. | sanddabs | - |  | 1 | 0.4 | - |  |  | - |  | - |  |
| Diaphus theta Icichthys lockingtoni | California headlight fish medusa fish | 1 | 0.4 | - |  | - |  | - | - |  | - |  |
| Myctophidae unid. | lanternfishes | - |  | - | - | - | - | - | - |  | $\div$ |  |
| Nannobrachium regalis | pinpoint lanternfish | - |  | - |  | - | - | - |  |  | - |  |
| Odontopyxis trispinosa | pygmy poacher | - |  | - |  | - | - | - | - |  | - |  |
| Paralichthyidae unid. | lefteye flounders \& sanddabs | - |  | - | - | - | - | - | - |  | 1 | 0.4 |
| Pleuronichthys spp. | turbots | - |  | - | - | - | - | - | - |  | - |  |
| Radulinus spp. | sculpins | - |  | - | - | - | - | - | - |  | 1 | 0.3 |
| Sebastolobus spp. | thornyheads | 1 | 0.4 | - | - | - | - | - | - |  | - |  |
| Xenistius califoriensis |  | - |  | $5 \cdot$ |  | - |  |  |  |  | - |  |
|  | Total | 3,126 |  | 5,539 |  | 4,517 |  | 3,374 |  |  | 869 |  |
| Crabs $\begin{aligned} & \text { Cancer antennarius (megalops) }\end{aligned}$ | brown rock crab |  | 2.3 |  |  | 1.513 | 575.3 | 121 | 46.6 |  | 8 | 2.9 |
| Cancer jordani (megalops) | hairy rock crab | 12 | 4.7 | , 32 | 13.2 | 163 | 59.5 | 13 | 5.3 |  | 17 | 6.1 |
| Carcinus maenas (megalops) | European green crab | - | - | 3 | 1.3 | 16 | 6.4 | 6 | 3.2 |  | 17 | 6.2 |
| Cancer gracilis (megalops) | slender rock crab | 4 | 1.6 | 1 | 0.5 | 14 | 5.3 | - | - |  | - |  |
| Cancer anthonyi (megalops) | yellow rock crab | - |  | 2 | 0.8 | 9 | 3.2 | 4 | 1.6 |  | 3 | 1.1 |
| Cancer productus (megalops) | red rock crab | 3 | 1.2 | 2 | 0.8 | 15 | 5.6 | 1 | 0.5 |  | - |  |
| Cancer spp. (megalops) | cancer crabs | - |  | 11 | 4.0 | - |  | - |  |  | - |  |
| Cancer magister (megalops) | dungeness crab | - |  | - |  | 2 | 0.8 | - | - |  | - |  |
|  | Total | 25 |  | 7,854 |  | 1,732 |  | 145 |  |  | 45 |  |

[^10]Table F-2 (continued). Monthly* Mean Survey Concentrations (\#/1,000 m ${ }^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.

| Taxon | Common Name | Survey 11August 7-9, 2000$\mathrm{N}=48$ |  | Survey 12September 5-7, 2000$\mathrm{~N}=48$ |  | Survey 13October 2-4, 2000$\mathrm{~N}=48$ |  | $\begin{gathered} \text { Survey 14 } \\ \text { Nov. } 27-28 \& \text { Dec. } 4-5,2000 \\ \mathrm{~N}=48 \end{gathered}$ |  | Survey 15December 18-19, 2000$\mathrm{~N}=48$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Conc. |
| Gobiidae unid. | gobies | 2,696 | 1047.6 | 3,231 | 1367.9 | 816 | 330.8 | 2,616 | 908.1 | 1,989 | 681.5 |
| Eucyclogobius newberryi | tidewater goby | 2,041 | 813.7 | 1,347 | 607.0 | 71 | 30.0 | 7 | 2.5 | 1 | 0.3 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 0.4 | 2 | 0.7 | 5 | 1.9 | 232 | 87.0 | 18 | 5.9 |
| larval fish fragment | unidentified larval fishes | 29 | 11.3 | 23 | 9.6 | - | - | 17 | 6.3 | 13 | 4.5 |
| Atherinopsis californiensis | jacksmelt | 1 | 0.4 | 3 | 1.4 | 2 | 0.9 | 39 | 15.0 | 50 | 16.5 |
| Atherinops affinis | topsmelt | 5 | 1.8 |  |  | - |  | - |  | - |  |
| Stenobrachius leucopsarus | northern lampfish |  |  |  |  |  |  | 1 | 0.3 | 9 | 2.9 |
| Engraulis mordax | northern anchovy |  |  | 3 | 1.2 | 12 | 4.0 | 33 | 10.1 | 10 | 2.9 |
| Hypsoblennius spp. | blennies | 29 | 11.6 | 27 | 9.9 | 15 | 5.7 |  |  |  |  |
| Clupea pallasii | Pacific herring |  |  |  |  | - |  | 61 | 22.1 | 29 | 9.6 |
| Sebastes spp. V_De | rockfishes |  |  |  |  |  |  |  |  | - |  |
| Coryphopterus nicholsi | blackeye goby | 8 | 3.2 | 18 | 6.9 | 25 | 9.5 | 8 | 2.9 |  |  |
| Lepidogobius lepidus | bay goby | 16 | 6.6 | 24 | 9.2 | 24 | 9.5 | 24 | 9.1 |  |  |
| Gillichthys mirabilis | longjaw mudsucker | 1 | 0.4 |  | 1.4 | 2 | 0.8 | 35 | 12.9 | - |  |
| larval fish - damaged | unidentified larval fishes | - |  | 1 | 0.3 | - |  | 1 | 0.4 |  | 0.8 |
| Genyonemus lineatus | white croaker | 7 | 3.0 | 2 | 0.9 | 13 | 4.6 | 15 | 5.3 | 3 | 0.8 |
| Scorpaenichthys marmoratus | cabezon | - |  | - |  | 4 | 1.7 | 26 | 9.4 | 14 | 4.2 |
| Bathymasteridae unid. | ronquils | 1 | 0.4 |  |  |  |  |  |  |  |  |
| Chaenopsidae unid. | tube blennies | 18 | 7.5 | 7 | 2.7 | 3 | 1.1 | 2 | 0.5 | - |  |
| Atherinidae unid. | silversides | - |  |  |  | 1 | 0.4 | 2 | 0.8 | 4 | 1.3 |
| Cottidae unid. | sculpins | 8 | 3.1 | 1 | 0.4 | 1 | 0.3 | 2 | 0.7 | 1 | 0.3 |
| Gibbonsia spp. | clinid kelpfishes |  |  | 1 | 0.4 | - |  | 1 | 0.4 | 4 | 1.4 |
| Tarletonbeania crenularis | blue lanternfish | 1 | 0.3 | - |  | 4 | 1.2 | 5 | 1.7 | - |  |
| Liparis spp. | snailfishes | - |  | - |  | 2 | 0.8 | - | - | - |  |
| Cebidichthys violaceus | monkeyface eel | - |  | - | - | - | - |  | - |  |  |
| Stichaeidae unid. | pricklebacks | 1 | 0.4 | - |  | - |  |  |  |  |  |
| Sebastes spp. V | rockfishes | - |  | - |  | 1 | 0.3 | 3 | 1.1 | - |  |
| Syngnathus spp. | pipefishes | - |  | 11 | 4.4 | 2 | 0.9 | 3 | 1.0 | - |  |
| Oligocottus spp. | sculpins | - |  | - |  | - |  | - | - | - |  |
| Syngnathus leptorhynchus | bay pipefish | 12 | 4.4 | 1 | 0.5 | 6 | 2.1 | 6 | 2.0 | - |  |
| Artedius lateralis | smoothhead sculpin | 1 | 0.4 | - |  | - | - |  |  | - |  |
| larval/post-larval fish, unid. | unidentified larval fishes | 1 | 0.5 | - | - | 11 | 4.3 | - | - | 1 | 0.4 |
| Sebastes spp. V_D | rockfishes | - |  | - |  |  |  |  |  | - |  |
| Pleuronectidae unid. | flounders | - | - | - | - | - | - | - | - | - |  |
| Bathylagus ochotensis | popeye blacksmelt | - | - | - | - | - |  |  |  | - |  |
| Clinocotus analis | wooly sculpin | - | - | 1 | 0.4 | - |  | 1 | 0.4 | - |  |
| Citharichthys sordidus | Pacific sanddab | - | - | 1 | 0.3 | 7 | 2.2 | 5 | 1.6 | 1 | 0.3 |
| Sebastes spp. | rockfishes | - | - | - | - | - | - | 2 | 0.6 | - |  |
| Typhlogobius californiensis | blind goby | - | - | - | - | - | - | - |  | 10 | 3.7 |
| Platichthys stellatus | starry flounder | - | - | - | - | - | - | - | - | - |  |
| Sebastes spp. VD | rockfishes | - | - | - | - | - | - | 1 | 0.3 | - |  |
| Artedius spp. | sculpins | - | - | - | - | - | - | - | - | 1 | 0.4 |
| Pholididae unid. | 既 $\begin{aligned} & \text { gunnels } \\ & \text { English sole }\end{aligned}$ | - |  | - | - | - | - | - | - | - |  |
| Parophrys vetulus | English sole | - |  | - | - | - | - | - | - | - |  |

* Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24-hour period.

Table F-2 (continued). Monthly* Mean Survey Concentrations ( $\# / 1,000 \mathrm{~m}^{3}$ ) of Larval Fishes and Megalopal Cancrid Crabs Collected at MBPP Source Water Stations: June and July 1999 and December 1999 through December 2000.


[^11]Morro Bay Power Plant Modernization Project 316(b) Resource Assessment

Appendix G
Dr. Jacobs' Analysis of Mitochondrial Sequence Generated from Larval Gobies Provided by Tenera and

Response by Dr. Giacomo Bernardi

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix G-1

# Analysis of Mitochondrial Sequence Generated from Larval Gobies Provided to the Jacobs Lab by Tenera 

by

David Jacobs, Ph.D
University of California at Los Angeles
January, 2001

# AnAlysis of mitochondrial sequence generated from Larval gobies provided to the Jacobs Lab by Tenera 

DaVID Jacobs, Ph.D<br>University of California at Los Angeles January, 2001

## Summary

Tenera provided 53 unknown larval fish recovered in Morro Bay to assess whether or not these larval fish were tidewater gobies. Sequencing of the mitochondrial control region documents that none of the 52 fish for which sequence was recovered are tidewater goby; one fish was unable to be sequenced.

The fish were received from Tenera in two sets of samples. An approximately 890 base pair mitochondrial control region sequence was recovered via PCR. Sufficient sequence was generated to construct a 594 base pair matrix. PCR and sequencing was successful for 52 of the 53 fish; only one fish (\#19) from the second sample set remains unsequenced. Fourteen known goby sequences from six species were included in the analysis. These data were examined by comparing distances between all pairs of sequences, and by generating a parsimony-based phylogenetic tree. The analysis demonstrates that of the first sample set of 15 fish, the majority of the larval fish, 13, are shadow goby Quietula y-cauda. Two others are similar to each other, but they are quite distinct from the sequences we have in hand. They are likely to be a more open marine goby that we have yet to sample as they fall outside all the estuarine gobies included in the analysis. In the second set of 38 larval fish, 32 fish are shadow goby Quietula ycauda. An additional five are Clevelandia ios the arrow goby.

Thus, of the 52 sequences generated 45 are shadow goby Quietula y-cauda, five are Clevelandia ios the arrow goby, and two remain unknown. All sequences generated are unequivocally different from Eucyclogobius newberryi, the tidewater goby.

## General Methods Employed

DNA was extracted by digesting each larva in $6 \mu 1$ proteinase $\mathrm{K}(20 \mathrm{mg} / \mathrm{ml}), 600 \mu \mathrm{l}$ CTAB $(0.1 \mathrm{M}$ Tris ( pH 8.0 ), 0.02 M EDTA ( pH 8.0 ), $0.02 \%(\mathrm{w} / \mathrm{v}) \mathrm{CTAB}, 0.8 \mathrm{M} \mathrm{NaCl}, 0.002 \%$ Bmercaptoethanol), and $50 \mu \mathrm{M} \mathrm{NaCl}$ for 5 hours at $55^{\circ} \mathrm{C}$. At room temperature, digested samples were centrifuged for 5 minutes at $13,000 \mathrm{~g}$ before DNA was removed from the
supernatants by a single extraction with chloroform:isoamyl-alcohol (24:1) followed by repeated extractions with phenol:chloroform:isoamyl-alcohol (25:24:1) until the interface between aqueous and organic phases was clear. A single chloroform:isoamyl-alcohol extraction was then completed before precipitating the DNA at $-20^{\circ} \mathrm{C}$ for one hour with $\sim 45 \mu \mathrm{l} 3 \mathrm{M}$ sodium acetate and $\sim 1.2 \mathrm{ml} 100 \%$ ethanol. The precipitated DNA was centrifuged for 30 minutes at $13,000 \mathrm{~g}$, washed in $75 \%$ ethanol, dried at $37^{\circ} \mathrm{C}$, and dissolved in $50 \mu \mathrm{l} 10 \mathrm{mM}$ Tris- $\mathrm{HCl}(\mathrm{pH8} .3)$.

Between $0.5 \mu \mathrm{l}$ and $1.0 \mu 1$ of this DNA solution was used in $50 \mu \mathrm{l}$ PCRs, set up according to the guidelines issued with Taq Polymerase (Perkin Elmer). PCRs, using MJ Research MiniCyclers, began with a 5 minute denaturation step, followed by 32 cycles, each cycle consisting of 45 seconds at $94^{\circ} \mathrm{C}, 45 \mathrm{sec}$. at $49-51^{\circ} \mathrm{C}$, and $60-90 \mathrm{sec}$. at $72^{\circ} \mathrm{C}$, depending on both the template and primers; PCRs terminated with a 10 minute extension step $\left(72^{\circ} \mathrm{C}\right)$ then refrigeration $\left(4^{\circ} \mathrm{C}\right)$. The mitochondrial control region was amplified using primers CR-A and CR-M (Lee et al. 1995). Cloned PCR products, generated via Invitrogen's TOPO TA cloning kit and Pharmacia's Flexiprep kit, were cycle sequenced on Applied Biosystems 373 Autosequencers according to protocols in the ABI Prism manual using Invitrogen's M13 primers.

## Approach

Although the larval gobies were small, a recent Ph.D in my lab, Mike Dawson, was able to recover sequence data from 52 of the 53 specimens provided. Mike has worked extensively with the population genetics of tidewater gobies and other marine taxa and is quite experienced at recovering mitochondrial sequence. He was able to extract DNA using standard methods, and PCR amplify the mitochondrial control region, a highly variable region that has been widely used in studies of divergence within and between species of vertebrates. These PCR products were then cloned, and the 5 ' end of the control sequence was then sequenced at a DNA sequencing facility at Cal-State Northridge and at Laragen (see methods section for details of standard application of these methods). This yielded @ 590 bases of alignable sequence. Sequences were aligned using a standard alignment program (Clustal W) with a range of sequences that Mike has assembled ancillary to his work on Eucyclogobius. The final data set included 14 known and 52 unknown sequences yielding a matrix of 66 sequences and 594 characters. This includes a number other Californian estuarine gobies (long-jawed mudsuckerGillichthys, arrow goby - Clevelandia, shadow goby - Quietula, cheekspot goby- Ilypnus) as well as a member of the genus Coryphopterus from the Caribbean. Collection locality information is provided below.

Collection Locality Information for Known Samples

| Species | Site | Collected by | Date | Method | Preservation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Coryphopterus <br> glaucotroenum [Go22] | Caribbean | Mark Steele | Jan 1999 | SCUBA | 70\% EtOH |
| Eucyclogobius newberryi En164_SD | San Onofre, SD | Dan Holland | 1990 | Seine | Deep-frozen |
| Eucyclogobius newberryi _En519_SB | Refugio,SB | Dan Holland | 1990 | Seine | Deep-frozen |
| Gillichthys mirabilis \#24 | Ballona Tidal Gate, LA | Lauritzen \& Fredericks | 7/11/99 | Seine | 70\% ethanol |
| Quietula y-cauda \#s 1-3 | Santa Margarita, SD | Holland \& Swift | January 1999 | Seine | Deep-frozen |
| 1 Quietula y-cauda <br> [_CiA_StaM_SD1] | Santa Margarita, SD | Camm Swift | 1998/9 | Seine | Deep-frozen |
| 43 Clevelandia ios | San Luis Cr, SLO | Kristina Louie | 1997-2000 | Seine | Deep-frozen |
| 12 Clevelandia ios | Anaheim Bay, LA | Kristina Louie | 1997-2000 | Seine | Deep-frozen |
| 2 Clevelandia ios | Bodega Harbor, SO | Kristina Louie | 1997-2000 | Seine | Deep-frozen |
| 1 Ilypnus gilberti [Cheekspot] | Carpinteria Marsh, SB. | Todd Huspeni | 1999 | Slurp-gun? | Deep-frozen |
| 2 Ilypnus gilberti [Cheekspot] | Anaheim Bay, LA | Lauritzen \& Fredericks | 7/11/99 | Seine | 70\% ethanol |
| Ilypnus gilberti \#s3-4 [Cheekspot] | Long Beach, LA | Lauritzen \& Fredericks | 7/11/99 | Seine | 70\% ethanol |
| Lepidogobius lepidis \#s 1-3 | Campbell C, <br> Bodega Bay, SO | Don Buth | 10/2/2000 | Seine | 95\% |
| Lythripnus dalli \#s 1-2 | San Clemente Island | Dan Pondela | 8/9/2000 | SCUBA | 95\% EtOH |
| Lythripnus zebra \#s 1-2 | San Clemente Island | Dan Pondela | 8/9/2000 | SCUBA | 95\% EtOH |
| Coryphopterus nicholsii 1-3 | King Harbor, Redondo B . | Dan Pondela | 9/14/2000 | SCUBA | (95\% EtOH?) |

Analysis of this data is presented in two ways, as a distance matrix appended below and as a tree reconstructed using parsimony. In the distance matrix comparisons between individuals within a species range in number of DNA changes from 0 to 25 . Samples from our extensive data on tidewater goby, chosen to encompass the entire range of variation, differ at 25 positions reflecting distinct northern and southern forms of the tidewater goby. In these data the smallest difference between known species is in the range of 75-79 base changes between tidewater and arrow gobies. We, and others, have argued that these taxa are closely related. Thus based on the known sequences, the maximum within species variation is 25 bases or $4.2 \%$ and the minimum between species variation is 75 bases or $12.8 \%$.

Unknown larvae $1 \& 2$ are closely related to each other (4 bases) but are unrelated to all the other gobies in the analysis. On the basis of these sequences it appears that these larvae may not be members of the estuarine group of gobies, a speculation consistent with their collection at high tide.

An additional 32 of the larval sequences (\#'s 3-18, 20-42, 48-53) are also most closely related to each other differing by a range of 0-6 base changes. However, these sequences are only a few more bases different (7-11) from the three shadow goby (Quietula) sequences we have in the analysis. The known shadow goby sequences in the analysis are from fish caught in the Santa Margarita River in San Diego County. We interpret this slight difference as intra-specific geographic variation between Morro Bay and San Diego. We would point out that this difference is less than half that found within the tidewater goby across the same region.

The remaining five larvae (\#'s 43-47) are inferred to be Clevelandia. They are differentiated from each other and from the known Clevelandia by a range of 4-11 base differences.

It is reassuring that there is some difference in these sequences from sequences previously generated in the lab as it allows for no possibility of laboratory contamination as the source of any of the sequences generated.

The interpretation is perhaps most easily visualized in the parsimony tree reconstruction generated using the program Paup 4*. This tree (see next page) was constructed using the parsimony/bootstrapping resampling technique implemented in Paup. Only those topologies present in more than $50 \%$ of the Bootstrap iterations are retained. Note that all the species level taxa are supported by $100 \%$ bootstrap values and that the sequence divergence within species is far less than between species (shown by branch length). As discussed above Quietula and the unknown samples that are inferred to be Quietula show some within species structure that we attribute to geographic differentiation. However also note that the sequence divergence within "Q. y-cauda" inclusive of associated unknowns, as well as "C. ios" inclusive of associated unknowns is substantially less than between known Eucyclogobius sequences.


Relationship between sample information provided by Tenera and our sample numbers.
First Shipment

| Survey/Sample\#/\#of fish | Collection Date | Fish\# this <br> analysis |
| :--- | :---: | :---: |
| S0002/8/2 | $6 / 28 / 99$ | 1,2 |
| S0002/9/1 | $6 / 29 / 99$ | 3 |
| S0002/11/2 | $6 / 29 / 99$ | 4,5 |
| S0005/3/5 | $7 / 19 / 99$ | $6,7,8,9,10$ |
| S0005/4/5 | $7 / 19 / 99$ | $11,12,13,14,15$ |

## Second Shipment

| S0002-2 | $16-18$ |
| :--- | :--- |
| S0002-3 | $19-21$ |
| S0002-4 | $22-24$ |
| S0003-2 | $25-27$ |
| S0004-2 | $28-30$ |
| S0005-1 | $31-35$ |
| S0005-2 | $36-38$ |
| S0005-3 | $39-40$ |
| S0005-4 | $41-42$ |
| S0007-29 | $43-47$ |
| S0008-2 | $48-50$ |
| S0024-2 | $51-53$ |

## Pairwise distances between taxa

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Coryphopterus gl | - | 0.46863 | 0.45580 | 0.45816 | 0.47835 | 0.47441 | 0.47638 | 0.48024 |
| 2 Eucyclogobius ne | 239 | - | 0.04537 | 0.25000 | 0.28625 | 0.28437 | 0.28437 | 0.14630 |
| 3 Eucyclogobius ne | 232 | 25 | - | 0.24646 | 0.28113 | 0.27547 | 0.27925 | 0.14471 |
| 4 Gillichthys mira | 219 | 124 | 122 | - | 0.32790 | 0.32587 | 0.32587 | 0.25151 |
| 5 3Quietula ycauda | 243 | 152 | 149 | 161 | - | 0.00924 | 0.00185 | 0.29356 |
| 6 2Quietula ycauda | 241 | 151 | 146 | 160 | 5 | - | 0.00739 | 0.29167 |
| 7 1Quietula ycauda | 242 | 151 | 148 | 160 | 1 | 4 | - | 0.29167 |
| 8 2Clevelandia ios | 243 | 79 | 78 | 125 | 155 | 154 | 154 |  |
| 9 12Clevelandia io | 242 | 78 | 77 | 124 | 155 | 154 | 154 | 7 |
| 10 43Clevelandia io | 241 | 76 | 75 | 123 | 154 | 153 | 153 | 7 |
| 11 1Ilypnus gilbert | 226 | 127 | 121 | 119 | 123 | 122 | 122 | 133 |
| 12 2Ilypnus gilbert | 232 | 130 | 122 | 126 | 124 | 123 | 123 | 134 |
| 13 3Ilypnus gilbert | 232 | 129 | 121 | 126 | 125 | 124 | 124 | 134 |
| 14 4Ilypnus gilbert | 233 | 130 | 122 | 126 | 126 | 125 | 125 | 136 |
| 15 1UnknownLarva | 215 | 175 | 179 | 173 | 174 | 173 | 173 | 186 |
| 16 2UnknownLarva | 213 | 175 | 179 | 173 | 175 | 174 | 174 | 186 |
| 17 3UnknownLarva | 241 | 154 | 150 | 161 | 12 | 11 | 11 | 159 |
| 18 4UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 19 5UnknownLarva | 239 | 153 | 148 | 159 | 8 | 7 | 7 | 157 |
| 20 6UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 21 7UnknownLarva | 239 | 154 | 149 | 160 | 10 | 9 | 9 | 158 |
| 22 8UnknownLarva | 241 | 155 | 150 | 161 | 11 | 10 | 10 | 159 |
| 23 9UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 24 10UnknownLarva | 241 | 154 | 150 | 161 | 11 | 10 | 10 | 159 |
| 25 11UnknownLarva | 240 | 153 | 148 | 159 | 11 | 9 | 10 | 157 |
| 26 12UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 27 13UnknownLarva | 241 | 154 | 150 | 161 | 9 | 8 | 8 | 157 |
| 28 14UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 29 15UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 30 16UnknownLarva | 239 | 152 | 148 | 159 | 10 | 9 | 9 | 157 |
| 31 17UnknownLarva | 240 | 153 | 148 | 160 | 10 | 9 | 9 | 159 |
| 32 18UnknownLarva | 240 | 154 | 149 | 162 | 11 | 10 | 10 | 159 |
| 33 20UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 34 21UnknownLarva | 240 | 154 | 149 | 162 | 11 | 10 | 10 | 159 |
| 35 22UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 36 23UnknownLarva | 240 | 156 | 151 | 160 | 11 | 10 | 10 | 158 |
| 37 24UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 38 25UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 39 26UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 40 27UnknownLarva | 240 | 154 | 149 | 160 | 10 | 9 | 9 | 158 |
| 41 28UnknownLarva | 194 | 138 | 136 | 139 | 6 | 7 | 5 | 144 |
| 42 29UnknownLarva | 240 | 153 | 149 | 160 | 10 | 9 | 9 | 158 |
| 43 30UnknownLarva | 241 | 153 | 148 | 160 | 10 | 9 | 9 | 157 |
| 44 31UnknownLarva | 226 | 148 | 146 | 149 | 10 | 9 | 9 | 153 |
| 45 32UnknownLarva | 241 | 154 | 149 | 160 | 10 | 9 | 9 | 158 |
| 46 33UnknownLarva | 238 | 153 | 149 | 159 | 9 | 8 | 8 | 156 |
| 47 34UnknownLarva | 241 | 155 | 150 | 161 | 10 | 9 | 9 | 159 |
| 48 35UnknownLarva | 241 | 154 | 150 | 159 | 11 | 10 | 10 | 157 |
| 49 36UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 50 37UnknownLarva | 240 | 154 | 149 | 159 | 9 | 8 | 8 | 158 |
| 51 38UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 52 39UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 53 40UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 54 41UnknownLarva | 239 | 154 | 150 | 159 | 11 | 10 | 10 | 157 |
| 55 42UnknownLarva | 241 | 155 | 150 | 161 | 11 | 10 | 10 | 159 |
| 56 43UnknownLarva | 223 | 69 | 72 | 114 | 151 | 150 | 150 | 7 |
| 57 44UnknownLarva | 246 | 77 | 78 | 126 | 156 | 155 | 155 | 10 |
| 58 45UnknownLarva | 244 | 78 | 79 | 126 | 156 | 155 | 155 | 11 |
| 59 46UnknownLarva | 246 | 80 | 77 | 122 | 155 | 154 | 154 | 10 |
| 60 47UnknownLarva | 245 | 77 | 80 | 126 | 154 | 153 | 153 | 10 |
| 61 48UnknownLarva | 239 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 62 49UnknownLarva | 239 | 155 | 150 | 160 | 11 | 10 | 10 | 159 |
| 63 50UnknownLarva | 214 | 145 | 140 | 153 | 8 | 7 | 7 | 150 |
| 64 51UnknownLarva | 240 | 154 | 149 | 160 | 9 | 8 | 8 | 158 |
| 65 52UnknownLarva | 239 | 154 | 149 | 159 | 10 | 9 | 9 | 158 |
| 66 53UnknownLarva | 240 | 155 | 151 | 162 | 12 | 11 | 11 | 160 |

## Pairwise distances between taxa (continued)



## Pairwise distances between taxa (continued)

Below diagonal: Total character differences
Above diagonal: Mean character differences (adjusted for missing data)
1 Coryphopterus gl 0.474410 .472440 .470470 .472440 .470470 .474410 .472440 .47441
2 Eucyclogobius ne $0.290020 .290020 .288140 .290020 .290020 .29190 \quad 0.290020 .29002$
3 Eucyclogobius ne 0.283020 .281130 .279250 .281130 .281130 .283020 .281130 .28302
4 Gillichthys mira 0.327900 .325870 .323830 .325870 .325870 .327900 .325870 .32790
5 3Quietula ycauda 0.022180 .016640 .014790 .016640 .018480 .020330 .016640 .02033
6 2Quietula ycauda $0.020330 .014790 .012940 .014790 .016640 .01848 \quad 0.014790 .01848$
7 1Quietula ycauda 0.020330 .014790 .012940 .014790 .016640 .018480 .014790 .01848
2Clevelandia ios 0.301140 .299240 .297350 .299240 .299240 .301140 .299240 .30114
12Clevelandia io $0.30000 \quad 0.298110 .296230 .298110 .298110 .300000 .298110 .30000$
10 43Clevelandia io $0.29811 \quad 0.29623$ 0.29434 0.29623 0.29623 0.298110 .296230 .29811
11 IIlypnus gilbert 0.239690 .239690 .237720 .239690 .241650 .243610 .239690 .24165
2Ilypnus gilbert 0.231200 .231200 .229320 .231200 .233080 .234960 .231200 .23308 3 3Ilypnus gilbert $0.23308 \quad 0.233080 .231200 .233080 .234960 .236840 .233080 .23496$ 4 4Ilypnus gilbert $0.234520 .234520 .232650 .234520 .23640 \quad 0.238270 .234520 .23640$ 1UnknownLarva 0.364210 .364210 .364210 .364210 .364210 .366320 .364210 .36421 1 2UnknownLarva 0.365550 .365550 .365550 .365550 .365550 .367650 .365550 .36555 7 3UnknownLarva - 0.005550 .007390 .005550 .007390 .009240 .005550 .00555 8 4UnknownLarva $3-0.001850 .000000 .001850 .00370 \quad 0.00000 \quad 0.00370$
5UnknownLarva
6UnknownLarva
7UnknownLarva
8UnknownLarva
9UnknownLarva
10UnknownLarva
5 11UnknownLarva
12UnknownLarva
13UnknownLarva
14UnknownLarva
15UnknownLarva
16UnknownLarva
17UnknownLarva
18UnknownLarva
20UnknownLarva
21UnknownLarva
22UnknownLarva
23UnknownLarva
24UnknownLarva
8 25UnknownLarva
9 26UnknownLarva
40 27UnknownLarva
41 28UnknownLarva
42 29UnknownLarva
43 30UnknownLarva
44 31UnknownLarva
45 32UnknownLarva
46 33UnknownLarva
47 34UnknownLarva 48 35UnknownLarva 49 36UnknownLarva 50 37UnknownLarva 51 38UnknownLarva 52 39UnknownLarva 53 40UnknownLarva 54 41UnknownLarva 42UnknownLarva 56 43UnknownLarva 57 44UnknownLarva 45UnknownLarva 46UnknownLarva 60 47UnknownLarva 61 48UnknownLarva 49UnknownLarva 3 50UnknownLarva 64 51UnknownLarva 65 52UnknownLarva 66 53UnknownLarva


## Pairwise distances between taxa (continued)

Below diagonal: Total character differences
Above diagonal: Mean character differences (adjusted for missing data)
1 Coryphopterus gl 0.472440 .472440 .474410 .472440 .472440 .471400 .472440 .47244
2 Eucyclogobius ne 0.288140 .290020 .290020 .290020 .290020 .286790 .288140 .29002
3 Eucyclogobius ne $0.279250 .281130 .283020 .281130 .281130 .27977 \quad 0.279250 .28113$
4 Gillichthys mira 0.323830 .325870 .327900 .325870 .325870 .324490 .325870 .32994
5 3Quietula ycauda 0.020330 .016640 .016640 .016640 .016640 .018520 .018480 .02033
6 2Quietula ycauda 0.016640 .014790 .014790 .014790 .014790 .016670 .016640 .01848
7 1Quietula ycauda 0.018480 .014790 .014790 .014790 .014790 .016670 .016640 .01848
8 2Clevelandia ios 0.297350 .299240 .297350 .299240 .299240 .297910 .301140 .30114
9 12Clevelandia io 0.296230 .298110 .296230 .298110 .298110 .296790 .300000 .30000
10 43Clevelandia io $0.29434 \quad 0.29623 \quad 0.29434 \quad 0.29623 \quad 0.296230 .29490 \quad 0.298110 .29811$
11 IIlypnus gilbert 0.237720 .239690 .241650 .239690 .239690 .238190 .239690 .24165
2Ilypnus gilbert 0.229320 .231200 .233080 .231200 .231200 .229760 .231200 .23308 3 3Ilypnus gilbert $0.23120 \quad 0.23308 \quad 0.23496 \quad 0.23308 \quad 0.233080 .231640 .233080 .23496$ 4 4Ilypnus gilbert $0.232650 .234520 .23640 \quad 0.234520 .234520 .233080 .234520 .23640$ 1UnknownLarva $0.362110 .36421 \quad 0.36211 \quad 0.36421 \quad 0.364210 .360760 .362110 .36421$ 2UnknownLarva 0.363450 .365550 .363450 .365550 .365550 .362110 .363450 .36555 3UnknownLarva $\quad 0.009240 .005550 .005550 .005550 .005550 .003700 .007390 .00924$ 8 4UnknownLarva 0.003700 .000000 .003700 .000000 .000000 .001850 .001850 .00370 5UnknownLarva 6UnknownLarva 7UnknownLarva 8UnknownLarva 9UnknownLarva 4 10UnknownLarva 5 11UnknownLarva 12UnknownLarva 7 13UnknownLarva 14UnknownLarva 15UnknownLarva 16UnknownLarva 17UnknownLarva 18UnknownLarva 20UnknownLarva 21UnknownLarva 22UnknownLarva 23UnknownLarva 24UnknownLarva 25UnknownLarva 9 26UnknownLarva 40 27UnknownLarva 1 28UnknownLarva 42 29UnknownLarva 43 30UnknownLarva 44 31UnknownLarva 45 32UnknownLarva 46 33UnknownLarva 47 34UnknownLarva 8 35UnknownLarva 49 36UnknownLarva 50 37UnknownLarva 51 38UnknownLarva 52 39UnknownLarva 53 40UnknownLarva 54 41UnknownLarva 42UnknownLarva 6 43UnknownLarva 57 44UnknownLarva 45UnknownLarva 46UnknownLarva 47UnknownLarva 48UnknownLarva 49UnknownLarva 50UnknownLarva 64 51UnknownLarva 65 52UnknownLarva 66 53UnknownLarva 0.005550 .001850 .005550 .001850 .001850 .003700 .003700 .00555 0.003700 .000000 .003700 .000000 .000000 .001850 .001850 .00370 $0.005550 .001850 .005550 .001850 .001850 .00370 \quad 0.00370 \quad 0.00555$ 0.007390 .003700 .007390 .003700 .003700 .005560 .005550 .00739 0.003700 .000000 .003700 .000000 .000000 .001850 .001850 .00370 $0.007390 .00370 \quad 0.00370 \quad 0.003700 .00370 \quad 0.00185 \quad 0.00555 \quad 0.00739$ - 0.003700 .007390 .003700 .003700 .005560 .005550 .00739 $2-0.003700 .000000 .000000 .001850 .001850 .00370$ $-0.00370 \quad 0.003700 .001850 .005550 .00739$

| 2 | - | 0.00000 | 0.00185 | 0.00185 | 0.00370 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0 | - | 0.00185 | 0.00185 | 0.00370 |
| 1 | 1 | 1 | - | 0.00370 | 0.00556 |
| 3 | 1 | 1 | 2 | - | 0.00555 |
| 4 | 2 | 2 | 3 | 3 | - |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 4 | 2 | 2 | 3 | 3 | 0 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 4 | 2 | 2 | 3 | 3 | 4 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 3 | 1 | 1 | 2 | 2 | 3 |
| 1 | 0 | 0 | 1 | 1 | 2 |
| 2 | 2 | 2 | 1 | 3 | 4 |
| 3 | 1 | 1 | 2 | 2 | 3 |
| 1 | 1 | 1 | 0 | 2 | 3 |
| 3 | 1 | 1 | 2 | 2 | 3 |
| 4 | 2 | 2 | 3 | 3 | 4 |
| 3 | 1 | 1 | 2 | 2 | 3 |
| 4 | 4 | 4 | 3 | 5 | 6 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 4 | 2 | 2 | 3 | 3 | 4 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 2 | 2 | 2 | 1 | 3 | 4 |
| 4 | 2 | 2 | 3 | 3 | 4 |
| 153 | 153 | 153 | 152 | 154 | 154 |
| 158 | 159 | 159 | 158 | 160 | 160 |
| 158 | 159 | 159 | 158 | 160 | 160 |
| 157 | 158 | 158 | 157 | 159 | 159 |
| 156 | 157 | 157 | 156 | 158 | 158 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 4 | 2 | 2 | 3 | 3 | 4 |
| 1 | 0 | 0 | 1 | 1 | 2 |
| 2 | 0 | 0 | 1 | 1 | 2 |
| 3 | 1 | 1 | 2 | 2 | 3 |
| 3 | 3 | 3 | 2 | 4 | 5 |
|  |  |  |  |  |  |

## Pairwise distances between taxa (continued)

Below diagonal: Total character differences
Above diagonal: Mean character differences (adjusted for missing data)
1 Coryphopterus gl 0.472440 .472440 .472440 .472440 .472440 .472440 .472440 .47244
2 Eucyclogobius ne 0.290020 .290020 .290020 .293790 .290020 .290020 .290020 .29002
3 Eucyclogobius ne $0.281130 .281130 .28113 \quad 0.28491 \quad 0.281130 .281130 .281130 .28113$
4 Gillichthys mira 0.325870 .329940 .325870 .325870 .325870 .325870 .325870 .32587
5 3Quietula ycauda 0.016640 .020330 .016640 .020330 .016640 .016640 .016640 .01848
6 2Quietula ycauda 0.014790 .018480 .014790 .018480 .014790 .014790 .014790 .01664
7 1Quietula ycauda 0.014790 .018480 .014790 .018480 .014790 .014790 .014790 .01664
8 2Clevelandia ios 0.299240 .301140 .299240 .299240 .299240 .299240 .299240 .29924
12Clevelandia io 0.298110 .300000 .298110 .298110 .298110 .298110 .298110 .29811
10 43Clevelandia io $0.296230 .29811 \quad 0.29623 \quad 0.29623 \quad 0.296230 .296230 .296230 .29623$
11 lIlypnus gilbert 0.239690 .241650 .239690 .243610 .239690 .239690 .239690 .23969 2Ilypnus gilbert 0.231200 .233080 .231200 .234960 .231200 .231200 .231200 .23120 3 Ilypnus gilbert $0.233080 .234960 .23308 \quad 0.23684 \quad 0.23308 \quad 0.23308 \quad 0.23308 \quad 0.23308$ 4Ilypnus gilbert $0.234520 .23640 \quad 0.234520 .238270 .234520 .234520 .234520 .23452$ 1UnknownLarva 0.364210 .364210 .364210 .362110 .364210 .364210 .364210 .36421 2UnknownLarva 0.365550 .365550 .365550 .363450 .365550 .365550 .365550 .36555 3UnknownLarva 0.005550 .009240 .005550 .009240 .005550 .005550 .005550 .00739 4UnknownLarva 0.000000 .003700 .000000 .003700 .000000 .000000 .000000 .00185 5UnknownLarva 6UnknownLarva 7UnknownLarva 8UnknownLarva 9UnknownLarva 10UnknownLarva 11UnknownLarva 12UnknownLarva 13UnknownLarva 14UnknownLarva 15UnknownLarva 16UnknownLarva 17UnknownLarva 18UnknownLarva 20UnknownLarva 21UnknownLarva 22UnknownLarva 23UnknownLarva 24UnknownLarva 25UnknownLarva 26UnknownLarva 27UnknownLarva 28UnknownLarva 29UnknownLarva 30UnknownLarva 31UnknownLarva 32UnknownLarva 46 33UnknownLarva 47 34UnknownLarva 35UnknownLarva 49 36UnknownLarva 50 37UnknownLarva 51 38UnknownLarva 39UnknownLarva 40UnknownLarva 41UnknownLarva 42UnknownLarva 43UnknownLarva 44UnknownLarva 45UnknownLarva 46 UnknownLarva 47UnknownLarva 48UnknownLarva 49 UnknownLarva 50UnknownLarva 51UnknownLarva 52UnknownLarva 53UnknownLarva 0.001850 .005550 .001850 .005550 .001850 .001850 .001850 .00370 $0.00000 \quad 0.00370 \quad 0.00000 \quad 0.00370 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00185$ 0.001850 .005550 .001850 .005550 .001850 .001850 .001850 .00370 0.003700 .007390 .003700 .007390 .003700 .003700 .003700 .00555 0.000000 .003700 .000000 .003700 .000000 .000000 .000000 .00185 $0.00370 \quad 0.007390 .00370 \quad 0.00739 \quad 0.00370 \quad 0.00370 \quad 0.00370 \quad 0.00555$ 0.003700 .007390 .003700 .007390 .003700 .003700 .003700 .00185 0.000000 .003700 .000000 .003700 .000000 .000000 .000000 .00185 $0.003700 .007390 .003700 .007390 .00370 \quad 0.003700 .00370 \quad 0.00555$ 0.000000 .003700 .000000 .003700 .000000 .000000 .000000 .00185 0.000000 .003700 .000000 .003700 .000000 .000000 .000000 .00185 0.001850 .005560 .001850 .005560 .001850 .001850 .001850 .00370 0.001850 .005550 .001850 .005550 .001850 .001850 .001850 .00370 0.003700 .000000 .003700 .007390 .003700 .003700 .003700 .00555 - 0.003700 .000000 .003700 .000000 .000000 .000000 .00185 $\begin{array}{llllllll}2 & -0.00370 & 0.00739 & 0.00370 & 0.00370 & 0.00370 & 0.00555\end{array}$

| - | 0.00370 | 0.00000 | 0.00000 | 0.00000 | 0.00185 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | - | 0.00370 | 0.00370 | 0.00370 | 0.00555 |
| 0 | 2 | - | 0.00000 | 0.00000 | 0.00185 |
| 0 | 2 | 0 | - | 0.00000 | 0.00185 |
| 0 | 2 | 0 | 0 | - | 0.00185 |
| 1 | 3 | 1 | 1 | 1 | - |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | 4 | 2 | 2 | 2 | 3 |
| 1 | 3 | 1 | 1 | 1 | 2 |
| 1 | 2 | 1 | 1 | 1 | 2 |
| 1 | 3 | 1 | 1 | 1 | 2 |
| 2 | 4 | 2 | 2 | 2 | 3 |
| 1 | 3 | 1 | 1 | 1 | 2 |
| 4 | 6 | 4 | 4 | 4 | 5 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 2 | 4 | 2 | 2 | 2 | 3 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 2 | 2 | 2 | 2 | 2 | 3 |
| 2 | 4 | 2 | 2 | 2 | 3 |
| 153 | 153 | 153 | 153 | 153 | 153 |
| 159 | 159 | 159 | 159 | 159 | 159 |
| 159 | 159 | 159 | 159 | 159 | 159 |
| 158 | 158 | 158 | 158 | 158 | 158 |
| 157 | 157 | 157 | 157 | 157 | 157 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 2 | 4 | 2 | 2 | 2 | 1 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 0 | 2 | 0 | 0 | 0 | 1 |
| 1 | 3 | 1 | 1 | 1 | 2 |
| 3 | 5 | 3 | 3 | 3 | 4 |

## Pairwise distances between taxa (continued)

Below diagonal: Total character differences

|  | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Coryphopterus gl | 0.48500 | 0.47244 | 0.47441 | 0.48602 | 0.47441 | 0.46850 | 0.47441 | 0.47441 |
| 2 Eucyclogobius ne | 0.33414 | 0.28814 | 0.28814 | 0.30453 | 0.29002 | 0.28814 | 0.29190 | 0.29002 |
| 3 Eucyclogobius ne | 0.33010 | 0.28113 | 0.27925 | 0.30103 | 0.28113 | 0.28113 | 0.28302 | 0.28302 |
| 4 Gillichthys mira | 0.37067 | 0.32587 | 0.32587 | 0.33333 | 0.32587 | 0.32383 | 0.32790 | 0.32383 |
| 5 3Quietula ycauda | 0.01418 | 0.01848 | 0.01848 | 0.02016 | 0.01848 | 0.01664 | 0.01848 | 0.02033 |
| 6 2Quietula ycauda | 0.01655 | 0.01664 | 0.01664 | 0.01815 | 0.01664 | 0.01479 | 0.01664 | 0.01848 |
| 7 1Quietula ycauda | 0.01182 | 0.01664 | 0.01664 | 0.01815 | 0.01664 | 0.01479 | 0.01664 | 0.01848 |
| 8 2Clevelandia ios | 0.34951 | 0.29924 | 0.29735 | 0.31677 | 0.29924 | 0.29545 | 0.30114 | 0.29735 |
| 9 12Clevelandia io | 0.35194 | 0.29811 | 0.29623 | 0.31546 | 0.29811 | 0.29434 | 0.30000 | 0.29623 |
| 10 43Clevelandia io | 0.34709 | 0.29623 | 0.29434 | 0.31134 | 0.29623 | 0.29245 | 0.29811 | 0.29434 |
| 11 1Ilypnus gilbert | 0.28571 | 0.23969 | 0.24165 | 0.25103 | 0.23969 | 0.23969 | 0.24165 | 0.23772 |
| 12 2Ilypnus gilbert | 0.28744 | 0.23120 | 0.23308 | 0.25257 | 0.23120 | 0.23120 | 0.23308 | 0.22932 |
| 13 3Ilypnus gilbert | 0.28744 | 0.23308 | 0.23496 | 0.25462 | 0.23308 | 0.23308 | 0.23496 | 0.23120 |
| 14 4Ilypnus gilbert | 0.28916 | 0.23452 | 0.23640 | 0.25615 | 0.23452 | 0.23452 | 0.23640 | 0.23265 |
| 15 1UnknownLarva | 0.39669 | 0.36211 | 0.36632 | 0.37355 | 0.36421 | 0.36421 | 0.36632 | 0.36632 |
| 16 2UnknownLarva | 0.39945 | 0.36345 | 0.36765 | 0.37500 | 0.36555 | 0.36555 | 0.36765 | 0.36765 |
| 17 3UnknownLarva | 0.00473 | 0.00555 | 0.00739 | 0.00403 | 0.00739 | 0.00924 | 0.00739 | 0.00924 |
| 18 4UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 19 5UnknownLarva | 0.00236 | 0.00370 | 0.00370 | 0.00403 | 0.00370 | 0.00185 | 0.00370 | 0.00555 |
| 20 6UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 21 7UnknownLarva | 0.00236 | 0.00555 | 0.00370 | 0.00403 | 0.00370 | 0.00555 | 0.00370 | 0.00924 |
| 22 8UnknownLarva | 0.00473 | 0.00739 | 0.00555 | 0.00605 | 0.00555 | 0.00739 | 0.00555 | 0.01109 |
| 23 9UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 24 10UnknownLarva | 0.00236 | 0.00370 | 0.00555 | 0.00000 | 0.00555 | 0.00739 | 0.00555 | 0.00739 |
| 25 11UnknownLarva | 0.00473 | 0.00739 | 0.00555 | 0.00605 | 0.00555 | 0.00739 | 0.00555 | 0.01109 |
| 26 12UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 27 13UnknownLarva | 0.00236 | 0.00370 | 0.00555 | 0.00202 | 0.00555 | 0.00739 | 0.00555 | 0.00739 |
| 28 14UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 29 15UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 30 16UnknownLarva | 0.00236 | 0.00185 | 0.00370 | 0.00000 | 0.00370 | 0.00556 | 0.00370 | 0.00556 |
| 31 17UnknownLarva | 0.00236 | 0.00555 | 0.00370 | 0.00403 | 0.00370 | 0.00555 | 0.00370 | 0.00924 |
| 32 18UnknownLarva | 0.00473 | 0.00739 | 0.00555 | 0.00605 | 0.00555 | 0.00739 | 0.00555 | 0.01109 |
| 33 20UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 34 21UnknownLarva | 0.00473 | 0.00739 | 0.00555 | 0.00605 | 0.00555 | 0.00739 | 0.00555 | 0.01109 |
| 35 22UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 36 23UnknownLarva | 0.00000 | 0.00739 | 0.00555 | 0.00403 | 0.00555 | 0.00739 | 0.00555 | 0.01109 |
| 37 24UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 38 25UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 39 26UnknownLarva | 0.00000 | 0.00370 | 0.00185 | 0.00202 | 0.00185 | 0.00370 | 0.00185 | 0.00739 |
| 40 27UnknownLarva | 0.00236 | 0.00555 | 0.00370 | 0.00403 | 0.00370 | 0.00555 | 0.00370 | 0.00924 |
| 41 28UnknownLarva | - | 0.00473 | 0.00236 | 0.00236 | 0.00236 | 0.00473 | 0.00236 | 0.00709 |
| 42 29UnknownLarva | 2 | - | 0.00555 | 0.00202 | 0.00555 | 0.00555 | 0.00555 | 0.00555 |
| 43 30UnknownLarva | 1 | 3 | - | 0.00403 | 0.00370 | 0.00555 | 0.00370 | 0.00924 |
| 44 31UnknownLarva | 1 | 1 | 2 | - | 0.00403 | 0.00605 | 0.00403 | 0.00403 |
| 45 32UnknownLarva | 1 | 3 | 2 | 2 | - | 0.00555 | 0.00370 | 0.00924 |
| 46 33UnknownLarva | 2 | 3 | 3 | 3 | 3 | - | 0.00555 | 0.00739 |
| 47 34UnknownLarva | 1 | 3 | 2 | 2 | 2 | 3 | - | 0.00924 |
| 48 35UnknownLarva | 3 | 3 | 5 | 2 | 5 | 4 | 5 |  |
| 49 36UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 50 37UnknownLarva | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 4 |
| 51 38UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 52 39UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 53 40UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 54 41UnknownLarva | 1 | 2 | 3 | 0 | 3 | 4 | 3 | 4 |
| 55 42UnknownLarva | 2 | 4 | 3 | 3 | 1 | 4 | 3 | 6 |
| 56 43UnknownLarva | 143 | 153 | 152 | 148 | 153 | 151 | 154 | 152 |
| 57 44UnknownLarva | 146 | 159 | 158 | 154 | 159 | 157 | 160 | 158 |
| 58 45UnknownLarva | 146 | 159 | 158 | 154 | 159 | 157 | 160 | 158 |
| 59 46UnknownLarva | 144 | 158 | 157 | 153 | 158 | 156 | 159 | 157 |
| 60 47UnknownLarva | 144 | 157 | 156 | 152 | 157 | 155 | 158 | 156 |
| 61 48UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 62 49UnknownLarva | 2 | 4 | 3 | 3 | 3 | 4 | 3 | 6 |
| 63 50UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 64 51UnknownLarva | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 4 |
| 65 52UnknownLarva | 1 | 3 | 2 | 2 | 2 | 3 | 2 | 5 |
| 66 53UnknownLarva | 2 | 3 | 4 | 1 | 4 | 5 | 4 |  |

## Pairwise distances between taxa (continued)

Below diagonal: Total character differences
Above diagonal: Mean character differences (adjusted for missing data)
Coryphopterus gl 0.472440 .472440 .472440 .472440 .472440 .470470 .474410 .47650
Eucyclogobius ne 0.290020 .290020 .290020 .290020 .290020 .290020 .291900 .13968
Eucyclogobius ne $0.281130 .28113 \quad 0.281130 .28113 \quad 0.281130 .283020 .283020 .14604$
Gillichthys mira 0.325870 .323830 .325870 .325870 .325870 .323830 .327900 .25110
3Quietula ycauda 0.016640 .016640 .016640 .016640 .016640 .020330 .020330 .31198
2Quietula ycauda $0.014790 .014790 .014790 .014790 .014790 .018480 .01848 \quad 0.30992$
1Quietula ycauda $0.014790 .014790 .014790 .014790 .014790 .018480 .01848 \quad 0.30992$
2Clevelandia ios 0.299240 .299240 .299240 .299240 .299240 .297350 .301140 .01397
12 Clevelandia io 0.298110 .298110 .298110 .298110 .298110 .296230 .300000 .00998 43Clevelandia io $0.296230 .29623 \quad 0.29623$ 0.29623 $0.296230 .29434 \quad 0.298110 .00798$ 1Ilypnus gilbert 0.239690 .239690 .239690 .239690 .239690 .241650 .241650 .26987 2Ilypnus gilbert 0.231200 .231200 .231200 .231200 .231200 .233080 .233080 .26860 3 Ilypnus gilbert $0.23308 \quad 0.23308 \quad 0.23308 \quad 0.23308 \quad 0.23308 \quad 0.234960 .234960 .26860$ 4Ilypnus gilbert 0.234520 .234520 .234520 .234520 .234520 .236400 .236400 .27216 1UnknownLarva 0.364210 .366320 .364210 .364210 .364210 .360000 .362110 .40509 2UnknownLarva 3UnknownLarva 4UnknownLarva 5UnknownLarva 6UnknownLarva 7UnknownLarva 8UnknownLarva 9UnknownLarva 10UnknownLarva 11UnknownLarva 12UnknownLarva 13UnknownLarva 14UnknownLarva 15UnknownLarva 16UnknownLarva 17UnknownLarva 18UnknownLarva 20UnknownLarva 21UnknownLarva 22UnknownLarva 23UnknownLarva 24UnknownLarva 25UnknownLarva 26UnknownLarva 27UnknownLarva 28UnknownLarva 29UnknownLarva 30UnknownLarva 31UnknownLarva 32UnknownLarva 6 33UnknownLarva 34UnknownLarva 35UnknownLarva 36UnknownLarva 37UnknownLarva 38UnknownLarva 39 UnknownLarva 40UnknownLarva 41UnknownLarva 42UnknownLarva 43UnknownLarva 44UnknownLarva 45UnknownLarva 46 UnknownLarva 47 UnknownLarva 48UnknownLarva 49 UnknownLarva 50UnknownLarva 51UnknownLarva 52UnknownLarva 53UnknownLarva
$\begin{array}{lllllllll}0.36555 & 0.36765 & 0.36555 & 0.36555 & 0.36555 & 0.36134 & 0.36345 & 0.40046\end{array}$ 0.005550 .009240 .005550 .005550 .005550 .005550 .009240 .31818 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 0.001850 .001850 .001850 .001850 .001850 .005550 .005550 .31405 $0.000000 .00370 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.00370 \quad 0.00370 \quad 0.31612$ 0.001850 .005550 .001850 .001850 .001850 .005550 .005550 .31612 0.003700 .007390 .003700 .003700 .003700 .007390 .007390 .31818 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 $0.00370 \quad 0.007390 .00370 \quad 0.00370 \quad 0.00370 \quad 0.00370 \quad 0.00739 \quad 0.31818$ $0.003700 .007390 .003700 .003700 .00370 \quad 0.007390 .007390 .31405$ 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 $0.003700 .007390 .003700 .003700 .00370 \quad 0.003700 .007390 .31612$ 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 0.001850 .005560 .001850 .001850 .001850 .001850 .005560 .31470 $\begin{array}{llllllllll}0.00185 & 0.00555 & 0.00185 & 0.00185 & 0.00185 & 0.00555 & 0.00555 & 0.31818\end{array}$ 0.003700 .007390 .003700 .003700 .003700 .007390 .007390 .31818 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 0.003700 .007390 .003700 .003700 .003700 .007390 .007390 .31818 $0.000000 .003700 .000000 .000000 .00000 \quad 0.00370 \quad 0.00370 \quad 0.31612$ 0.003700 .007390 .003700 .003700 .003700 .003700 .007390 .31612 0.000000 .003700 .000000 .000000 .000000 .003700 .003700 .31612 $0.000000 .003700 .000000 .000000 .000000 .003700 .00370 \quad 0.31612$ $0.000000 .003700 .00000 \quad 0.00000 \quad 0.00000 \quad 0.00370 \quad 0.00370 \quad 0.31612$ 0.001850 .005550 .001850 .001850 .001850 .005550 .005550 .31612 0.000000 .004730 .000000 .000000 .000000 .002360 .004730 .34793 $0.00370 \quad 0.00555 \quad 0.00370 \quad 0.00370 \quad 0.00370 \quad 0.00370 \quad 0.00739 \quad 0.31612$ 0.001850 .005550 .001850 .001850 .001850 .005550 .005550 .31405 0.002020 .006050 .002020 .002020 .002020 .000000 .006050 .32456 0.001850 .005550 .001850 .001850 .001850 .005550 .001850 .31612 $0.003700 .00370 \quad 0.00370 \quad 0.00370 \quad 0.00370 \quad 0.00739 \quad 0.00739 \quad 0.31198$ 0.001850 .005550 .001850 .001850 .001850 .005550 .005550 .31818 0.007390 .007390 .007390 .007390 .007390 .007390 .011090 .31405 0.003700 .000000 .000000 .000000 .003700 .003700 .31612

| 2 | - | 0.00370 | 0.00370 | 0.00370 | 0.00739 | 0.00739 | 0.31612 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 2 | - | 0.00000 | 0.00000 | 0.00370 | 0.00370 | 0.31612 |
| 0 | 2 | 0 | - | 0.00000 | 0.00370 | 0.00370 | 0.31612 |
| 0 | 2 | 0 | 0 | - | 0.00370 | 0.00370 | 0.31612 |
| 2 | 4 | 2 | 2 | 2 | - | 0.00739 | 0.31405 |
| 2 | 4 | 2 | 2 | 2 | 4 | - | 0.31818 |
| 153 | 153 | 153 | 153 | 153 | 152 | 154 | - |
| 159 | 159 | 159 | 159 | 159 | 158 | 160 | 6 |
| 159 | 159 | 159 | 159 | 159 | 158 | 160 | 5 |
| 158 | 158 | 158 | 158 | 158 | 157 | 159 | 7 |
| 157 | 157 | 157 | 157 | 157 | 156 | 158 | 4 |
| 0 | 2 | 0 | 0 | 0 | 2 | 2 | 153 |
| 2 | 4 | 2 | 2 | 2 | 4 | 2 | 154 |
| 0 | 2 | 0 | 0 | 0 | 2 | 2 | 149 |
| 0 | 2 | 0 | 0 | 0 | 2 | 2 | 153 |
| 1 | 3 | 1 | 1 | 1 | 3 | 3 | 153 |
| 3 | 5 | 3 | 3 | 3 | 3 | 5 | 155 |

## Pairwise distances between taxa (continued)

Below diagonal: Total character differences


## Pairwise distances between taxa (continued)



## Appendix G-2

# Review of Dr. Jacobs’ Analysis 

by<br>Giacomo Bernardi, Ph.D<br>Assistant Professor of Biology<br>University of California Santa Cruz<br>February 20, 2001

Michael Thomas<br>Regional Water Quality Control Board<br>81 Higuera Street, Suite 200<br>San Luis Obispo, CA 93401<br>RE: Comments on the molecular identification of presumed tidewater goby larval samples

Santa Cruz, February 202001

Dear Mr. Thomas,
Please find enclosed my comments on the molecular work that was done on goby larvae. As you will see, I find the molecular results very convincing. Yet, I also tried to explore other possibilities that may explain the discrepancy between morphological and molecular results. Briefly, both introgression and hybridization may account for these results. I don't know how far you would like to push this investigation, but if necessary, it is possible to do genetic tests to determine if either introgression or hybridization have occurred.

Sincerely,

Giacomo Bernardi
Assistant Professor of Biology
University of California Santa Cruz

Michael Thomas
Regional Water Quality Control Board
81 Higuera Street, Suite 200
San Luis Obispo, CA 93401

RE: Comments on the molecular identification of presumed tidewater goby larval samples

Santa Cruz, February 202001

In this comment, I will briefly describe my expertise, then comment on the molecular work on larval fishes as presented in the report, and finally propose a possible explanation for the inconsistency between molecular and morphological results.

Personal background: My own work is on fish molecular genetics (past fifteen years). Although I don't work on tidewater gobies, I am familiar with the work of Drs. Mike Dawson and David Jacobs. I work on several California fish species including two gobies of the genus Gillichthys. The specific techniques described in the report are routinely used in my laboratory.

Comments on the results presented in the report: Briefly, the results presented are unambiguous. The mitochondrial DNA from most of the individuals is similar to the shadow goby's (two were unidentified species, one did not amplify). Importantly, it is similar but not identical, thus removing the possibility of PCR contamination by previously used samples (this is mentioned in the report). This result is also statistically well supported as evidenced by high bootstrap values. It is therefore justified to say that these individuals have shadow goby mitochondrial DNA.

To be extremely rigorous, it would be possible to do statistical tests (Kishino and Hasegawa test, or T-PTP test) to demonstrate that these data actually reject the possibility that these samples have tidewater goby mtDNA. I can't run the tests, as raw data were unavailable. It is, however, very unlikely that I would obtain a different result as the bootstrap values presented here are very high, and the genetic distances between species are high also. Therefore, the results are very convincing.

I understand that the fish larvae sent to Dr. Jacobs were morphologically identified as tidewater gobies. Thus two explanations can satisfy this inconsistency: 1) the morphological analysis was flawed. This may be due to a wrong identification or using a wrong key, 2) the genetic technique is flawed. Not being a specialist on larval morphology, I can't assess the likelihood of a mistake in the morphological identification. Thus I will limit myself to a comment on the genetic aspect of this problem.

There are two situations I can think of where we could find this type of morphological/genetic inconsistency. It is important at this point to remember that the DNA sequenced by Dr. Jacobs is maternally inherited. In vertebrates, mitochondrial DNA is only transmitted through the mother.

Situation 1. Introgression or capture. The nuclear DNA (chromosomes) of the larvae collected is of a tidewater goby and the mt DNA of a shadow goby (or of an unidentified goby for two samples). In this case, all the nuclear DNA belongs to the tidewater goby (as opposed to situation 2). This scenario is the result of ancient hybridization events.

Situation 2. Hybridization. The larvae analyzed by Dr. Jacobs are the product of a male tidewater goby with a female shadow goby (or in two cases a female of an unidentified species). If what we are observing is hybridization, it is not surprising to see only one type of cross (male tidewater goby, female shadow goby) and not the reverse, as in natural hybridizations, the vast majority of crosses are only in one direction.

In general, introgression and hybridization occur when one species is rare and can't find appropriate mates as often as needed. Although these two scenarios may seem far-fetched, we have observed both phenomena happening in two species of California minnows (hitch and roach) in my lab. Importantly, in both cases the actual animal looks like one species, while its mitochondrial DNA looks like the other species. Thus in this case, morphology and mitochondrial sequence are at odds, very much like the situation presented here.

If necessary, it is possible to test these hypotheses by sequencing some nuclear DNA to determine if indeed these larvae contain any tidewater goby DNA.

In conclusion: Fishes examined by Dr. Jacobs are unequivocally not pure tidewater gobies as their mitochondrial DNA is not of tidewater gobies. Since they morphologically resemble tidewater goby, they may be the result of introgression or hybridization with shadow gobies or in two cases with another unidentified species.

Dr. Giacomo Bernardi<br>Assistant Professor of Biology<br>University of California Santa Cruz

Morro Bay Power Plant Modernization Project 316(b) Resource Assessment

## Appendix H

## Impingement Abundance Weekly Surveys and Impingement Estimates for Selected Species

## Appendix H Impingement Abundance Weekly Surveys and Impingement Estimates for Selected Species

The tables in this appendix contain two types of Morro Bay Power Plant impingement data. The first set of tables, H1-1 through H1-53, gives the following information: (1) the weekly impingement survey data from for all species from September 9, 1999 through September 7, 2000, and (2) the pump operating status (i.e., hours of operation during the 24 -hour sampling period). The second set of tables, H2-1 through H2-20, provides estimates of the weekly numbers and biomass of selected fishes and invertebrates impinged at the MBPP.

Table H1-1. Morro Bay Power Plant Impingement Abundance Survey 01, September 9, 1999.

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0001 | $09 / 09 / 99$ | $09 / 10 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-2. Morro Bay Power Plant Impingement Abundance Survey 02, September 16, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
|  | bat ray |  |  |  | 1 | 191 | 403.6 |
| Torpedo californica | Pacific electric ray |  |  |  | 1 | 200 | 120.6 |
| Teleosts |  |  |  |  |  |  |  |
|  | Pacific sanddab |  |  |  | 1 | 72 | 3.3 |
| Engraulis mordax | northern anchovy |  |  |  | 1 | 103 | 11.4 |
| Porichthys notatus | plainfin midshipmen |  |  |  | 2 | 42-46 | 1.2-1.4 |
| Sardinops sagax | Pacific sardine |  |  |  | 1 | 150 | 20.3 |
| Sebastes melanops | black rockfish |  |  |  | 2 | 62-71 | 4.8-11.7 |
| Symphurus atricauda | California tonguefish | 1 | 87 | 6.3 | 4 | 85-104 | 3.5-14.5 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 103 | 0.7 |
| Syngnathus spp. | pipefishes | 1 | 338 | 4.7 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  |  |  | 1 | 71 | 74.5 |
| Cancer jordani | hairy rock crab | 6 | 18-40 | 1.4-18.8 | 5 | 11-19 | 1.0-6.0 |
| Cancer magister | Dungeness crab | 1 | 30 | 3.5 |  |  |  |
| Cancer productus | red rock crab | 3 | 18-40 | 0.9-12.0 | 8 | 13-33 | 0.7-9.6 |
| Cancer spp. | cancer crabs | 1 | - | - | 2 | 10-18 | 2.0-4.7 |
| Loxorhynchus crispatus | moss crab | 2 | 14-42 | 2.6-31.6 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 19 | 4.4 |
| Portunus xantusii | Xantus' swimming crab | 29 | 32-63 | 6.5-32.0 | 30 | 35-58 | 7.4-31.2 |
| Pugettia producta | northern kelp crab | 1 | 15 | 1.1 | 10 | 15-58 | 1.7-71.1 |
| Shrimps |  |  |  |  |  |  |  |
| C nigricauda | black-tailed bay shrimp | 2 | - | 2.8-3.2 |  |  |  |
| Crangon spp. | bay shrimp |  |  |  | 1 | 1 | 1.2 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 12-16 | 1.5 | 1 | 35 | 22.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0002 | $09 / 16 / 99$ | $09 / 17 / 99$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-3. Morro Bay Power Plant Impingement Abundance Survey 03, September 23, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 5 | 375 | 177.5 |
| Platyrhinoidis triseriata | thornback |  |  |  | 4 | 222-645 | 9.6-1635.5 |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 1 | 94 | 7.3 | 1 | 52 | 1.0 |
| Chilara taylori | spotted cusk-eel |  |  |  | 1 | 161 | 17.2 |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | 129 | 17.4 |
| Engraulis mordax | northern anchovy |  |  |  | 4 | 64-112 | 2.6-14.6 |
| Gobiesox spp. | clingfishes |  |  |  | 1 | 32 | 0.8 |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 101 | 16.1 | 1 | 98 | 14.9 |
| Scorpaenichthys marmoratus | cabezon | 1 | 204 | 120.0 |  |  |  |
| Sebastes spp. | rockfishes |  |  |  | 1 | 580 | 330.0 |
| Symphurus atricauda | California tonguefish | 7 | 67-97 | 2.2-7.6 | 12 | 66-100 | 2.9-8.4 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  |  |  | 4 | 18-91 | 1.6-143.4 |
| Cancer gracilis | slender rock crab |  |  |  | 2 | 19-20 | 1.9-1.9 |
| Cancer jordani | hairy rock crab | 4 | 10-19 | 0.3-1.9 | 7 | 15-33 | 1.0-9.9 |
| Cancer magister | Dungeness crab |  |  |  | 3 | 14-48 | 0.9-18.2 |
| Cancer magister/gracilis | cancer crabs |  |  |  | 2 | 11-14 | 0.8-1.3 |
| Cancer productus | red rock crab |  |  |  | 3 | 19-116 | 1.7-212.4 |
| Cancer spp. | cancer crabs | 2 | 13-19 | 0.8-2.4 |  |  |  |
| Portunus xantusii | Xantus' swimming crab | 37 | 35-56 | 5.4-21.2 | 50 | 32-68 | 4.1-40.3 |
| Pugettia producta | northern kelp crab |  |  |  | 3 | 12-26 | 0.6-7.5 |
| Pugettia richii | cryptic kelp crab | 1 | 7 | 0.8 | 1 | 11 | 0.9 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon spp. | bay shrimp | 1 | 11 | 1.6 |  |  |  |
| Pandalopsis dispar | sidestriped shrimp |  |  |  | 1 | 21 | 5.5 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 2 | 22-24 | 6.3-6.5 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0003 | $09 / 23 / 99$ | $09 / 24 / 99$ | 24 | 23 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-4. Morro Bay Power Plant Impingement Abundance Survey 04, September 30, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 2 | 470-570 | 366.6-562.3 |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 349 | 264.7 |
| Teleosts |  |  |  |  |  |  |  |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 3 | 66-86 | 4.5-12.0 |
| Cymatogaster aggregata | shiner surfperch |  |  |  | 1 | 95 | 20.7 |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 103-117 | 20.0-22.7 | 1 | 54 | 7.1 |
| Parophrys vetulus | English sole | 1 | 117 | 26.9 |  |  |  |
| Sardinops sagax | Pacific sardine |  |  |  | 1 | 144 | 30.5 |
| Scorpaenichthys marmoratus | cabezon | 1 | 125 | 37.1 | 1 | - | - |
| Sebastes melanops | black rockfish |  |  |  | 1 | 42 | 2.0 |
| Symphurus atricauda | California tonguefish |  |  |  | 2 | 80-87 | 4.6-4.8 |
| Syngnathus leptorhynchus | bay pipefish | 1 | 181 | 4.0 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 5 | 21-103 | 2.1-169.0 | 3 | 26-71 | 5.5-69.4 |
| Cancer gracilis | slender rock crab |  |  |  | 2 | 12-20 | 0.5-1.2 |
| Cancer jordani | hairy rock crab | 3 | 22-29 | 2.2-5.5 | 1 | 15 | 1.2 |
| Cancer productus | red rock crab | 2 | 28-34 | 2.8-5.0 | 4 | 19-39 | 1.0-7.7 |
| Cancer spp. | cancer crabs |  |  |  | 1 | 15 | 0.5 |
| Portunus xantusii | Xantus' swimming crab | 9 | 36-67 | 4.8-39.5 | 13 | 34-48 | 4.6-12.3 |
| Pugettia producta | northern kelp crab | 2 | 8-14 | 0.5-3.2 | 5 | 12-59 | 1.0-83.1 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  | 1 | - | 1.0 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 11 | 0.4 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 18-19 | 2.2-3.2 |  |  |  |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0004 | $09 / 30 / 99$ | $10 / 01 / 99$ | 24 | 24 | 24 | 2 | 24 | 24 | 24 | 24 |

Table H1-5. Morro Bay Power Plant Impingement Abundance Survey 05, October 07, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Coun | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 1 | 500 | 424.0 |
| Platyrhinoidis triseriata | thornback |  |  |  | 2 | 470-655 | 500.9-1814.5 |
| Teleosts |  |  |  |  |  |  |  |
| Apodichthys flavidus | penpoint gunnel |  | 170 | 16.3 |  |  |  |
| Artedius spp. | sculpins |  | 41 | 1.7 |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 1 | 150 | 36.4 |
| Hyperprosopon argenteum | walleye surfperch |  |  |  | 1 | 68 | 7.6 |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 118-133 | 25.9-39.9 | 3 | 104-117 | 18.0-25.5 |
| Pleuronichthys coenosus | c-o turbot |  | 48 | 1.9 |  |  |  |
| Sardinops sagax | Pacific sardine | 2 | 136-155 | 22.6-44.3 | 4 | 135-181 | 20.8-76.5 |
| Symphurus atricauda | California tonguefish | 2 | 84-101 | 4.7-8.8 | 4 | 85-94 | 4.9-7.5 |
| Syngnathus californiensis | kelp pipefish |  | 194 | 4.4 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 63 | 50.1 | 2 | 30-111 | 4.9-168.7 |
| Cancer jordani | hairy rock crab |  | 17 | 1.4 | 1 | 14 | 0.7 |
| Cancer productus | red rock crab |  | 45 | 13.2 | 1 | 54 | 21.0 |
| Cancer spp. | cancer crabs |  | - | 0.9 |  |  |  |
| Hemigrapsus oregonensis | yellow shore crab |  |  |  | 1 | 21 | 3.5 |
| Loxorhynchus crispatus | moss crab |  | 9 | 0.5 |  |  |  |
| Pachycheles pubescens | pubescent porcelain crab |  |  |  | 3 | 5-15 | 0.2-4.3 |
| Portunus xantusii | Xantus' swimming crab | 13 | 38-60 | 5.6-25.4 | 23 | 34-61 | 4.9-29.7 |
| Pugettia producta | northern kelp crab |  |  |  | 4 | 8-41 | 0.2-25.8 |
| Shrimp |  |  |  |  |  |  |  |
| Crangon spp. | bay shrimp | 3 | 8-10 | 0.7-1.7 |  |  |  |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 13 | 0.5 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 20 | 4.6 | 3 | 10-20 | 0.4-4.1 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0005 | $10 / 07 / 99$ | $10 / 08 / 99$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-6. Morro Bay Power Plant Impingement Abundance Survey 06, October 14, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Apodichthys flavidus | penpoint gunnel |  |  |  | 1 | 130 | 7.7 |
| Chilara taylori | spotted cusk-eel | 1 | 155 | 16.5 |  |  |  |
| Cymatogaster aggregata | shiner surfperch |  |  |  | 2 | 110-113 | 34.6-36.0 |
| Engraulis mordax | northern anchovy |  |  |  | 1 | 80 | 4.2 |
| Ophiodon elongatus | lingcod |  |  |  | 1 | 115 | 8.3 |
| Porichthys notatus | plainfin midshipmen |  |  |  | 1 | 106 | 15.5 |
| Scorpaenichthys marmoratus | cabezon |  |  |  | 2 | 131-168 | 59.7-125.0 |
| Sebastes melanops | black rockfish |  |  |  | 1 | 61 | - |
| Symphurus atricauda | California tonguefish |  |  |  | 1 | 87 | 6.0 |
| Syngnathus leptorhynchus | bay pipefish | 1 | 134 | 0.4 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 4 | 26-111 | 4.4-266.1 | 3 | 50-80 | 11.7-111.5 |
| Cancer jordani | hairy rock crab | 1 | 29 | 5.0 |  |  |  |
| Cancer productus | red rock crab |  |  |  | 1 | 45 | 11.3 |
| Loxorhynchus crispatus | moss crab | 1 | 12 | 2.2 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 2 | 18-23 | 1.4-6.0 |
| Portunus xantusii | Xantus' swimming crab | 2 | 33-46 | 5.5-5.9 | 6 | 35-60 | 4.4-31.3 |
| Pugettia producta | northern kelp crab |  |  |  | 3 | 10-20 | 0.6-3.5 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  | 1 | 10 | 0.6 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0006 | $10 / 14 / 99$ | $10 / 15 / 99$ | 24 | 24 | 23 | 23 | 22 | 24 | 24 | 24 |

Table H1-7. Morro Bay Power Plant Impingement Abundance Survey 07, October 21, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 1 | 505 | 378.2 |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 480 | 648.5 |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 1 | 81 | 5.3 |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | 90 | 12.5 |
| Citharichthys stigmaeus | speckled sanddab | 2 | 73-78 | 7.1-8.9 | 2 | 63-89 | 5.3-13.7 |
| Embiotoca jacksoni | black surfperch |  |  |  | 1 | 100 | 34.8 |
| Engraulis mordax | northern anchovy | 1 | 71 | 2.9 | 3 | 105-124 | 11.1-18.5 |
| Ophiodon elongatus | lingcod | 1 | 141 | 16.8 |  |  |  |
| Parophrys vetulus | English sole |  |  |  | 1 | 90 | 12.9 |
| Sardinops sagax | Pacific sardine | 1 | 154 | 36.1 | 2 | 143-185 | 34.5-76.5 |
| Sebastes auriculatus | brown rockfish |  |  |  | 1 | 145 | 73.3 |
| Symphurus atricauda | California tonguefish | 11 | 77-100 | 5.2-9.5 | 7 | 79-97 | 5.0-9.2 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 176 | 2.6 |
| Syngnathus spp. | pipefishes |  |  |  | 2 | 158 | 1.5 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 30-56 | 6.9-24.2 | 2 | 42-67 | 19.0-61.3 |
| Cancer jordani | hairy rock crab | 6 | 14-27 | 1.0-4.1 | 2 | 15-17 | 2.1 |
| Cancer magister | Dungeness crab | 1 | 16 | 0.5 | 1 | 18 | 1.7 |
| Cancer productus | red rock crab | 2 | 27-47 | 3.2-13.2 | 1 | 14 | 1.9 |
| Cancer spp. | cancer crabs | 4 | 9-29 | 0.3-5.6 | 4 | 8-17 | 1.4-3.0 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 16 | 0.5 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 12 | 2.0 |
| Portunus xantusii | Xantus' swimming crab | 6 | 41-70 | 8.5-48.0 | 3 | 41-43 | 8.3-78.0 |
| Pugettia producta | northern kelp crab | 1 | 23 | 6.2 | 2 | 20-63 | 4.4-80.0 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 12 | 1.8 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon spp. | bay shrimp | 4 | 10-11 | 0.3-1.9 |  |  |  |
| Heptacarpus spp. | tidepool shrimps | 2 | 9-10 | 0.5-2.2 |  |  |  |
| Pandalus platyceros | spot shrimp |  |  |  | 1 | 117 | 79.1 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 130 | 42.1 |  |  |  |
| Octopus spp. | octopus |  |  |  | 1 | 27 | 8.7 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 1 | 14 | 0.9 | 4 | 10-12 | 0.6-5.8 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0007 | $10 / 21 / 99$ | $10 / 22 / 99$ | 23 | 23 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-8. Morro Bay Power Plant Impingement Abundance Survey 08, October 28, 1999.

|  |  | Units 1 and 2* |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count |  |  | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  |  | 1 | 479 | 279.6 |
| Teleosts |  |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin | 1 |  | 82 | 12.1 |  |  |  |
| Engraulis mordax | northern anchovy |  |  |  |  | 1 | 92 | 5.9 |
| Leptocottus armatus | Pacific staghorn sculpin |  |  |  |  | 1 | 110 | 17.6 |
| Sardinops sagax | Pacific sardine |  |  |  |  | 1 | 136 | 21.4 |
| Scorpaenichthys marmoratus | cabezon | 1 |  | 143 | 64.0 |  |  |  |
| Sebastes melanops | black rockfish |  |  |  |  | 2 | 38-46 | 1.3-1.9 |
| Symphurus atricauda | California tonguefish |  |  |  |  | 1 | 100 | 10.4 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  |  | 1 | 123 | 0.8 |
| Syngnathus spp. | pipefishes |  |  |  |  | 1 | 233 | 4.4 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer jordani | hairy rock crab |  |  |  |  | 3 | 22-44 | 0.4-18.4 |
| Cancer spp. | cancer crabs |  |  |  |  | 3 | 1-10 | 0.3-0.5 |
| Loxorhynchus crispatus | moss crab | 1 |  | 10 | 0.4 |  |  |  |
| Portunus xantusii | Xantus' swimming crab |  |  |  |  | 1 | 58 | 25.3 |
| Pugettia producta | northern kelp crab |  |  |  |  | 1 | 14 | 1.1 |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 1 |  | 12 | 0.9 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  |  | 3 | 6-35 | 0.2-13.5 |

* $\mathrm{N}=3$, Cycles 3-6 not sampled. Heavy amounts od debris required continuous screen washing, so samples could not be collected.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0008 | $10 / 28 / 99$ | $10 / 29 / 99$ | 24 | 24 | 23 | 24 | 24 | 24 | 24 | 24 |

Table H1-9. Morro Bay Power Plant Impingement Abundance Survey 09, November 04, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Coun | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  | 2 | 630-640 | 1500.0-1510.0 |
| Teleosts |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin |  |  |  | 1 | 64 | 5.5 |
| Chilara taylori | spotted cusk-eel |  | 185 | 22.8 |  |  |  |
| Citharichthys sordidus | Pacific sanddab |  | 93 | 12.8 | 1 | 81 | 9.6 |
| Citharichthys stigmaeus | speckled sanddab |  | 91 | 11.9 |  |  |  |
| Gibbonsia metzi | striped kelpfish |  |  |  | 1 | 137 | 28.5 |
| Leptocottus armatus | Pacific staghorn sculpin |  |  |  | 2 | 73-133 | 7.5-37.1 |
| Sebastes atrovirens | kelp rockfish |  |  |  | 1 | 180 | 12.4 |
| Sebastes chrysomelas | black and yellow rockfish |  | 67 | 8.7 | 1 | 93 | 20.1 |
| Symphurus atricauda | California tonguefish | 20 | 75-105 | 3.70-11.4 | 24 | 72-112 | 3.4-9.0 |
| Syngnathus californiensis | kelp pipefish |  | 366 | 19.1 |  |  |  |
| Syngnathus leptorhynchus | bay pipefish |  | 233 | 3.7 | 2 | 166-205 | 3.8-5.5 |
| Syngnathus spp. | pipefishes | 2 | 238 | 3.8 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 3 | 24-51 | 0.9-29.0 | 1 | 35 | 10.8 |
| Cancer gracilis | slender rock crab |  |  |  | 1 | 13 | 0.5 |
| Cancer jordani | hairy rock crab | 6 | 17-21 | 1.0-2.1 | 1 | 18 | 2.8 |
| Cancer productus | red rock crab |  | 39 | 7.3 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 31 | 7.0 |
| Portunus xantusii | Xantus' swimming crab | 4 | 42-61 | 7.1-27.7 | 5 | 34-69 | 3.4-41.9 |
| Pugettia producta | northern kelp crab |  | 32 | 20.0 | 4 | 8-39 | 0.4-28.9 |
| Shrimps |  |  |  |  |  |  |  |
| Heptacarpus spp. | tidepool shrimps |  | 8 | 0.7 |  |  |  |
| Pandalus danae | dock shrimp |  |  |  | 1 | 34 | 2.6 |
| Pandalus spp. | unidentified shrimp |  | 10 | 0.7 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 3 | 5-11 | 0.2-0.6 |

*Only one specimen was measured and weighed; the other could not be weighed nor measured because of mutilation.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0009 | $11 / 04 / 99$ | $11 / 05 / 99$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-10. Morro Bay Power Plant Impingement Abundance Survey 10, November 11, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 | 604 | 1500.0 | 1 | 125 | 10.3 |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 2 | 67-68 | 2.10-2.9 |
| Citharichthys sordidus | Pacific sanddab | 1 | - | - | 1 | 86 | 10.6 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 5 | 43-90 | 1.2-10.8 |
| Hexagrammos decagrammus | kelp greenling |  |  |  | 1 | 156 | 65.4 |
| Ophiodon elongatus | lingcod |  |  |  | 1 | 153 | 27.0 |
| Porichthys notatus | plainfin midshipmen | 1 | - | - |  |  |  |
| Sardinops sagax | Pacific sardine | 2 | 170-175 | 52.9-66.3 | 2 | 149-182 | 30.6-63.5 |
| Scorpaenichthys marmoratus | cabezon |  |  |  | 1 | 135 | 49.3 |
| Sebastes carnatus | gopher rockfish | 1 | 85 | 16.3 | 1 | 93 | 19.5 |
| Sebastes chrysomelas | black and yellow rockfish | 1 | 87 | 16.7 |  |  |  |
| Symphurus atricauda | California tonguefish | 9 | 76-90 | 2.1-8.6 | 14 | 72-91 | 3.4-6.5 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 25 | - |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 5 | 31-100 | 12.0-210.3 | 5 | 30-64 | 6.8-52.6 |
| Cancer gracilis | slender rock crab |  |  |  | 1 | 13 | 0.7 |
| Cancer jordani | hairy rock crab | 4 | 15-56 | 1.0-39.6 |  |  |  |
| Cancer spp. | cancer crabs |  |  |  | 5 | 7-19 | 0.2-1.9 |
| Loxorhynchus crispatus | moss crab |  |  |  | 3 | 7-13 | 0.7-2.5 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 14 | 1.3 |
| Portunus xantusii | Xantus' swimming crab | 2 | 60-62 | 20.5-33.6 | 11 | 44-68 | 9.8-34.8 |
| Pugettia producta | northern kelp crab | $2 *$ | 4-14 | 1.6 | 1 | 25 | 7.4 |
| Pugettia richii | cryptic kelp crab |  |  |  | 2 | 11-13 | 0.7-1.1 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp |  |  |  | 1 | 12 | 2.2 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 5 | 0.8 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 1 | 10 | 0.6 | 1 | 17 | 2.8 |

*Both specimens were measured, but only one specimen was weighed.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0010 | $11 / 11 / 99$ | $11 / 12 / 99$ | 24 | 24 | 23 | 24 | 24 | 24 | 24 | 24 |

Table H1-11. Morro Bay Power Plant Impingement Abundance Survey 11, November 18, 1999.

|  |  |  |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  Units 1 and <br> Count Length Range <br> $(\mathrm{mm})$  |  |  | Weight Range (g) | Count Length Range Weight Range (mm) <br> (g) |  |  |
| Elasmobranchs |  |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 |  | 644 | 1378.3 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |  |
| Agonidae unid. | poachers | 1 |  | 60 | 0.9 |  |  |  |
| Citharichthys sordidus | Pacific sanddab |  |  |  |  | 1 | 85 | 8.1 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  |  | 8 | 67-97 | 4.4-16.4 |
| Engraulis mordax | northern anchovy |  |  |  |  | 1 | 128 | 19.4 |
| Hexagrammos decagrammus | kelp greenling |  |  |  |  | 1 | 120 | 18.5 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 |  | 58 | 3.9 | 1 | 122 | 22.2 |
| Sardinops sagax | Pacific sardine |  |  |  |  | 2 | 148-162 | 40.4-43.9 |
| Scorpaenichthys marmoratus | cabezon |  |  |  |  | 1 | 115 | 36.1 |
| Symphurus atricauda | California tonguefish | 7 |  | 78-94 | 3.4-6.1 | 17 | 69-95 | 2.9-8.2 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 |  | 47 | 18.4 | 2 | 13-34 | 0.8-8.6 |
| Cancer jordani | hairy rock crab | 1 |  | 19 | 2.4 |  |  |  |
| Cancer spp. | cancer crabs | 1 |  | 6 | 3.0 | 8 | 9-17 | 0.3-1.3 |
| Loxorhynchus crispatus | moss crab | 1 |  | 12 | 1.3 | 3 | 11-19 | 1.3-5.4 |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 2 | 8-13 | 0.4-1.4 |
| Podochela hemphilli | Hemphill's kelp crab |  |  |  |  | 1 | 6 | 0.5 |
| Portunus xantusii | Xantus' swimming crab | 1 |  | 55 | 19.7 | 8 | 49-66 | 12.2-35.5 |
| Pugettia producta | northern kelp crab | 1 |  | 12 | 1.0 | 4 | 10-17 | 0.7-2.3 |
| Pugettia richii | cryptic kelp crab | 1 |  | 12 | 1.1 |  |  |  |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  |  | 1 | 14 | 1.2 |
| Penaeus californiensis | brown shrimp |  |  |  |  | 1 | 63 | 53.3 |
| Sea Urchins |  |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 3 |  | 18-26 | 2.5-6.9 | 3 | 9-14 | 0.2-0.9 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0011 | $11 / 18 / 99$ | $11 / 19 / 99$ | 0 | 0 | 24 | 23 | 24 | 24 | 24 | 24 |

Table H1-12. Morro Bay Power Plant Impingement Abundance Survey 12, November 23, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \text { Length Range } \\ & \quad(\mathrm{mm}) \end{aligned}$ | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 1 | 444 | 254.0 |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 110 | 11.5 |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 1 | 56 | 6.0 |
| Atherinopsis californiensis | jacksmelt |  |  |  | 2 | 45-71 | 1.5-3.7 |
| Aulorhynchus flavidus | tubesnout |  |  |  | 1 | 87 | 1.1 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 2 | 59-70 | 2.2-4.5 |
| Cottidae unid. | sculpins |  |  |  | 1 | 81 | 10.0 |
| Gobiesox maeandricus | northern clingfish |  |  |  | 1 | 45 | 1.1 |
| Hexagrammos decagrammus | kelp greenling |  |  |  | 1 | 140 | 49.4 |
| Hyperprosopon anale | spotfin surfperch |  |  |  | 1 | 58 | 4.4 |
| Leptocottus armatus | Pacific staghorn sculpin | 3 | 98-135 | 36.8-47.3 | 2* | 18-53 | 2.4 |
| Odontopyxis trispinosa | pygmy poacher |  |  |  | 1 | 30 | 0.3 |
| Phanerodon furcatus | white surfperch |  |  |  | 1 | 125 | - |
| Porichthys notatus | plainfin midshipmen |  |  |  | 1 | 38 | 1.1 |
| Sardinops sagax | Pacific sardine |  |  |  | 2 | 180-181 | 63.8-66.2 |
| Sebastes atrovirens (juv.) | kelp rockfish | 2 | 82-89 | 14.0-17.0 | 3 | 82-96 | $7.4-16.3$ |
| Sebastes spp. | rockfishes |  |  |  | 1 | 68 | 5.8 |
| Symphurus atricauda | California tonguefish | 2 | 77-86 | 3.0-3.0 | 4 | 78-80 | $4.7-4.8$ |
| Syngnathus californiensis | kelp pipefish | 2 | 107-194 | 0.2-4.2 | 7 | 69-225 | 0.4-6.2 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 222 | 5.3 |
| Ulvicola sanctaerosae | kelp gunnel |  |  |  | 1 | 95 | 1.7 |
| Crabs |  |  |  |  |  |  |  |
| Cancer jordani | hairy rock crab | 9 | 24-54 | 2.9-34.6 | 14 | 12-55 | 0.5-30.4 |
| Cancer productus | red rock crab | 1 | 22 | 1.8 | 3 | 20-52 | $1.5-19.3$ |
| Cancer spp. | cancer crabs |  |  |  | 12 | 9-25 | 0.1-3.2 |
| Loxorhynchus crispatus | moss crab | 2 | 11-12 | 1.4-2.0 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 16 | 1.8 |
| Portunus xantusii | Xantus' swimming crab | 1 | 64 | 28.5 | 18 | 45-71 | 10.4-52.0 |
| Pugettia producta | northern kelp crab | 2 | 11-20 | 1.5-4.5 | 10 | 10-26 | 0.3-7.9 |
| Pugettia richii | cryptic kelp crab |  |  |  | 4 | 9-11 | 0.1-1.1 |
| Pugettia spp. | kelp crabs |  |  |  | 2 | 7-11 | 0.8-1.8 |
| Shrimps |  |  |  |  |  |  |  |
| Heptacarpus spp. | tidepool shrimps | 1 | 12 | 3.5 |  |  |  |
| Penaeus californiensis | brown shrimp |  |  |  | 5 | 54-207 | $37.6-77.9$ |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid |  |  |  | 1 | 144 | 13.3 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 6 | 7-38 | 0.5-16.1 |

*Both specimens were measured, but only one specimen was weighed.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0012 | $11 / 23 / 99$ | $11 / 24 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-13. Morro Bay Power Plant Impingement Abundance Survey 13, December 2, 1999.

|  |  | Units 1 and 2* | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range <br> (mm) <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |
| Myliobatis californica | bat ray |  | 1 | 435 | 286.0 |
| Teleosts |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin |  | 1 | 64 | - |
| Citharichthys stigmaeus | speckled sanddab |  | 2 | 45 | 0.8-1.1 |
| Cottidae unid. | sculpins |  | 1 | 124 | 36.5 |
| Leptocottus armatus | Pacific staghorn sculpin |  | 2 | 65-91 | 4.8-10.7 |
| Scorpaenichthys marmoratus | cabezon |  | 1 | 171 | 115.2 |
| Sebastes atrovirens | kelp rockfish |  | 1 | 221 | - |
| Sebastes chrysomelas | black and yellow rockfish |  | 1 | 77 | 11.6 |
| Sebastes spp. | rockfishes |  | 3 | 90-98 | 16.0-18.5 |
| Symphurus atricauda | California tonguefish |  | 11 | 78-89 | 3.7-5.9 |
| Xererpes fucorum | rockweed gunnel |  | 1 | 195 | 24.7 |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 1 | 31 | 7.4 |
| Cancer jordani | hairy rock crab |  | 8 | 6-24 | 0.2-4.1 |
| Cancer productus | red rock crab |  | 1 | 40 | 9.6 |
| Pachygrapsus crassipes | striped shore crab |  | 2 | 13-17 | 0.7-0.9 |
| Portunus xantusii | Xantus' swimming crab |  | 6 | 47-64 | 12.7-36.9 |
| Pugettia producta | northern kelp crab |  | 6 | 10-67 | 1.2-146.4 |
| Pugettia richii | cryptic kelp crab |  | 1 | 12 | 1.6 |
| Shrimps |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 1 | 12 | 3.2 |
| Crangon spp. | bay shrimp |  | 4 | 11-58 | 1.7-2.2 |
| Heptacarpus spp. | tidepool shrimps |  | 1 | 12 | 0.5 |
| Penaeus californiensis | brown shrimp |  | 1 | 53 | 31.9 |
| Cephalopods |  |  |  |  |  |
| Octopus spp. | octopus |  | 1 | 60 | 153.9 |

* Units 1 and 2 not sampled because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0013 | $12 / 02 / 99$ | $12 / 03 / 99$ | 0 | 0 | 0 | 0 | 24 | 24 | 24 | 24 |

Table H1-14. Morro Bay Power Plant Impingement Abundance Survey 14, December 9, 1999.

|  |  | Units 1 and 2* |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Range <br> m) | Weight Range <br> (g) |  | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  |  | 1 | 465 | 287.0 |
| Teleosts |  |  |  |  |  |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 1 |  | 75 | 5.0 |  |  |  |
| Embiotoca lateralis | striped surfperch |  |  |  |  | 1 | 141 | 80.0 |
| Leptocottus armatus | Pacific staghorn sculpin |  |  |  |  | 1 | 113 | 21.6 |
| Porichthys notatus | plainfin midshipmen |  |  |  |  | 1 | 42 | 1.0 |
| Scorpaenichthys marmoratus | cabezon |  |  |  |  | 1 | 105 | 26.3 |
| Sebastes atrovirens | kelp rockfish |  |  |  |  | 2** | 21-63 | 6.0 |
| Sebastes rastrelliger | grass rockfish |  |  |  |  | 1 | 105 | 32.8 |
| Symphurus atricauda | California tonguefish |  |  |  |  | 2 | 80-90 | 4.7-6.5 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  |  | 3 | 174-240 | 3.0-10.1 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 |  | 35-72 | 9.2-67.7 |  |  |  |
| Cancer jordani | hairy rock crab | 3 |  | 10-21 | 0.2-4.1 | 15 | 8-32 | 0.2-8.5 |
| Cancer magister | Dungeness crab |  |  |  |  | 3 | 11-40 | 0.9-10.4 |
| Cancer productus | red rock crab |  |  |  |  | 1 | 17 | 0.9 |
| Cancer spp. | cancer crabs |  |  |  |  | 5 | 9-25 | 0.3-2.2 |
| Lophopanopeus spp. | black-clawed crabs |  |  |  |  | 1 | 13 | 0.8 |
| Loxorhynchus crispatus | moss crab | 1 |  | 13 | 2.0 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 1 | 36 | 27.9 |
| Portunus xantusii | Xantus' swimming crab | 2 | 2 | 53-67 | 16.6-37.1 | 13 | 47-72 | 11.3-40.5 |
| Pugettia producta | northern kelp crab | 2 |  | 18-57 | 3.6-73.3 | 2 | 4-21 | 0.7-4.3 |
| Pugettia richii | cryptic kelp crab | 3 |  | 6-16 | 0.3-1.9 | 2 | 9-11 | 0.6-1.3 |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp |  |  |  |  | 1 | 10 | 0.9 |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  |  | 3 | 12-13 | 1.9-2.1 |

* $\mathrm{N}=5$, Cycle 6 not sampled. Heavy amounts of debris required continuous screen washing, so samples could not be collected.
**Both specimens were measured, but only one specimen was weighed.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0014 | $12 / 09 / 99$ | $12 / 10 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-15. Morro Bay Power Plant Impingement Abundance Survey 15, December 16, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin |  |  |  | 2 | 59-72 | 3.8-6.8 |
| Artedius spp. | sculpins |  |  |  | 1 | 64 | 5.9 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 9 | 51-93 | 2.6-11.8 |
| Damalichthys vacca | pile surfperch | 1 | 240 | 336.6 |  |  |  |
| Gibbonsia metzi | striped kelpfish | 2 | 112-130 | 14.7-20.4 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 105 | 19.6 | 2 | 102-110 | 18.7-21.2 |
| Porichthys notatus | plainfin midshipmen |  |  |  | 2 | 52-108 | 1.3-19.0 |
| Scorpaena guttata | spotted scorpinfish |  |  |  | 1 | 67 | 9.7 |
| Symphurus atricauda | California tonguefish | 4 | 74-85 | 4.1-5.6 | 17 | 55-113 | 2.0-10.6 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 185 | 3.8 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 40-60 | 14.5-47.7 |  |  |  |
| Cancer antennarius/C. jordani | cancer crabs | 2 | 28-32 | 4.8-12.5 |  |  |  |
| Cancer jordani | hairy rock crab |  |  |  | 18 | 10-34 | 0.3-10.3 |
| Loxorhynchus crispatus | moss crab |  |  |  | 2 | 17-45 | 3.60-57.3 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 9 | 0.5 |
| Portunus xantusii | Xantus' swimming crab | 5 | 53-65 | 19.5-31.0 | 43 | 45-72 | 12.8-53.6 |
| Pugettia producta | northern kelp crab | 1 | 15 | 2.3 | 3 | 7-32 | 0.6-18.6 |
| Pugettia richii | cryptic kelp crab |  |  |  | 3 | 6-10 | 0.1-1.2 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp |  |  |  | 1 | 12 | 1.4 |
| Crangon nigricauda | black-tailed bay shrimp | 2 | 11-13 | 1.9-2.7 | 8 | 7-12 | 0.3-3.0 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 3 | 7-12 | 0.7-1.9 |
| Crangon spp. | bay shrimp |  |  |  | 1 | 6 | 0.7 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 7 | 7-12 | 1.0-3.1 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0015 | $12 / 16 / 99$ | $12 / 17 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-16. Morro Bay Power Plant Impingement Abundance Survey 16, December 22, 1999.

|  |  | Units 1 and 2 |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Range <br> m) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  |  | 1 | 530 | 239.5 |
| Teleosts |  |  |  |  |  |  |  |  |
| Citharichthys stigmaeus | speckled sanddab |  |  |  |  | 2 | 52-80 | 2.0-8.5 |
| Cottidae unid. | sculpins |  |  |  |  | 1 | 79 | 13.4 |
| Platichthys stellatus | starry flounder |  |  |  |  | 1 | 34 | 1.8 |
| Porichthys notatus | plainfin midshipmen |  |  |  |  | 1 | 30 | 1.1 |
| Scorpaenichthys marmoratus | cabezon |  |  |  |  | 1 | 108 | 32.6 |
| Symphurus atricauda | California tonguefish |  |  |  |  | 5 | 70-86 | 3.4-7.2 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  |  | 6 | 140-220 | 1.5-8.5 |
| Syngnathus spp. | pipefishes |  |  |  |  | 1 | - | 2.0 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  |  |  |  | 2 | 39-73 | 13.4-125.0 |
| Cancer jordani | hairy rock crab |  | 2 | 21-34 | 0.9-8.8 | 26 | 7-32 | 0.1-8.8 |
| Cancer productus | red rock crab |  |  |  |  | 1 | 8 | 1.4 |
| Cancer spp. | cancer crabs |  |  |  |  | 1 | 8 | 0.1 |
| Loxorhynchus crispatus | moss crab |  | 2 | 7-12 | 0.1-2.5 | 4 | 10-25 | 0.3-10.5 |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 2 | 9-23 | 0.5-5.7 |
| Portunus xantusii | Xantus' swimming crab |  | 3 | 52-60 | 16.4-27.9 | 18 | 49-71 | 13.4-47.0 |
| Pugettia producta | northern kelp crab |  | 2 | 51-63 | 67.3-139.1 | 12 | 10-42 | 0.4-25.5 |
| Pugettia richii | cryptic kelp crab |  | 1 | 8 | 0.7 | 5 | 4-12 | 0.5-2.7 |
| Pugettia spp. | kelp crabs |  |  |  |  | 1 | 3 | 0.1 |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp |  |  |  |  | 1 | 7 | 1.9 |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  |  | 1 | 9 | 0.2 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  |  | 3 | 7-8 | 1.8-2.2 |
| Crangon spp. | bay shrimp |  |  |  |  | 1 | 12 | 2.1 |
| Heptacarpus spp. | tidepool shrimps |  |  |  |  | 2 | 7-10 | 0.5-0.9 |
| Penaeus californiensis | brown shrimp |  | 2 | 46-70 | 25.4-67.8 | 40 | 38-80 | 20.8-51.4 |
| Cephalopods |  |  |  |  |  |  |  |  |
| Octopus spp. | octopus |  |  |  |  | 1 | 56 | 38.8 |
| Sea Urchins |  |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  |  | 7 | 8-31 | 0.1-11.9 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0016 | $12 / 22 / 99$ | $12 / 23 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-17. Morro Bay Power Plant Impingement Abundance Survey 17, December 29, 1999.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Teleosts |  |  |  |  |  |  |  |
| Agonidae unid. | poachers |  |  |  | 1 | 1 | 51.0 |
| Citharichthys stigmaeus | speckled sanddab | 1 | 93 | 10.7 | 3 | 61-72 | 3.3-5.8 |
| Sebastes chrysomelas (juv.) |  |  |  |  | 1 | 11 | 77.0 |
| Symphurus atricauda | California tonguefish |  |  |  | 2 | 73-84 | 3.7-5.9 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 162 | 3.1 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 18-33 | 2.5-9.0 | 2 | 36-40 | 10.1-15.6 |
| Cancer antennarius/C. jordani | cancer crabs | 3 | 18-34 | 1.7-10.9 | 2 | 33-35 | 6.2-7.6 |
| Cancer jordani | hairy rock crab | 1 | 21 | 2.4 | 7 | 9-35 | 0.6-10.4 |
| Cancer productus | red rock crab |  |  |  | 2 | 12-46 | 0.7-13.0 |
| Cancer spp. | cancer crabs | 1 | 12 | 0.7 | 9 | 6-12 | 0.2-1.2 |
| Loxorhynchus crispatus | moss crab |  |  |  | 2 | 7-12 | 0.6-1.5 |
| Portunus xantusii | Xantus' swimming crab | 2 | 44-55 | 10.5-18.8 | 16 | 45-67 | 10.0-41.3 |
| Pugettia producta | northern kelp crab |  |  |  | 1 | 19 | 2.3 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 15 | 2.1 |
| Scyra acutifrons | sharp-nosed crab | 2 | 15 | 2.6-3.2 |  |  |  |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  | 6 | 9-13 | 0.7-2.6 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 3 | 10-14 | 1.5-2.2 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 2 | 6-9 | 0.7-1.1 |
| Penaeus californiensis | brown shrimp |  |  |  | 4 | 51-57 | 26.8-37.9 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0017 | $12 / 29 / 99$ | $12 / 30 / 99$ | 0 | 0 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-18. Morro Bay Power Plant Impingement Abundance Survey 18, January 6, 2000.

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0018 | $01 / 06 / 00$ | $01 / 07 / 00$ | 8 | 8 | 24 | 24 | 24 | 24 | 24 |  |

Table H1-19. Morro Bay Power Plant Impingement Abundance Survey 19, January 13, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 1 | 54 | 2.7 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 1 | 33 | 0.5 |
| Engraulis mordax | northern anchovy |  |  |  | 12* | 91-105 | 2.5 |
| Scorpaenichthys marmoratus | cabezon | 1 | 110 | 34.6 | 1 | 125 | 56.0 |
| Symphurus atricauda | California tonguefish |  |  |  | 3 | 75-77 | 4.5-5.0 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 67-75 | 45.6-81.6 | 1 | 77 | 71.0 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 1 | 32 | 8.6 |
| Cancer jordani | hairy rock crab | 3 | 11-54 | 0.5-36.6 | 13 | 8-29 | 0.1-7.5 |
| Cancer productus | red rock crab |  |  |  | 1 | 12 | 0.1 |
| Cancer spp. | cancer crabs | 1 | 13 | 0.4 | 4 | 5-11 | 0.1-0.4 |
| Loxorhynchus crispatus | moss crab |  |  |  | 3 | 7-19 | 1.0-8.5 |
| Portunus xantusii | Xantus' swimming crab | 19 | 47-62 | 6.7-32.0 | 27 | 48-68 | 13.5-42.7 |
| Pugettia producta | northern kelp crab |  |  |  | 2 | 15-15 | 1.6-3.3 |
| Pugettia richii | cryptic kelp crab | 1 | 10 | 1.4 | 1 | 9 | 1.7 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 4 | 7-11 | 0.5-2.1 | 9 | 6-12 | 0.1-3.0 |
| Crangon nigromaculata | spotted bay shrimp | 2 | 7-8 | 1.2-1.3 | 4 | 9-14 | 1.7-3.2 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 7 | 1.1 |
| Penaeus californiensis | brown shrimp | 1 | 48 | 22.4 | 7 | 44-59 | 19.5-40.3 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 19-22 | 2.8-4.4 |  |  |  |

*All twelve were mutilated. Length measurements were made from two specimens, and a weight was taken from one specimen.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0019 | $01 / 13 / 99$ | $01 / 14 / 99$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-20. Morro Bay Power Plant Impingement Abundance Survey 20, January 20, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Coun | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 1 | 119 | - |
| Odontopyxis trispinosa | pygmy poacher |  | 88 | 2.6 |  |  |  |
| Symphurus atricauda | California tonguefish |  |  |  | 1 | 86 | 5.0 |
| Syngnathus leptorhynchus | bay pipefish |  | 228 | 11.2 |  |  |  |
| Xiphister mucosus | rock prickleback |  |  |  | 1 | 114 | 84.0 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 26-66 | 3.7-69.2 |  |  |  |
| Cancer jordani | hairy rock crab | 2 | 20-74 | 1.8-79.5 | 9 | 11-31 | 0.4-7.8 |
| Cancer productus | red rock crab |  | 137 | 345.0 |  |  |  |
| Cancer spp. | cancer crabs |  | 9-16 | 0.3-0.8 | 7 | 6-21 | 0.1-2.2 |
| Loxorhynchus crispatus | moss crab |  | 12 | 0.8 |  |  |  |
| Majidae | spider crabs |  | - | - |  |  |  |
| Pachycheles pubescens | pubescent porcelain crab |  |  |  | 1 | 11 | 1.8 |
| Pelia tumida | dwarf crab |  | 13 | 0.6 |  |  |  |
| Portunus xantusii | Xantus' swimming crab | 3 | 50-62 | 13.3-32.0 | 7 | 53-69 | 19.8-34.0 |
| Pugettia producta | northern kelp crab |  | 8 | 0.8 | 6 | 6-43 | 0.2-30.4 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 6 | 1.0 |
| Pugettia spp. | kelp crabs |  |  |  | 2 | 0.4-17 | 0.5-3.1 |
| Pyromaia tuberculata | majidae crab |  |  |  | 1 | 10 | 1.6 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 3 | 8-13 | 0.6-3.6 | 2 | 11-13 | 1.3-3.9 |
| Crangon spp. | bay shrimp |  | 14 | 3.9 |  |  |  |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 8 | 2.9 |
| Pandalus danae | dock shrimp |  |  |  | 1 | 38 | 6.2 |
| Penaeus californiensis | brown shrimp | 10 | 32-49 | 20.0-40.0 | 35 | 30-59 | 19.3-49.7 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 28 | 8.6 | 1 | 10 | 0.4 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0020 | $01 / 20 / 00$ | $01 / 21 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-21. Morro Bay Power Plant Impingement Abundance Survey 21, January 27, 2000.

|  |  | Units 1 and 2 |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count |  | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |  |
| Scorpaenichthys marmoratus | cabezon |  | 1 | 139 | 67.0 |  |  |  |
| Symphurus atricauda | California tonguefish |  |  |  |  | 2 | 80-82 | 5.1-5.8 |
| Syngnathus leptorhynchus | bay pipefish |  | 1 | 212 | 4.8 |  |  |  |
| Syngnathus spp. | pipefishes |  | 1 | - | - |  |  |  |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 1 | 38 | 11.5 |  |  |  |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  |  | 1 | 39 | 11.0 |
| Cancer jordani | hairy rock crab |  | 3 | 18-52 | 2.7-30.6 | 12 | 12-36 | 0.4-9.7 |
| Cancer productus | red rock crab |  |  |  |  | 2 | 32 | 6.0 |
| Cancer spp. | cancer crabs |  | 1 | 77 | - | 4 | 8-17 | 0.1-2.0 |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 1 | 29 | 13.1 |
| Portunus xantusii | Xantus' swimming crab |  | 5 | 55-59 | 18.9-28.7 | 7 | 42-63 | 13.0-33.6 |
| Pugettia producta | northern kelp crab |  |  |  |  | 3 | 9-27 | 0.5-8.1 |
| Pugettia richii | cryptic kelp crab |  |  |  |  | 4 | 1-5 | 0.1-1.4 |
| Shrimps |  |  |  |  |  |  |  |  |
| Alpheus clamator | twistclaw pistol shrimp |  |  |  |  | 2 | 9-10 | 2.9-3.1 |
| Crangon nigromaculata | spotted bay shrimp |  | 1 | 11 | 5.1 | 4 | 9-12 | 1.0-1.9 |
| Penaeus californiensis | brown shrimp |  | 2 | 32-47 | 22.2-22.6 | 13 | 30-55 | 19.1-65.2 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0021 | $01 / 27 / 00$ | $01 / 28 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 |  |

Table H1-22. Morro Bay Power Plant Impingement Abundance Survey 22, February 3, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Coun | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin | 1 | 67 | 7.3 |  |  |  |
| Atherinops affinis | topsmelt | 1 | 56 | 2.1 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 1 | 53 | 1.2 | 2 | 46-48 | 1.5 |
| Gobiesox maeandricus | northern clingfish |  |  |  | 1 | 54 | 1.7 |
| Scorpaenichthys marmoratus | cabezon | 1 | 142 | 75.1 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 23-28 | 3.6-6.9 | 2 | 21-22 | 2.0-3.1 |
| Cancer anthonyi | yellow rock crab |  |  |  | 1 | 66 | 52.7 |
| Cancer gracilis | slender rock crab | 1 | 24 | 2.9 |  |  |  |
| Cancer jordani | hairy rock crab | 3 | 12-15 | 1.4-3.3 | 13 | 12-29 | 0.5-7.1 |
| Cancer productus | red rock crab |  |  |  | 1 | 13 | 0.8 |
| Cancer spp. | cancer crabs | 2 | 11-21 | 0.2-3.3 | 9 | 7-14 | 0.1-0.8 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 5 | 0.3 |
| Pachycheles spp. | porcelain crabs |  |  |  | 1 | 5 | 0.2 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 2 | 9-22 | 0.2-5.2 |
| Portunus xantusii | Xantus' swimming crab | 7 | 50-63 | 13.0-32.0 | 10 | 50-70 | 14.3-43.7 |
| Pugettia producta | northern kelp crab | 2 | 15-23 | 4.3-5.3 | 5 | 5-20 | 0.1-7.0 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 11 | 1.0 |
| Shrimps |  |  |  |  |  |  |  |
| Alpheus clamator | twistclaw pistol shrimp |  |  |  | 2 | 9-10 | 0.8-2.4 |
| Crangon nigricauda | black-tailed bay shrimp | 6 | 6-13 | 0.2-3.1 | 5 | 8-12 | 0.6-1.7 |
| Crangon nigromaculata | spotted bay shrimp | 1 | 8 | - | 2 | 9-10 | 1.3 |
| Pandalus spp. | unidentified shrimp |  |  |  | 1 | 10 | 1.0 |
| Penaeus californiensis | brown shrimp | 1 | 55 | 38.0 | 5 | 32-55 | 19.2-40.0 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 4 | 10-28 | 1.0-12.3 | 1 | 9 | 3.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0022 | $02 / 03 / 00$ | $02 / 04 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 |  |

Table H1-23. Morro Bay Power Plant Impingement Abundance Survey 23, February 10, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Artedius spp. | sculpins |  |  |  | 1 | 118 | 36.8 |
| Atherinopsis californiensis | jacksmelt | 1 | 294 | - |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 1 | 45 | 1.4 | 5 | 40-50 | 1.2-1.9 |
| Porichthys notatus | plainfin midshipmen |  |  |  | 1 | 54 | 2.0 |
| Scorpaenichthys marmoratus | cabezon | 1 | 102 | - |  |  |  |
| Stichaeidae unid. | pricklebacks |  |  |  | 1 | 79 | 9.5 |
| Symphurus atricauda | California tonguefish | 1 | 88 | 7.1 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 | 54 | 32.2 | 4 | 11-31 | 0.2-7.5 |
| Cancer anthonyi | yellow rock crab |  |  |  | 1 | 50 | 14.7 |
| Cancer jordani | hairy rock crab | 1 | 24 | 3.0 | 5 | 13-30 | 0.8-5.8 |
| Cancer productus | red rock crab | 1 | 66 | 37.2 |  |  |  |
| Cancer spp. | cancer crabs | 1 | 30 | 4.8 | 16 | 8-21 | 0.2-1.6 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 3 | 8-22 | 0.2-6.5 |
| Portunus xantusii | Xantus' swimming crab | 7 | 48-67 | 9.6-43.4 | 4 | 61-68 | 27.1-40.6 |
| Pugettia producta | northern kelp crab |  |  |  | 6 | 8-25 | 0.2-6.6 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 6 | 10-13 | 0.8-8.2 | 2 | 11-15 | 1.4-3.4 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 3 | 9-12 | 0.7-1.4 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 3 | 5-10 | 0.1-0.8 |
| Penaeus californiensis | brown shrimp | 4 | 45-60 | 20.4-32.0 | 6 | 33-67 | 16.4-56.8 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 16-30 | 1.6-11.4 | 2 | 13-21 | 1.1-4.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0023 | $02 / 10 / 00$ | $02 / 11 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-24. Morro Bay Power Plant Impingement Abundance Survey 24, February 17, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 1 | 115 | 6.8 |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 1 | 85 | 3.7 | 1 | 50 | 1.8 |
| Damalichthys vacca | pile surfperch | 1 | 310 | 784.1 | 1 | 122 | 24.5 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 87 | 15.0 |  |  |  |
| Ophidion scrippsae | basketweave cusk-eel | 1 | 225 | 61.5 | 1 | 124 | 10.8 |
| Sardinops sagax | Pacific sardine | 1 | 174 | 68.4 |  |  |  |
| Stichaeidae unid. | pricklebacks | $1 *$ | - | - | 2** | 153 | 20.20 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 33-74 | 9.8-61.2 | 1 | 22 | 3.0 |
| Cancer gracilis | slender rock crab |  |  |  | 1 | 12 | 0.6 |
| Cancer jordani | hairy rock crab | 5 | 15-29 | 2.0-8.4 | 18 | 10-27 | 0.8-3.6 |
| Cancer productus | red rock crab | 1 | 97 | 138.0 |  |  |  |
| Cancer spp. | cancer crabs | 3 | 9-11 | 0.4-1.4 | 15 | 5-18 | 0.1-1.7 |
| Emerita analoga | mole crab |  |  |  | 1 | 16 | 3.3 |
| Loxorhynchus spp. | spider crabs |  |  |  | 3 | 6-19 | 0.1-3.6 |
| Portunus xantusii | Xantus' swimming crab | 18 | 45-65 | 11.8-42.2 | 30 | 42-80 | 10.3-48.6 |
| Pugettia producta | northern kelp crab | 2 | 8-50 | 1.0-56.3 | 3 | 8-26 | 0.4-8.9 |
| Pugettia richii | cryptic kelp crab |  |  |  | 2 | 7-8 | 0.2-0.5 |
| Shrimps |  |  |  |  |  |  |  |
| Alpheus spp. | pistol shrimp | 1 | 12 | 1.6 |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 1 | 8 | 1.1 | 1 | 9 | 1.3 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 2 | 8-11 | 0.9-1.8 |
| Penaeus californiensis | brown shrimp |  |  |  | 2 | 30-33 | 23.4-26.1 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 2 | 59-65 | 6.5-7.7 |  |  |  |
| Octopus spp. | octopus | 1 | 60 | 41.0 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 25 | 4.2-4.9 |  |  |  |

*One specimen was mutilated, and not measured nor weighed.
**Two specimens were collected. One specimen was mutilated and not measured nor weighed.
Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0024 | $02 / 17 / 00$ | $02 / 18 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 |  |

Table H1-25. Morro Bay Power Plant Impingement Abundance Survey 25, February 24, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray | 1 | 480 | 291.7 | 2 | 180-410 | 298.0-332.5 |
| Teleosts |  |  |  |  |  |  |  |
| Anoplarchus purpurescens | high cockscomb |  |  |  | 1 | 14 | 8.0 |
| Artedius lateralis | smoothhead sculpin |  |  |  | 2 | 60-67 | 5.0-6.3 |
| Artedius spp. | sculpins |  |  |  | 6 | 67-89 | 4.4-14.8 |
| Atherinops affinis | topsmelt | 68 | 11-189 | 20.7-62.5 | 568 | 90-220 | 4.5-81.6 |
| Chilara taylori | spotted cusk-eel | 3 | 126-150 | 12.0-58.1 | 3 | 121-158 | 8.5-25.9 |
| Citharichthys stigmaeus | speckled sanddab | 1 | 80 | 4.2 | 20 | 44-95 | 0.5-9.0 |
| Embiotoca lateralis | striped surfperch |  |  |  | 1 | 154 | 116.7 |
| Gibbonsia montereyensis | crevice kelpfish |  |  |  | 1 | 105 | 13.3 |
| Gobiesox maeandricus | northern clingfish |  |  |  | 1 | 50 | 4.5 |
| Hyperprosopon argenteum | walleye surfperch |  |  |  | 1 | 135 | 59.4 |
| Hypsoblennius jenkinsi | mussel blenny | 1 | 50 | 4.6 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 115-123 | 23.4-25.1 | 7 | 9-122 | 0.6-28.5 |
| Microstomus pacificus | Dover sole | 1 | 6 | 2.3 | 5 | 43-54 | 2.0-4.0 |
| Ophidion scrippsae | basketweave cusk-eel | 7 | 15-195 | 11.0-44.3 | 19 | 115-162 | 9.0-22.0 |
| Osmeridae unid. | smelts |  |  |  | 1 | 105 | 5.0 |
| Parophrys vetulus | English sole |  |  |  | 1 | 44 | 1.2 |
| Pleuronichthys decurrens | curlfin turbot |  |  |  | 1 | 129 | 62.0 |
| Scorpaenichthys marmoratus | cabezon |  |  |  | 3 | 53-133 | 4.0-62.0 |
| Sebastes rastrelliger | grass rockfish |  |  |  | 2 | 90-110 | 14.3-24.2 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 222 | 17.0 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 | 73 | 74.8 | 2 | 31-144 | 7.4-29.8 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 2 | 12-15 | 0.3-1.6 |
| Cancer jordani | hairy rock crab | 4 | 19-28 | 1.9-3.7 | 17 | 12-33 | 0.2-10.2 |
| Cancer magister | Dungeness crab |  |  |  | 1 | 23 | 5.5 |
| Cancer productus | red rock crab |  |  |  | 1 | 100 | 105.7 |
| Cancer spp. | cancer crabs | 1 | 51 | 9.5 | 4 | 11-27 | 0.1-6.0 |
| Loxorhynchus crispatus | moss crab |  |  |  | 16 | 9-22 | 0.4-8.3 |
| Loxorhynchus spp. | spider crabs | 1 | 10 | 2.5 | 1 | 11 | 3.9 |
| Pachycheles pubescens | pubescent porcelain crab |  |  |  | 7 | 9-18 | 0.7-6.4 |
| Pelia tumida | dwarf crab |  |  |  | 3 | 7-14 | 2.5-4.3 |
| Podochela hemphilli | Hemphill's kelp crab | 1 | 9 | 1.3 |  |  |  |
| Portunus xantusii | Xantus' swimming crab | 13 | 42-58 | 12.9-26.8 | 38 | 46-73 | 12.1-51.0 |
| Pugettia producta | northern kelp crab | 1 | 12 | 0.7 | 2 | 7-20 | 2.5-6.5 |
| Pugettia richii | cryptic kelp crab | 1 | 16 | 3.5 | 2 | 12-13 | 0.6-0.8 |
| Scyra acutifrons | sharp-nosed crab | 1 | 17 | 4.1 |  |  |  |
| Shrimps |  |  |  |  |  |  |  |
| Alpheus clamator | twistclaw pistol shrimp |  |  |  | 3 | 9-11 | 0.3-1.2 |
| Crangon nigricauda | black-tailed bay shrimp | 19 | 8-17 | 2.0-5.4 | 130 | 7-90 | 0.5-15.0 |
| Crangon nigromaculata | spotted bay shrimp | 5 | 10-18 | 1.1-2.3 | 54 | 1-12 | 0.4-5.1 |
| Crangon spp. | bay shrimp |  |  |  | 8 | 8-14 | 0.6-3.1 |
| Heptacarpus spp. | tidepool shrimps | 2 | 5-10 | 0.5-1.5 | 8 | 7-15 | 0.5-1.7 |
| Pandalus spp. | unidentified shrimp |  |  |  | 1 | 8 | 0.4 |
| Penaeus californiensis | brown shrimp |  |  |  | 2* | 50-55 | 64.5 |
| Spirontocaris spp. | broken-back shrimp |  |  |  | 3 | 7-9 | 0.5-3.5 |
| Cephalopods |  |  |  |  |  |  |  |
| Octopus spp. | octopus | 12 | 40-55 | 25.5-37.2 | 25 | 40-120 | 15.8-290.0 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 5 | 12-35 | 1.4-17.0 |  |  |  |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0025 | $02 / 24 / 00$ | $02 / 25 / 00$ | 24 | 24 | 0 | 0 | 24 | 24 | 24 | 24 |

Table H1-26. Morro Bay Power Plant Impingement Abundance Survey 26, March 2, 2000.

|  |  | Units 1 and 2* | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range <br> (mm) <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |
| Myliobatis californica | bat ray |  | 2 | 280-282 | 324.0-372.0 |
| Teleosts |  |  |  |  |  |
| Atherinops affinis | topsmelt |  | 1 | 160 | 25.6 |
| Aulorhynchus flavidus | tubesnout |  | 1 | 90 | 3.3 |
| Citharichthys stigmaeus | speckled sanddab |  | 1 | 42 | 0.9 |
| Engraulis mordax | northern anchovy |  | 2 | 38-45 |  |
| Ophidion scrippsae | basketweave cusk-eel |  | 1 | 175 | 31.0 |
| Spirinchus starksi | night smelt |  | 1 | 110 | 7.4 |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 2 | 19-38 | 1.9-12.3 |
| Cancer jordani | hairy rock crab |  | 9 | 10-27 | 0.4-4.8 |
| Cancer magister | Dungeness crab |  | 2 | 14-15 | 1.4-1.8 |
| Cancer spp. | cancer crabs |  | 6 | 10-18 | 0.1-1.5 |
| Pachycheles rudis | porcelain crabs |  | 1 | 14 | 2.3 |
| Pachygrapsus crassipes | striped shore crab |  | 4 | 4-15 | 0.4-1.4 |
| Portunus xantusii | Xantus' swimming crab |  | 12 | 50-56 | 13.9-24.5 |
| Pugettia producta | northern kelp crab |  | 2 | 6-18 | 0.2-3.2 |
| Pugettia richii | cryptic kelp crab |  | 4 | 3-11 | 0.1-1.8 |
| Pugettia spp. | kelp crabs |  | 1 | 21 | 5.4 |
| Shrimps |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 3 | 10-14 | 1.0-3.5 |
| Crangon nigromaculata | spotted bay shrimp |  | 4 | 8-12 | 0.5-1.6 |
| Heptacarpus spp. | tidepool shrimps |  | 1 | 8 | - |
| Penaeus californiensis | brown shrimp |  | 1 | 47 | 51.2 |
| Sea Urchins |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 5 | 10-57 | 0.7-57.8 |

* Units 1 and 2 not sampled because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0026 | $03 / 02 / 00$ | $03 / 03 / 00$ | 0 | 0 | 0 | 0 | 24 | 24 | 24 | 24 |

Table H1-27. Morro Bay Power Plant Impingement Abundance Survey 27, March 9, 2000.

|  |  | Units 1 and 2* | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range (mm) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |
| Atherinops affinis | topsmelt |  | 2 | 70-71 | 2.6-2.9 |
| Aulorhynchus flavidus | tubesnout |  | 1 | 73 | 0.1 |
| Engraulis mordax | northern anchovy |  | 1 | 31 |  |
| Hexagrammos decagrammus | kelp greenling |  | 1 | 137 | 46.2 |
| Sebastes atrovirens | kelp rockfish |  | 1 | 92 | 22.0 |
| Symphurus atricauda | California tonguefish |  | 1 | - |  |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 5 | 28-53 | 4.1-19.8 |
| Cancer antennarius/C. jordani | cancer crabs |  | 1 | 18 | 0.8 |
| Cancer jordani | hairy rock crab |  | 4 | 9-18 | 0.5-1.5 |
| Cancer productus | red rock crab |  | 1 | 66 | 45.7 |
| Cancer spp. | cancer crabs |  | 3 | 9-21 | 0.1-2.2 |
| Loxorhynchus crispatus | moss crab |  | 1 | 10 | 0.5 |
| Pachygrapsus crassipes | striped shore crab |  | 1 | 14 | 1.3 |
| Portunus xantusii | Xantus' swimming crab |  | 3 | 54-57 | 17.0-19.4 |
| Pugettia producta | northern kelp crab |  | 7 | 8-44 | 0.4-52.8 |
| Shrimps |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 11 | 8-14 | 0.2-2.1 |
| Crangon nigromaculata | spotted bay shrimp |  | 16 | 9-14 | 0.1-2.1 |
| Penaeus californiensis | brown shrimp |  | 2 | 47-50 | 20.3-25.7 |
| Sea Urchins |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 2 | 16-27 | 1.8 |

* Units 1 and 2 not sampled because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0027 | $03 / 09 / 00 ~$ | $03 / 10 / 00$ | 0 | 0 | 3 | 3 | 24 | 24 | 24 | 24 |

Table H1-28. Morro Bay Power Plant Impingement Abundance Survey 28, March 16, 2000.

|  |  | Units 1 and 2* | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range <br> (mm) <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 2 | 27-47 | 4.1-19.0 |
| Cancer spp. | cancer crabs |  | 4 | 16-22 | 1.1-2.5 |
| Loxorhynchus crispatus | moss crab |  | 1 | 14 | 2.3 |
| Pachygrapsus crassipes | striped shore crab |  | 1 | 14 | 1.2 |
| Pugettia producta | northern kelp crab |  | 2 | 6-22 | 0.3-2.8 |
| Pugettia richii | cryptic kelp crab |  | 3 | 6-9 | 0.1-0.5 |

* Units 1 and 2 not sampled because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0028 | $03 / 16 / 00$ | $03 / 17 / 00$ | 0 | 0 | 0 | 0 | 24 | 24 | 0 | 0 |

Table H1-29. Morro Bay Power Plant Impingement Abundance Survey 29, March 20, 2000.

|  |  | Units 1 and 2* | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range (mm) | Count | Length Range (mm) | Weight Range (g) |
| Teleosts |  |  |  |  |  |
| Aulorhynchus flavidus | tubesnout |  | 1 | 140 | 5.5 |
| Echeneis naucrates | sharksucker |  | 1 | 432 | 463.1 |
| Embiotoca jacksoni | black surfperch |  | 3 | 165-230 | 143.0-405.0 |
| Embiotoca lateralis | striped surfperch |  | 1 | 150 | 105.0 |
| Porichthys notatus | plainfin midshipmen |  | 1 | 170 | 31.6 |
| Spirinchus starksi | night smelt |  | 1 | 108 | 11.7 |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 3 | 28-92 | 4.8-123.3 |
| Cancer anthonyi | yellow rock crab |  | 1 | 94 | 63.4 |
| Cancer jordani | hairy rock crab |  | 13 | 6-32 | 0.3-7.3 |
| Cancer productus | red rock crab |  | 1 | 9 | 1.2 |
| Cancer spp. | cancer crabs |  | 9 | 8-17 | 0.9-2.4 |
| Loxorhynchus crispatus | moss crab |  | 1 | 8 | 1.3 |
| Pachygrapsus crassipes | striped shore crab |  | 3 | 13-37 | 2.0-19.3 |
| Portunus xantusii | Xantus' swimming crab |  | 3 | 55-64 | 23.6-28.3 |
| Pugettia producta | northern kelp crab |  | 11 | 7-67 | 0.5-137.8 |
| Pugettia richii | cryptic kelp crab |  | 4 | 6-16 | 0.5-2.7 |
| Shrimps |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 6 | 9-10 | 1.2-1.9 |
| Crangon nigromaculata | spotted bay shrimp |  | 1 | 10 | 1.6 |
| Crangon spp. | bay shrimp |  | 1 | - | - |
| Sea Urchins |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 2 | 31-35 | 14.0-17.0 |

* Units 1 and 2 not sampled because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0029 | $03 / 20 / 00$ | $03 / 21 / 00$ | 0 | 0 | 0 | 0 | 24 | 24 | 24 | 24 |

Table H1-30. Morro Bay Power Plant Impingement Abundance Survey 30, March 30, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Artedius spp. | sculpins |  |  |  | 1 | 52 | 2.5 |
| Aulorhynchus flavidus | tubesnout |  |  |  | 1 | 109 | 1.0 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 3 | 41-55 | 0.4-1.4 |
| Embiotoca jacksoni | black surfperch |  |  |  | 1 | 110 | 50.2 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 5 | 12-52 | 1.4-33.9 | 2 | 18 | 2.2-3.3 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 2 | 14-25 | 0.9-4.5 |
| Cancer jordani | hairy rock crab |  |  |  | 5 | 9-17 | 0.3-1.6 |
| Cancer spp. | cancer crabs |  |  |  | 7 | 3-20 | 0.1-1.5 |
| Pugettia gracilis | graceful kelp crab |  |  |  | 1 | 11 | 0.5 |
| Pugettia producta | northern kelp crab |  |  |  | 4 | 6-11 | 0.3-1.0 |
| Pugettia richii | cryptic kelp crab |  |  |  | 4 | 6-15 | 0.3-1.6 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  | 1 | 11 | 1.1 |
| Hippolytidae unid. | Hippolytid shrimps |  |  |  | 1 | 6 | 0.6 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 13-24 | 2.8-5.3 |  |  |  |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0030 | $03 / 30 / 00$ | $03 / 31 / 00$ | 0 | 0 | 21 | 5 | 24 | 24 | 24 |  |

Table H1-31. Morro Bay Power Plant Impingement Abundance Survey 31, April 6, 2000.

|  |  | Units 1 and 2 |  |  |  | Units 3 and 4* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) |  | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  |  |  | 1 | 137 | 23.1 |
| Citharichthys sordidus | Pacific sanddab |  | 1 | 55 | 2.3 | 1 | 15 | 1.3 |
| Citharichthys stigmaeus | speckled sanddab |  | 2 | 30-50 | 0.3-1.6 | 2 | 45-54 | 1.3-2.9 |
| Cymatogaster aggregata | shiner surfperch |  |  |  |  | 1 | 81 | 10.7 |
| Embiotoca jacksoni | black surfperch |  |  |  |  | 1 | 204 | 264.3 |
| Leptocottus armatus | Pacific staghorn sculpin |  |  |  |  | 2 | 59-62 | 0.9-2.7 |
| Phytichthys chirus | ribbon prickleback |  |  |  |  | 1 | 170 | 14.5 |
| Psettichthys melanostictus | sand sole |  | 1 | 46 | 1.6 |  |  |  |
| Sebastes atrovirens | kelp rockfish |  |  |  |  | 1 | 79 | 12.7 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 2 | 21-56 | 2.3-33.2 | 29 | 8-44 | 0.3-19.8 |
| Cancer antennarius/C. jordani | cancer crabs |  | 2 | 16-30 | 0.4-5.8 | 2 | 11-21 | 0.3-2.1 |
| Cancer anthonyi | yellow rock crab |  |  |  |  | 1 | 22 | 1.7 |
| Cancer jordani | hairy rock crab |  | 2 | 17-25 | 1.2-3.2 | 10 | 9-22 | 0.5-2.5 |
| Cancer spp. | cancer crabs |  | 1 | 17 | 2.6 | 7 | 11-24 | 0.5-2.3 |
| Lophopanopeus spp. | black-clawed crabs |  |  |  |  | 1 | 20 | 3.2 |
| Loxorhynchus crispatus | moss crab |  |  |  |  | 7 | 6-14 | 0.3-1.9 |
| Mimulus foliatus |  |  | 1 | 16 | 1.5 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 3 | 7-17 | 1.0-2.2 |
| Pugettia producta | northern kelp crab |  |  |  |  | 9 | 4-23 | 0.3-1.3 |
| Pugettia richii | cryptic kelp crab |  |  |  |  | 3 | 5-10 | 0.2-0.9 |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 3 | 11-13 | 1.1-1.4 | 11 | 8-13 | 0.9-3.8 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  |  | 3 | 9-13 | 1.2-1.6 |
| Heptacarpus spp. | tidepool shrimps |  | 1 | 10 | 2.1 | 2 | 7-11 | 0.4-1.7 |
| Palaemon macrodactylus | oriental shrimp |  |  |  |  | 2 | 7-8 | 0.2-0.7 |
| Cephalopods |  |  |  |  |  |  |  |  |
| Loligo opalescens | market squid |  |  |  |  | 2 | 50-52 | 4.0-4.4 |

* $\mathrm{N}=5$, Cycle 6 not sampled due to heat treatment work at the intake.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0031 | $04 / 06 / 00$ | $04 / 07 / 00$ | 24 | 24 | 22 | 21 | 24 | 24 | 24 | 24 |

Table H1-32. Morro Bay Power Plant Impingement Abundance Survey 32, April 14, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range (g) |
| Teleosts |  |  |  |  |  |  |  |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | 65 | 2.8 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 | 33 | 8.9 | 2 | 23-24 | 3.3-3.6 |
| Cancer jordani | hairy rock crab |  |  |  | 1 | 22 | 2.9 |
| Cancer spp. | cancer crabs |  |  |  | 6 | 6-13 | 0.2-2.6 |
| Pugettia producta | northern kelp crab |  |  |  | 7 | 8-52 | 0.3-66.4 |
| Pugettia richii | cryptic kelp crab |  |  |  | 3 | 4-6 | 0.1-2.0 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 1 | 7.0 | 2.4 | 3 | 9-12 | 3.0-4.3 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0032 | $04 / 14 / 00$ | $04 / 15 / 00$ | 9 | 9 | 9 | 9 | 24 | 24 | 0 | 0 |

Table H1-33. Morro Bay Power Plant Impingement Abundance Survey 33, April 20, 2000.

|  |  | Units 1 and 2* |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range (g) |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 3 | 18-58 | 1.4-38.6 |  |  |  |
| Cancer jordani | hairy rock crab |  |  |  | 4 | 12-22 | 0.4-3.8 |
| Cancer spp. | cancer crabs |  |  |  | 2 | 5-14 | 0.1-0.5 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 9 | 0.4 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 20 | 5.5 |
| Pugettia producta | northern kelp crab |  |  |  | 3 | 4-9 | 0.1-0.4 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 3 | 0.1 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 3 | 14-24 | 1.4-7.5 |

* $\mathrm{N}=2$, Cycles 1-4 not collected because pumps were not operating.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0033 | $04 / 20 / 00$ | $04 / 21 / 00$ | 0 | 0 | 4 | 4 | 0 | 24 | 0 | 0 |

Table H1-34. Morro Bay Power Plant Impingement Abundance Survey 34, April 27, 2000.

|  |  | Units 1 and 2 |  |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) |  | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt |  |  | 140 | 27.6 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab |  |  | 50 | 0.6 |  |  |  |
| Sebastes rastrelliger | grass rockfish |  |  | 200 | 142.3 |  |  |  |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  |  |  |  | 4 | 22-32 | 2.5-9.0 |
| Cancer jordani | hairy rock crab | 2 |  | 17-20 | 1.2-2.0 | 8 | 2-34 | 0.1-9.2 |
| Cancer spp. | cancer crabs |  |  |  |  | 2 | 11-15 | 0.5-1.0 |
| Loxorhynchus crispatus | moss crab |  |  |  |  | 1 | 14 | 2.1 |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 1 | 6 | 0.1 |
| Pugettia producta | northern kelp crab |  | 1 | 16 | 1.9 | 2 | 8-11 | 0.3-0.7 |
| Pugettia richii | cryptic kelp crab |  |  |  |  | 6 | 2-8 | 0.1-0.3 |
| Shrimps |  |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 4 | 4 | 9-14 | 0.4-1.1 |  |  |  |
| Heptacarpus spp. | tidepool shrimps |  |  |  |  | 1 | 62 | 0.2 |
| Cephalopods |  |  |  |  |  |  |  |  |
| Octopus spp. | octopus |  | 1 | - | - |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 1 | 12 | 0.5 | 1 | 44 | 31.8 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0034 | $04 / 27 / 00$ | $04 / 28 / 00$ | 0 | 0 | 24 | 23 | 0 | 24 | 0 | 0 |

Table H1-35. Morro Bay Power Plant Impingement Abundance Survey 35, May 4, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 1 | 166 | 32.0 |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 9 | 42-99 | 1.1-11.7 | 2 | 65-72 | 4.1-4.3 |
| Citharichthys stigmaeus | speckled sanddab | 12 | 29-90 | 0.2-11.4 |  |  |  |
| Embiotoca lateralis | striped surfperch |  |  |  | 1 | 290 | 438.0 |
| Genyonemus lineatus | white croaker | 1 | 42 | 1.3 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 65-80 | 5.1-7.4 | 1 | 50 | 2.0 |
| Pholididae unid. | gunnels |  |  |  | 1 | 180 | 15.2 |
| Porichthys notatus | plainfin midshipmen |  |  |  | 2 | 175-260 | 51.4-179.8 |
| Scorpaenichthys marmoratus | cabezon |  |  |  | 2 | 172-174 | 122.7-130.7 |
| Sebastes rastrelliger | grass rockfish |  |  |  | 1 | 240 | 215.5 |
| Syngnathus spp. | pipefishes |  |  |  | 1 | 170 | 3.3 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 3 | 23-43 | 5.9-25.5 | 3 | 21-38 | 4.8-14.5 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 3 | 8-12 | 0.1-0.5 |
| Cancer gracilis | slender rock crab | 1 | 18 | 3.3 | 3 | 9-12 |  |
| Cancer jordani | hairy rock crab | 1 | 29 | 5.1 | 7 | 14-21 | 0.9-3.5 |
| Cancer magister | Dungeness crab | 1 | 26 | 5.2 |  |  |  |
| Cancer spp. | cancer crabs | 1 | 10 | 0.8 | 1 | 9 | 2.5 |
| Loxorhynchus crispatus | moss crab |  |  |  | 6 | 8-22 | 0.3-9.0 |
| Loxorhynchus spp. | spider crabs |  |  |  | 1 | 6 | 3.3 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 9 | 0.5 |
| Pugettia producta | northern kelp crab |  |  |  | 23 | 6-45 | 0.1-36.3 |
| Pugettia richii | cryptic kelp crab |  |  |  | 7 | 5-15 | 0.1-6.5 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 15 | 8-14 | 1.2-4.6 | 7 | 8-16 | 0.8-4.3 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 1 | 10 | 0.9 |
| Upogebia pugettensis | blue mud shrimp |  |  |  | 1 | 20 | 7.5 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0035 | $05 / 04 / 00$ | $05 / 05 / 00$ | 24 | 24 | 24 | 24 | 0 | 0 | 24 | 24 |

Table H1-36. Morro Bay Power Plant Impingement Abundance Survey 36, May 11, 2000.

|  |  | Units 1 and 2 | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count Length Range Weight Range <br> (mm) <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |
| Atherinops affinis | topsmelt |  | 1 | 153 | 30.7 |
| Citharichthys sordidus | Pacific sanddab |  | 1 | 62 | 2.0 |
| Citharichthys stigmaeus | speckled sanddab |  | 15 | 31-54 | 0.6-1.8 |
| Engraulis mordax | northern anchovy |  | 2 | 41-55 | 1.3 |
| Leptocottus armatus | Pacific staghorn sculpin |  | 1 | 60 | 3.8 |
| Porichthys notatus | plainfin midshipmen |  | 9 | 120-196 | 17.1-59.0 |
| Syngnathus spp. | pipefishes |  | 1 | 100 | 2.0 |
| Crabs |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 2 | 35-44 | 8.5-16.0 |
| Cancer gracilis | slender rock crab |  | 1 | 29 | 4.0 |
| Cancer spp. | cancer crabs |  | 7 | 4-17 | 0.1-1.6 |
| Loxorhynchus crispatus | moss crab |  | 1 | 8 | 0.8 |
| Portunus xantusii | Xantus' swimming crab |  | 2 | 51-64 | 16.1-32.9 |
| Pugettia producta | northern kelp crab |  | 8 | 5-21 | 0.1-4.3 |
| Pugettia richii | cryptic kelp crab |  | 3 | 5-10 | 0.1-0.8 |
| Shrimps |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  | 3 | 9-15 | 0.7-3.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0036 | $05 / 11 / 00$ | $05 / 12 / 00$ | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 24 |

Table H1-37. Morro Bay Power Plant Impingement Abundance Survey 37, May 18, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range (g) |  | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 660 | 516.0 |
| Teleosts |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch |  |  |  | 1 | 54 | 4.6 |
| Artedius notospilotus | bonyhead sculpin |  |  |  | 1 | 77 | 10.5 |
| Atherinops affinis | topsmelt | 4 | 87-134 | 7.5-27.3 |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 1 | 34 | 0.6 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 36 | 28-80 | 0.3-8.0 | 10 | 29-53 | 0.1-2.5 |
| Cymatogaster aggregata | shiner surfperch | 3 | 86-93 | 15.2-18.7 |  |  |  |
| Embiotoca lateralis | striped surfperch | 2 | 62 | 5.5-5.8 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 4 | 69-89 | 6.2-12.0 | 1 | 73 | 5.6 |
| Parophrys vetulus | English sole | 10 | 30-46 | 0.8-1.9 | 5 | 28-50 | 0.4-1.4 |
| Porichthys notatus | plainfin midshipmen | 4 | 107-223 | 16.0-143.4 | 4 | 133-185 | 25.1-67.0 |
| Syngnathus leptorhynchus | bay pipefish | 1 | 210 | 2.6 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 3 | 22-40 | 1.8-14.3 | 5 | 20-80 | 2.3-36.2 |
| Cancer anthonyi | yellow rock crab | 2 | 11-18 | 0.4-1.3 | 13 | 11-24 | 0.7-3.9 |
| Cancer gracilis | slender rock crab |  |  |  | 2 | 16-24 | 1.3-2.6 |
| Cancer jordani | hairy rock crab | 6 | 15-36 | 1.8-8.7 | 4 | 11-27 | 0.2-6.5 |
| Cancer productus | red rock crab | 1 | - | 10.5 | 2 | 81-98 | 96.0-99.2 |
| Cancer spp. | cancer crabs | 3 | 11-23 | 0.4-2.8 | 9 | 11-21 | 0.5-2.5 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 20 | 4.4 |
| Loxorhynchus spp. | spider crabs |  |  |  | 1 | 24 | 12.6 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 28 | 10.2 |
| Portunus xantusii | Xantus' swimming crab | 1 | 52 | 20.2 |  |  |  |
| Pugettia gracilis | graceful kelp crab |  |  |  | 2 | 10-13 | 0.5-1.0 |
| Pugettia producta | northern kelp crab |  |  |  | 14 | 6-16 | 0.4-1.9 |
| Pugettia richii | cryptic kelp crab |  |  |  | 8 | 7-23 | 0.1-4.8 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon alaskensis |  | 1 | 14 | 2.2 |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp | 11 | 8-13 | 0.7-2.7 |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 42 | 7-15 | 0.5-3.3 | 18 | 10-14 | 1.4-3.5 |
| Crangon spp. | bay shrimp |  |  |  | 1 | 12 | 1.3 |
| Heptacarpus palpator | stout bodied shrimp | 1 | 12 | 1.1 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 3 | 9-38 | 0.7-21.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0037 | $05 / 18 / 00$ | $05 / 19 / 00$ | 24 | 24 | 22 | 24 | 4 | 4 | 24 | 24 |

Table H1-38. Morro Bay Power Plant Impingement Abundance Survey 38, May 25, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 | 560 | - |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 4 | 33-141 | 4.9-29.5 | 1 | 145 | 36.3 |
| Chilara taylori | spotted cusk-eel | 1 | 240 | 70.0 |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 5 | 41-58 | 1.7-3.7 |  |  |  |
| Citharichthys spp. | sanddabs |  |  |  | 1 | 35 | 1.0 |
| Citharichthys stigmaeus | speckled sanddab | 26 | 32-79 | 0.5-6.5 | 10 | 31-70 | 0.7-7.6 |
| Cymatogaster aggregata | shiner surfperch | 1 | 122 | 45.0 | 1 | 110 | 29.1 |
| Eopsetta exilis | slender sole |  |  |  | 1 | 27 | 0.1 |
| Genyonemus lineatus | white croaker | 1 | 47 | 2.2 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 70 | 8.9 | 1 | 160 | 67.4 |
| Parophrys vetulus | English sole | 2 | 42-45 | 1.5-3.5 | 1 | 35 | 1.0 |
| Pholididae/Stichaeidae unid. |  |  |  |  | 2 | 25-32 | 0.1 |
| Porichthys notatus | plainfin midshipmen | 48 | 109-240 | 16.2-145.6 | 94 | 97-282 | 13.8-88.8 |
| Sebastes serranoides | olive rockfish |  |  |  | 1 | 38 | 1.0 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 168 | 0.9 |
| Syngnathus spp. | pipefishes | 1 | 165 | 3.8 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 11-13 | 0.6-0.8 | 4 | 15-30 | 1.0-6.9 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 1 | 17 | 1.0 |
| Cancer jordani | hairy rock crab | 1 | 24 | 3.7 | 4 | 12-19 | 1.0-1.8 |
| Cancer magister | Dungeness crab |  |  |  | 4 | 13-16 | 0.9-1.2 |
| Cancer spp. | cancer crabs | 1 | 10 | 0.4 | 1 | 13 | 0.5 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 8 | 0.6 |
| Pachycheles pubescens | pubescent porcelain crab | 1 | 7 | 0.3 |  |  |  |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 1 | 10 | 0.5 |
| Portunus xantusii | Xantus' swimming crab | 3 | 50-54 | 17.6-27.8 | 2 | 49-66 | 13.5-37.6 |
| Pugettia producta | northern kelp crab | 2 | 21-30 | 5.6-11.0 | 13 | 5-36 | 0.1-21.3 |
| Pugettia richii | cryptic kelp crab | 1 | 16 | 5.0 | 10 | 5-14 | 0.1-1.5 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 15 | 7-13 | 0.6-5.5 | 18 | 6-12 | 0.8-5.5 |
| Crangon nigromaculata | spotted bay shrimp | 3 | 8-11 | 1.1-2.3 |  |  |  |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 120 | 19.8 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 4 | 25-32 | 4.7-9.1 | 1 | 26 | 12.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0038 | $05 / 25 / 00$ | $05 / 26 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-39. Morro Bay Power Plant Impingement Abundance Survey 39, June 1, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | th Range mm) | Weight Range (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Myliobatis californica | bat ray |  |  |  | 3 | 180-530 | 310.5-465.0 |
| Platyrhinoidis triseriata | thornback | 1 | 675 | 1994.0 | 4 | 410-590 | 530.0-965.0 |
| Triakis semifasciata | leopard shark | 1 | 210 | 30.0 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch | 1 | 47 | 2.0 | 1 | 52 | 3.9 |
| Atherinops affinis | topsmelt | 2 | 145-153 | 27.8-38.6 | 5 | 140-167 | 22.7-35.3 |
| Aulorhynchus flavidus | tubesnout |  |  |  | 1 | 96 | 1.3 |
| Chilara taylori | spotted cusk-eel | 5 | 122-270 | 42.8-76.8 | 1 | 140 | 13.0 |
| Citharichthys sordidus | Pacific sanddab | 4 | 33-43 | 1.0-5.0 |  |  |  |
| Citharichthys spp. | sanddabs | 1 | - | - | 1 | 36 | 1.2 |
| Citharichthys stigmaeus | speckled sanddab | 39 | 30-90 | 0.4-12.6 | 46 | 29-81 | 0.2-7.6 |
| Cymatogaster aggregata | shiner surfperch | 3 | 84-113 | 14.8-38.1 |  |  |  |
| Embiotoca lateralis | striped surfperch |  |  |  | 1 | 65 | 5.7 |
| Engraulis mordax | northern anchovy | 4 | 83-132 | 6.4-18.2 | 1 | 123 | 19.0 |
| Gobiesox maeandricus | northern clingfish |  |  |  | 1 | 50 | 3.3 |
| Hyperprosopon argenteum | walleye surfperch |  |  |  | 1 | 50 | 3.0 |
| Lepidogobius lepidus | bay goby | 1 | 9 | 0.8 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 41 | 58-110 | 2.7-17.8 | 14 | 53-95 | 2.3-9.4 |
| Ophidion scrippsae | basketweave cusk-eel | 1 | 200 | 5.3 |  |  |  |
| Ophiodon elongatus | lingcod | 13 | 77-103 | 3.4-8.7 | 8 | 80-110 | 3.0-11.0 |
| Orthonopias triacis | snubnose sculpin | 1 | 31 | 1.4 |  |  |  |
| Parophrys vetulus | English sole | 44 | 31-62 | 0.5-3.9 | 12 | 21-51 | 0.2-1.8 |
| Pleuronichthys coenosus | c-o turbot |  |  |  | 1 | 30 | 0.9 |
| Porichthys notatus | plainfin midshipmen | 42 | 110-231 | 13.7-138.8 | 42 | 105-225 | 14.0-142.0 |
| Scorpaenichthys marmoratus | cabezon | 1 | 39 | 1.7 |  |  |  |
| Sebastes caurinus | copper rockfish | 1 | 73 | 10.9 |  |  |  |
| Sebastes paucispinis | boccacio | 2 | 53-70 | 2.3-4.8 |  |  |  |
| Symphurus atricauda | California tonguefish |  |  |  | 2 | 86-97 | 4.7-7.7 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 3 | 145-189 | $2.6-4.0$ |
| Syngnathus spp. | pipefishes | 1 | 171 | 1.1 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 | 57 | 43.5 | 14 | 18-86 | 1.7-84.0 |
| Cancer antennarius/C. jordani | cancer crabs | 2 | 22-32 | 1.3-3.2 |  |  |  |
| Cancer anthonyi | yellow rock crab |  |  |  | 4 | 19-43 | 0.8-13.8 |
| Cancer gracilis | slender rock crab |  |  |  | 1 | 18 | 0.8 |
| Cancer jordani | hairy rock crab | 1 | 16 | 1.0 | 13 | 15-25 | 0.1-2.7 |
| Cancer magister | Dungeness crab | 3 | 11-120 | 0.3-214.3 | 6 | 8-16 | 0.1-0.6 |
| Cancer productus | red rock crab |  |  |  | 1 | 13 | 0.2 |
| Cancer spp. | cancer crabs | 1 | 12 | 0.8 | 15 | 9-30 | 0.1-4.2 |
| Loxorhynchus crispatus | moss crab |  |  |  | 2 | 14-20 | 1.9-5.6 |
| Pachygrapsus crassipes | striped shore crab |  |  |  | 2 | 14-17 | 1.1-3.0 |
| Portunus xantusii | Xantus' swimming crab |  |  |  | 5 | 22-62 | 1.2-33.5 |
| Pugettia producta | northern kelp crab | 8 | 16-25 | 2.0-7.3 | 16 | 8-50 | 0.4-62.3 |
| Pugettia richii | cryptic kelp crab | 1 | 10 | 0.2 | 4 | 7-17 | 0.2-2.0 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon franciscorum | Franciscan bay shrimp | 2 | 11-12 | 1.7-2.3 |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 352 | 7-17 | 0.3-3.4 | 215 | 6-17 | 0.2-3.7 |
| Crangon nigromaculata | spotted bay shrimp | 7 | 1-14 | 1.1-3.1 | 2 | 12-13 | 1.3 |
| Crangon spp. | bay shrimp |  |  |  | 2 | 10 | 0.6 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 7 | 0.6 |
| Hippolytidae unid. | Hippolytid shrimps | 1 | 12 | 0.7 |  |  |  |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 3 | 45-71 | 2.8-10.4 | 2 | 46-80 | 3.2-11.6 |
| Octopus spp. | octopus |  |  |  | 1 | 97 |  |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0039 | $06 / 01 / 00$ | $06 / 02 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-40. Morro Bay Power Plant Impingement Abundance Survey 40, June 8, 2000.

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0040 | $06 / 08 / 00$ | $06 / 09 / 00$ | 10 | 2 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-41. Morro Bay Power Plant Impingement Abundance Survey 41, June 15, 2000.

|  |  | Units 1 and 2* |  |  | Units 3 and 4* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 | 500 | 940.0 | 2 | 600-610 | 1010.0-1390.0 |
| Teleosts |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch |  |  |  | 1 | 36 | 15.0 |
| Apodichthys flavidus | penpoint gunnel |  |  |  | 1 | 210 | 29.9 |
| Atherinops affinis | topsmelt |  |  |  | 1 | - | - |
| Chilara taylori | spotted cusk-eel | 2 | 144-202 | 13.5-51.5 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 11 | 32-80 | 0.3-8.9 | 6 | 30-75 | 0.7-6.8 |
| Cymatogaster aggregata | shiner surfperch | 3 | 80-106 | 10.1-29.5 | 1 | 85 | 14.8 |
| Embiotoca jacksoni | black surfperch | 1 | 55 | 4.7 |  |  |  |
| Embiotoca lateralis | striped surfperch | 1 | 70 | 8.5 |  |  |  |
| Engraulis mordax | northern anchovy | 2 | 73-85 | 3.0-5.7 |  |  |  |
| Genyonemus lineatus | white croaker | 1 | 42 | 1.4 |  |  |  |
| Hyperprosopon argenteum | walleye surfperch | 1 | 48 | - |  |  |  |
| Hypsurus caryi | rainbow surfperch | 1 | 51 | 3.9 |  |  |  |
| Icichthys lockingtoni | medusa fish | 1 | 35 | 3.0 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 28 | 60-129 | 2.7-34.0 | 5 | 59-115 | 3.0-16.5 |
| Microstomus pacificus | Dover sole |  |  |  | 1 | 17 | 2.0 |
| Ophidion scrippsae | basketweave cusk-eel | 1 | 199 | 46.8 |  |  |  |
| Parophrys vetulus | English sole | 14 | 30-66 | 0.7-2.7 | 4 | 40-56 | 1.3-3.6 |
| Phanerodon furcatus | white surfperch | 2 | 40-50 | 1.9-2.1 |  |  |  |
| Porichthys notatus | plainfin midshipmen | 7 | 136-152 | 25.6-48.4 | 4 | 135-160 | 23.2-41.7 |
| Scorpaenichthys marmoratus | cabezon | 1 | 44 | 2.3 |  |  |  |
| Sebastes melanops | black rockfish | 1 | 41 | 0.7 |  |  |  |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 185 | 1.5 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 2 | 24-57 | 2.2-25.2 | 3 | 22-35 | 2.3-10.8 |
| Cancer anthonyi | yellow rock crab |  |  |  | 1 | 16 | 0.8 |
| Cancer gracilis | slender rock crab | 1 | 18 | 0.8 |  |  |  |
| Cancer jordani | hairy rock crab | 3 | 14-17 | 0.5-1.3 | 8 | 12-19 | 0.8-2.2 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 15 | 2.1 |
| Podochela hemphilli | Hemphill's kelp crab | 1 | 12 | 1.2 |  |  |  |
| Portunus xantusii | Xantus' swimming crab | 5 | 50-87 | 17.4-58.3 |  |  |  |
| Pugettia producta | northern kelp crab | 1 | 48 | 45.2 | 1 | 17 | 2.9 |
| Pugettia richii | cryptic kelp crab |  |  |  | 1 | 10 | 0.7 |
| Pugettia spp. | kelp crabs | 1 | 55 | - |  |  |  |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 37 | 3-14 | 0.2-3.1 | 16 | 8-12 | 0.8-2.6 |
| Crangon nigromaculata | spotted bay shrimp | 10 | 11-14 | 0.4-3.5 | 4 | 10-13 | 1.5-3.3 |
| Hippolytidae unid. | Hippolytid shrimps | 1 | 7 | 0.6 |  |  |  |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 16 | 38-62 | 1.1-6.6 |  |  |  |

* $\mathrm{N}=3$, Cycles 4-6 were not sampled. During sample collection, the welds on the collection basket broke.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0041 | $06 / 15 / 00$ | $06 / 16 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-42. Morro Bay Power Plant Impingement Abundance Survey 42, June 22, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 | 700 | 1135.0 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch | 1 | 59 | 6.4 |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 2 | 139-140 | 22.5-28.5 |
| Aulorhynchus flavidus | tubesnout |  |  |  | 1 | 90 | 1.0 |
| Chilara taylori | spotted cusk-eel | 1 | 243 | 56.5 |  |  |  |
| Citharichthys sordidus | Pacific sanddab | 1 | 65 | 3.6 |  |  |  |
| Citharichthys stigmaeus | speckled sanddab | 1 | 38 | 1.8 | 1 | 95 | 9.0 |
| Engraulis mordax | northern anchovy | 873 | 72-131 | $2.0-19.7$ | 6921 | 68-145 | $2.1-26.7$ |
| Hexagrammos decagrammus | kelp greenling | 1 | 69 | 5.7 |  |  |  |
| Hyperprosopon argenteum | walleye surfperch | 1 | 50 | 3.2 |  |  |  |
| Hypsoblennius gilberti | rockpool blenny | 1 | 87 | 11.4 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 65-101 | 4.8-13.1 | 2 | 81-84 | 8.2-10.0 |
| Ophiodon elongatus | lingcod | 2 | 91-92 | 5.1-6.5 |  |  |  |
| Parophrys vetulus | English sole | 25 | 54-77 | 2.8-10.7 | 1 | 80 | 4.8 |
| Phanerodon furcatus | white surfperch |  |  |  | 1 | 203 | - |
| Porichthys notatus | plainfin midshipmen | 30 | 110-192 | 16.3-89.6 | 33 | 82-190 | 9.4-70.4 |
| Sardinops sagax | Pacific sardine |  |  |  | 4 | 140-162 | 30.2-47.4 |
| Scorpaenichthys marmoratus | cabezon | 1 | 73 | 10.0 |  |  |  |
| Sebastes caurinus | copper rockfish | 1 | 35 | 0.8 |  |  |  |
| Sebastes chrysomelas | black \& yellow rockfish |  |  |  | 1 | 132 | 31.5 |
| Stellerina xyosterna | pricklebreast poacher | 1 | 78 | 3.3 |  |  |  |
| Syngnathus spp. | pipefishes | 2 | 124-165 | 1.2-3.0 | 2 | 220-242 | 2.6-6.3 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 1 | 64 | 55.3 | 11 | 14-80 | 1.2-88.0 |
| Cancer anthonyi | yellow rock crab |  |  |  | 1 | 15 | 1.1 |
| Cancer gracilis | slender rock crab |  |  |  | 2 | 17-23 | 1.1-3.8 |
| Cancer jordani | hairy rock crab | 2 | 14-24 | 1.7-4.1 | 3 | 19-24 | 2.0-3.3 |
| Cancer magister | Dungeness crab |  |  |  | 1 | 20 | 1.6 |
| Cancer spp. | cancer crabs | 2 | 18-19 | 1.9 | 2 | 10-20 | 0.4-2.1 |
| Loxorhynchus crispatus | moss crab | 1 | 120 | - | 1 | 19 | 4.0 |
| Portunus xantusii | Xantus' swimming crab | 1 | 57 | 24.3 | 5 | 50-61 | 17.1-29.3 |
| Pugettia producta | northern kelp crab | 4 | 23-51 | 6.2-96.5 | 7 | 6-25 | 1.3-7.0 |
| Pugettia richii | cryptic kelp crab |  |  |  | 4 | 7-13 | 0.6-1.5 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 13 | 12-14 | 0.6-3.8 | 3 | 11-13 | 2.3-3.0 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 2 | 12-15 | 2.3-3.3 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1825 | 27-59 | $1.1-6.8$ | 666 | 25-63 | 0.3-6.9 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 1 | 8 | 0.5 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0042 | $06 / 22 / 00$ | $06 / 23 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-43. Morro Bay Power Plant Impingement Abundance Survey 43, June 29, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 1 | 450 | 490.0 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch | 1 | 37 | 3.7 |  |  |  |
| Artedius lateralis | smoothhead sculpin | 1 | 88 | 15.3 |  |  |  |
| Aulorhynchus flavidus | tubesnout | 2 | 88-150 | 0.8-8.0 | 1 | 114 | 1.0 |
| Citharichthys stigmaeus | speckled sanddab | 6 | 36-85 | 0.8-10.9 |  |  |  |
| Cymatogaster aggregata | shiner surfperch | 2 | 102-113 | 29.5-39.5 | 4 | 68-192 | 8.1-16.5 |
| Damalichthys vacca | pile surfperch | 1 | 41 | 2.4 |  |  |  |
| Embiotoca lateralis | striped surfperch | 3 | 57-75 | 4.7-11.5 |  |  |  |
| Engraulis mordax | northern anchovy | 176 | 72-124 | $3.8-20.8$ | 8 | 90-116 | 6.8-16.1 |
| Heterostichus rostratus | giant kelpfish |  |  |  | 1 | 81 | 8.2 |
| Hyperprosopon argenteum | walleye surfperch | 1 | 53 | 3.7 | 3 | 38-50 | 1.7-2.8 |
| Hypsurus caryi | rainbow surfperch | 1 | 35 | 3.5 |  |  |  |
| Icichthys lockingtoni | medusa fish | 4 | 42-190 | 1.0-91.0 | 5 | 55-172 | 1.8-36.8 |
| Leptocottus armatus | Pacific staghorn sculpin | 5 | 68-99 | 5.8-14.3 | 5 | 82-193 | 10.1-13.3 |
| Parophrys vetulus | English sole | 2 | 56-66 | 3.5-5.0 |  |  |  |
| Peprilus simillimus | Pacific butterfish | 1 | 41 | 1.3 |  |  |  |
| Porichthys notatus | plainfin midshipmen | 3 | 135-139 | 22.4-37.5 |  |  |  |
| Scorpaenichthys marmoratus | cabezon | 4 | 42-61 | 1.9-6.5 |  |  |  |
| Sebastes chrysomelas/S. carnatus |  |  |  |  |  |  |  |
| (yoy) |  | 1 | 48 | 1.4 |  |  |  |
| Sebastes serranoides | olive rockfish | 1 | 42 | 1.3 |  |  |  |
| larval/post-larval fish, unid. | unid. larval fishes | 1* | - | - |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 25 | 16-61 | 1.4-49.7 | 14 | 23-104 | 3.8-106.6 |
| Cancer gracilis | slender rock crab | 1 | 15 | 1.0 |  |  |  |
| Cancer jordani | hairy rock crab | 8 | 14-27 | 1.4-6.0 | 2 | 21-26 | 3.1-5.5 |
| Cancer magister | Dungeness crab | 1 | 20 | 1.0 |  |  |  |
| Cancer productus | red rock crab | 1 | 43 | 11.0 | 1 | 21 | 2.0 |
| Cancer spp. | cancer crabs | 1 | 17 | 2.0 | 3 | 17-19 | 2.2-2.7 |
| Lophopanopeus spp. | black-clawed crabs | 1 | 16 | 1.9 |  |  |  |
| Loxorhynchus crispatus | moss crab |  |  |  | 3 | 11-19 | 2.2-5.6 |
| Pachygrapsus crassipes | striped shore crab | 1 | 17 | 2.9 |  |  |  |
| Portunus xantusii | Xantus' swimming crab |  |  |  | 1 | 52 | 18.3 |
| Pugettia producta | northern kelp crab | 7 | 12-45 | 1.2-40.3 | 9 | 9-33 | 0.7-14.7 |
| Pugettia richii | cryptic kelp crab |  |  |  | 3 | 11-12 | 1.2-1.9 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 6 | 11-13 | 0.6-3.2 |  |  |  |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid |  |  |  | 2 | 24-48 | 1.1-4.0 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 5 | 15-39 | 13.7-24.2 | 2 | 20-29 | 4.8-12.1 |

*Specimen was mutilated. No length nor weight was measured.
Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0043 | $06 / 29 / 00$ | $06 / 30 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-44. Morro Bay Power Plant Impingement Abundance Survey 44, July 6, 2000.

|  |  | Units 1 and 2* |  |  |  | Units 3 and $4^{* *}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Length Range (mm) | Weight Range <br> (g) |  | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  |  | 1 | 390 | 355.5 |
| Teleosts |  |  |  |  |  |  |  |  |
| Amphistichus argenteus | barred surfperch |  |  |  |  | 1 | 60 | 4.9 |
| Atherinidae unid. | silversides |  |  |  |  | 2 |  | 2.2-26.6 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  |  | 3 | 68-90 | 0.5-9.5 |
| Clinocottus spp. | sculpins |  | 1 | 52 | 3.1 |  |  |  |
| Cymatogaster aggregata | shiner surfperch |  |  |  |  | 5 | 83-111 | 13.0-27.3 |
| Embiotocidae | surfperches |  |  |  |  | 2 | 59-60 | 5.4-6.2 |
| Embiotocidae unid. (juv.) |  |  |  |  |  | 1 | - | - |
| Engraulis mordax | northern anchovy |  | 6 | 80-90 | 1.8-3.2 | 6 | 83-140 | 0.7-21.9 |
| Gobiesox maeandricus | northern clingfish |  | 1 | 40 | 1.2 |  |  |  |
| Icichthys lockingtoni | medusa fish |  |  |  |  | 1 | - | - |
| Leptocottus armatus | Pacific staghorn sculpin |  |  |  |  | 1 | 78 | 7.6 |
| Parophrys vetulus | English sole |  |  |  |  | 1 | 70 | 5.7 |
| Peprilus simillimus | Pacific butterfish |  |  |  |  | 2 | 27-29 | 0.4-0.4 |
| Porichthys notatus | plainfin midshipmen |  |  |  |  | 1 | 169 | 62.6 |
| Syngnathus spp. | pipefishes |  |  |  |  | 2 | 178-192 | 2.0-3.3 |
| Crabs |  |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab |  | 2 | 37-38 | 10.5-11.1 | 26 | 17-80 | 0.5-108.7 |
| Cancer jordani | hairy rock crab |  | 1 | 30 | 7.3 | 4 | 8-18 | 0.1-1.3 |
| Cancer magister | Dungeness crab |  |  |  |  | 2 | 26-35 | 2.4-6.0 |
| Cancer productus | red rock crab |  |  |  |  | 1 | 62 | 30.5 |
| Cancer spp. | cancer crabs |  | 5 | 10-17 | 0.6-1.4 | 15 | 13-29 | 0.2-3.2 |
| Loxorhynchus crispatus | moss crab |  |  |  |  | 4 | 7-26 | 0.8-6.2 |
| Pachygrapsus crassipes | striped shore crab |  |  |  |  | 2 | 16-21 | 0.8-3.0 |
| Portunus xantusii | Xantus' swimming crab |  | 1 | 54 | 18.5 | 8 | 47-60 | 6.4-33.5 |
| Pugettia producta | northern kelp crab |  | 2 | 11-20 | 1.9-5.5 | 11 | 10-27 | 0.5-11.3 |
| Pugettia richii | cryptic kelp crab |  | 1 | 16 | 0.9 | 8 | 6-16 | 0.5-1.3 |
| Cephalopods |  |  |  |  |  |  |  |  |
| Loligo opalescens | market squid |  | 1 | 90 | 18.0 | 1 | 46 | 3.0 |
| Octopus spp. | octopus |  |  |  |  | 1 | 90 | 304.5 |
| Sea Urchins |  |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  | 1 | 29 | 8.5 | 6 | 19-44 | 3.2-36.6 |

* $N=4$, Cycles 5-6 were not sampled. Heavy amounts of debris required continuous screen washing, so samples could not be collected.
** $\mathrm{N}=3$, Cycles 4-6 were not sampled. Heavy amounts of debris required continuous screen washing, so samples could not be collected.

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0044 | $07 / 06 / 00$ | $07 / 07 / 00$ | 6 | 20 | 0 | 0 | 24 | 24 | 24 | 24 |

Table H1-45. Morro Bay Power Plant Impingement Abundance Survey 45, July 13, 2000.

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0045 | $07 / 13 / 00$ | $07 / 14 / 00$ | 24 | 24 | 24 | 24 | 24 | 23 | 24 | 24 |

Table H1-46. Morro Bay Power Plant Impingement Abundance Survey 46, July 20, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 2 | 54-78 | 1.3-4.3 | 2 | 88-91 | 5.6-6.4 |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | 52 | 1.8 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 2 | 62-71 | 3.5-5.7 |
| Cymatogaster aggregata | shiner surfperch | 1 | 67 | 9.2 | 2 | 100-102 | 22.2-34.9 |
| Engraulis mordax | northern anchovy |  |  |  | 6 | 12-130 | 20.2-23.1 |
| Hyperprosopon argenteum | walleye surfperch |  |  |  | 1 | 47 | 2.4 |
| Parophrys vetulus | English sole | 2 | 71-80 | 5.6-6.9 | 2 | 71-71 | 6.4-7.7 |
| Sardinops sagax | Pacific sardine |  |  |  | 5 | 164-203 | 55.2-107.7 |
| Scomber japonicus | Pacific mackerel | 1 | - | - |  |  |  |
| Scorpaenichthys marmoratus | cabezon | 1 | 80 | 13.4 |  |  |  |
| Sebastes rastrelliger | grass rockfish |  |  |  | 1 | 192 | 167.6 |
| Sebastes spp. | rockfishes |  |  |  | 1 | 58 | 4.6 |
| Syngnathus leptorhynchus | bay pipefish |  |  |  | 1 | 182 | 1.1 |
| Syngnathus spp. | pipefishes | 1 | 190 | 2.8 |  |  |  |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 3 | 29-70 | 7.6-70.4 | 11 | 19-59 | 1.3-50.0 |
| Cancer antennarius/C. jordani | cancer crabs | 9 | 20-24 | 0.3-3.4 | 6 | 15-69 | 0.8-72.7 |
| Cancer anthonyi | yellow rock crab | 2 | 52-64 | 22.7-40.4 |  |  |  |
| Cancer gracilis | slender rock crab | 1 | 31 | 5.1 |  |  |  |
| Cancer jordani | hairy rock crab | 7 | 20-23 | 2.5-4.1 | 9 | 8-27 | 1.0-4.1 |
| Cancer magister/gracilis | cancer crabs |  |  |  | 2 | 12-19 | 0.6-2.0 |
| Cancer spp. | cancer crabs | 11 | 12-25 | 0.7-5.5 | 10 | 9-72 | 0.5-3.2 |
| Loxorhynchus crispatus | moss crab |  |  |  | 3 | 10-14 | 0.9-1.6 |
| Pachycheles spp. | porcelain crabs |  |  |  | 1 | 14 | 2.3 |
| Pachygrapsus crassipes | striped shore crab | 1 | 10 | 0.8 | 2 | 16-17 | 1.6-2.8 |
| Portunus xantusii | Xantus' swimming crab | 2 | 52-55 | 11.8-23.1 | 6 | 50-54 | 13.1-19.9 |
| Pugettia producta | northern kelp crab | 13 | 12-50 | 0.6-49.3 | 5 | 7-29 | 0.3-12.4 |
| Pugettia richii | cryptic kelp crab | 1 | 14 | 0.5 | 8 | 9-31 | 0.5-21.4 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 5 | 1-15 | 0.8-3.8 | 2 | 10-14 | 2.2-2.8 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 3 | 9-13 | 1.1-3.3 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 6 | 1.2 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 51 | 4.9 | 1 | 59 | 7.2 |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 1 | 35 | 18.5 | 2 | 5-7 | 0.5-3.7 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0046 | $07 / 20 / 00$ | $07 / 21 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 |  |

Table H1-47. Morro Bay Power Plant Impingement Abundance Survey 47, July 27, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) |  | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 512 | 818.3 |
| Teleosts |  |  |  |  |  |  |  |
| Artedius spp. | sculpins | 2 | 47-58 | 2.1-3.6 |  |  |  |
| Atherinops affinis | topsmelt | 3 | 90-115 | 7.9-18.3 | 2 | 95-96 | 7.5-8.5 |
| Chilara taylori | spotted cusk-eel | 2 | 130-212 | 9.8-61.1 | 1 | 184 | 36.1 |
| Citharichthys stigmaeus | speckled sanddab | 10 | 43-82 | 1.7-9.6 | 4 | 42-88 | 1.2-12.7 |
| Cymatogaster aggregata | shiner surfperch | 2 | 46-63 | 2.8-5.8 | 1 | 44 | 2.3 |
| Engraulis mordax | northern anchovy | 1 | 135 | 22.1 | 6 | 65-140 | 2.5-23.4 |
| Gibbonsia spp. | clinid kelpfishes | 1 | 90 | 6.1 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 11 | 78-100 | 8.2-16.0 | 5 | 83-92 | 9.5-13.2 |
| Parophrys vetulus | English sole |  |  |  | 1 | 35 | 0.6 |
| Peprilus simillimus | Pacific butterfish | 1 | 37 | 1.0 |  |  |  |
| Phanerodon furcatus | white surfperch | 1 | 54 | 3.3 |  |  |  |
| Sardinops sagax | Pacific sardine | 1 | 190 | 88.6 | 5 | 170-205 | 57.6-108.8 |
| Scorpaenichthys marmoratus | cabezon | 2 | 53-60 | 2.5-4.0 | 1 | 42 | 2.3 |
| Sebastes spp. | rockfishes | 1 | 43 | 2.1 | 1 | 61 | 5.0 |
| Sebastes spp. (juv.) | rockfishes | 1 | 48 | 2.7 |  |  |  |
| Syngnathus leptorhynchus | bay pipefish | 1 | 184 | 1.5 |  |  |  |
| Syngnathus spp. | pipefishes | 2 | 110-197 | 2.1-3.2 | 3 | 131-203 | 0.5-2.4 |
| Ulvicola sanctaerosae | kelp gunnel | 1 | 90 | 2.2 |  |  |  |
| Xererpes fucorum | rockweed gunnel |  |  |  | 1 | 110 | 9.8 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 10 | 21-101 | 1.6-290.3 | 9 | 21-43 | 1.8-27.9 |
| Cancer antennarius/C. jordani | cancer crabs | 5 | 15-21 | 1.5-2.4 | 3 | 15-17 | 0.6-1.1 |
| Cancer anthonyi | yellow rock crab | 3 | 22-28 | 3.1-4.3 | 3 | 17-23 | 0.5-3.0 |
| Cancer gracilis | slender rock crab | 10 | 16-40 | 1.7-10.6 | 6 | 20-34 | 1.6-5.7 |
| Cancer jordani | hairy rock crab | 16 | 14-28 | 1.5-6.9 | 4 | 15-19 | 0.8-1.1 |
| Cancer magister | Dungeness crab | 1 | 28 | 4.0 |  |  |  |
| Cancer magister/gracilis | cancer crabs | 1 | 13 | 0.5 | 4 | 16-25 | 1.0-2.8 |
| Cancer productus | red rock crab | 1 | 57 | 13.8 | 2 | 30-34 | 3.3-5.0 |
| Cancer spp. | cancer crabs | 36 | 10-23 | 0.1-3.8 | 23 | 10-19 | 0.3-2.0 |
| Hemigrapsus nudus | purple shore crab |  |  |  | 1 | 14 | 0.8 |
| Lophopanopeus leucomanus |  |  |  |  | 1 | 16 | 2.1 |
| Lophopanopeus spp. | black-clawed crabs | 1 | 18 | 2.8 | 1 | 25 | 8.5 |
| Loxorhynchus crispatus | moss crab |  |  |  | 1 | 23 | 7.5 |
| Portunus xantusii | Xantus' swimming crab |  |  |  | 5 | 16-58 | 13.8-24.7 |
| Pugettia producta | northern kelp crab | 8 | 11-45 | 0.5-35.5 | 12 | 6-48 | 0.2-54.6 |
| Pugettia richii | cryptic kelp crab | 4 | 11-15 | 0.6-2.2 | 4 | 12-15 | 0.9-2.1 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 7 | 10-14 | 1.4-3.7 | 7 | 9-15 | 0.7-3.6 |
| Crangon nigromaculata | spotted bay shrimp | 2 | 12-15 | 1.8-3.4 | 4 | 12-15 | 1.4-3.3 |
| Heptacarpus spp. | tidepool shrimps |  |  |  | 1 | 7 | 0.3 |
| Pandalus spp. | unidentified shrimp | 1 | 14 | 2.0 | 1 | 12 | 0.5 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 28 | 0.3 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin |  |  |  | 4 | 6-12 | 0.1-0.4 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0047 | $07 / 27 / 00$ | $07 / 28 / 00$ | 23 | 23 | 24 | 24 | 23 | 23 | 24 | 24 |

Table H1-48. Morro Bay Power Plant Impingement Abundance Survey 48, August 3, 2000.

Survey canceled owing to maintenance activities.
Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0048 | $08 / 03 / 00$ |  | 24 | 24 | 24 | 24 | 24 | 24 | 23 | 24 |

Table H1-49. Morro Bay Power Plant Impingement Abundance Survey 49, August 10, 2000.


Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0049 | $08 / 10 / 00$ | $08 / 11 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-50. Morro Bay Power Plant Impingement Abundance Survey 50, August 17, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback | 2 | 390-451 | 421.4-480.3 | 1 | 440 | 508.0 |
| Teleosts |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin | 1 | 94 | 16.9 |  |  |  |
| Atherinops affinis | topsmelt |  |  |  | 1 | 100 | 6.9 |
| Citharichthys stigmaeus | speckled sanddab | 1 | 70 | 7.2 |  |  |  |
| Leptocottus armatus | Pacific staghorn sculpin | 2 | 87-95 | 9.0-13.8 | 1 | 43 | 3.0 |
| Oligocottus snyderi | fluffy sculpin | 1 | 62 | 5.7 | 1 | 62 | 5.0 |
| Parophrys vetulus | English sole | 1 | 78 | 8.7 | 1 | 111 | 19.3 |
| Phanerodon furcatus | white surfperch | 1 | 110 | 15.0 |  |  |  |
| Sardinops sagax | Pacific sardine |  |  |  | 1 | 187 | 74.6 |
| Symphurus atricauda | California tonguefish |  |  |  | 1 | 92 | 7.5 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 20 | 16-76 | 1.2-89.8 | 4 | 16-48 | 1.2-21.1 |
| Cancer anthonyi | yellow rock crab | 1 | 82 | 68.6 |  |  |  |
| Cancer gracilis | slender rock crab | 2 | 23-32 | 2.2-6.0 |  |  |  |
| Cancer jordani | hairy rock crab | 8 | 16-39 | 1.0-14.7 | 10 | 11-25 | 0.5-3.3 |
| Cancer productus | red rock crab | 3 | 110-133 | 173.3-234.7 |  |  |  |
| Cancer spp. | cancer crabs | 3 | 10-21 | 1.0-2.4 | 3 | 13-13 | 0.5 |
| Portunus xantusii | Xantus' swimming crab | 2 | 46-49 | 11.0-16.7 |  |  |  |
| Pugettia producta | northern kelp crab | 8 | 9-44 | 0.8-34.4 | 4 | 7-18 | 0.5-2.5 |
| Pugettia richii | cryptic kelp crab | 1 | 18 | 2.6 | 2 | 11-23 | 0.1-6.6 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 3 | 10-33 | 1.0-3.9 |  |  |  |
| Hippolytidae unid. | Hippolytid shrimps | 1 | 7 | 1.0 |  |  |  |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 73 | 11.4 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 3 | 7-8 | 0.1-0.3 | 1 | 9 | 0.5 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0050 | $08 / 17 / 00$ | $08 / 18 / 00$ | 24 | 24 | 24 | 24 | 19 | 24 | 24 | 24 |

Table H1-51. Morro Bay Power Plant Impingement Abundance Survey 51, August 24, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Torpedo californica | Pacific electric ray | 1 | 223 | 192.8 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 1 | 91 | 6.4 | 1 | 128 | 16.0 |
| Chilara taylori | spotted cusk-eel | 1 | 195 | 46.3 |  |  |  |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | 80 | 9.0 |
| Citharichthys spp. | sanddabs |  |  |  | 1 | 32 | 0.6 |
| Citharichthys stigmaeus | speckled sanddab | 2 | 38-81 | 0.4-7.8 | 1 | 82 | 9.9 |
| Cymatogaster aggregata | shiner surfperch | 1 | 45 | 2.6 | 2 | 45 | 3.2 |
| Engraulis mordax | northern anchovy | 3 | 47-135 | 22.0-26.2 | 14 | 55-145 | 1.0-25.5 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 93 | 12.0 | 2 | 93-108 | 12.0-17.0 |
| Sardinops sagax | Pacific sardine |  |  |  | 1 | 195 | 85.6 |
| Scorpaenichthys marmoratus | cabezon | 1 | - | 15.0 |  |  |  |
| Sebastes atrovirens | kelp rockfish | 1 | 59 | 2.0 |  |  |  |
| Syngnathus spp. | pipefishes | 2 | 165-168 | 0.6-2.0 | 2 | 197-210 | 2.0-6.1 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 31 | 21-77 | 2.0-104.0 | 11 | 19-74 | 1.0-86.0 |
| Cancer antennarius/C. jordani | cancer crabs |  |  |  | 1 | 16 | 1.0 |
| Cancer anthonyi | yellow rock crab | 1 | 49 | 13.5 | 1 | 34 | 5.8 |
| Cancer gracilis | slender rock crab | 1 | 31 | 5.4 | 4 | 10-41 | 0.3-10.0 |
| Cancer jordani | hairy rock crab | 5 | 20-33 | 1.5-8.5 | 10 | 12-22 | 0.6-3.0 |
| Cancer productus | red rock crab | 1 | 56 | 18.0 |  |  |  |
| Cancer spp. | cancer crabs |  |  |  | 2 | 11 | 0.9-1.1 |
| Loxorhynchus crispatus | moss crab |  |  |  | 2 | 9-11 | 0.1-3.0 |
| Pachygrapsus crassipes | striped shore crab | 1 | 37 | 22.5 |  |  |  |
| Portunus xantusii | Xantus' swimming crab | 5 | 49-57 | 13.4-22.0 | 3 | 52-54 | 15.0-16.8 |
| Pugettia producta | northern kelp crab | 8 | 15-55 | 1.7-95.5 | 7 | 5-31 | 0.1-13.2 |
| Pugettia richii | cryptic kelp crab |  |  |  | 2 | 6-12 | 0.1-0.7 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 2 | 12 | 1.0 |  |  |  |
| Pandalus platyceros | spot shrimp | 1 | 38 | 4.0 |  |  |  |
| Pandalus spp. | unidentified shrimp | 1 | 20 | 0.2 | 2 | 16 | 2.7 |
| Cephalopods |  |  |  |  |  |  |  |
| Octopus spp. | octopus |  |  |  | 1 | 16 | - |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 7 | 0.5-1.0 | 5 | 8-17 | 0.1-1.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0051 | $08 / 24 / 00$ | $08 / 25 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-52. Morro Bay Power Plant Impingement Abundance Survey 52, August 31, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range <br> (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Hydrolagus colliei | ratfish | 1 | 524 | 591.0 |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  | 1 | 370 | 368.0 |
| Torpedo californica | Pacific electric ray | 1 | 240 | 180.0 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Atherinops affinis | topsmelt | 1 | 66 | 2.4 | 1 | 82 | 3.9 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 1 | 82 | 7.8 |
| Cymatogaster aggregata | shiner surfperch | 2 | 52-59 | 2.9-3.5 | 1 | 53 | 3.0 |
| Engraulis mordax | northern anchovy | 1 | - | - | 1 | 130 | 21.0 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 90 | 10.8 |  |  |  |
| Osmeridae unid. | smelts |  |  |  | 1 | 61 | 2.0 |
| Porichthys notatus | plainfin midshipmen | 1 | 270 | 213.0 |  |  |  |
| Sardinops sagax | Pacific sardine |  |  |  | 6 | 184-192 | 60.0-82.0 |
| Synchirus gilli | manacled sculpin | 1 | 96 | 8.5 |  |  |  |
| Syngnathus leptorhynchus | bay pipefish | 1 | 220 | 5.4 | 1 | 315 | 6.0 |
| Syngnathus spp. | pipefishes |  |  |  | 1 | 173 | 2.1 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 19 | 16-55 | 1.0-43.2 | 10 | 12-56 | 0.1-55.2 |
| Cancer antennarius/C. jordani | cancer crabs | 1 | 13 | 0.8 | 1 | 19 | 2.0 |
| Cancer anthonyi | yellow rock crab |  |  |  | 1 | 18 | 1.3 |
| Cancer gracilis | slender rock crab |  |  |  | 1 | 18 | 0.2 |
| Cancer jordani | hairy rock crab | 5 | 13-44 | 0.4-11.0 | 4 | 20-22 | 2.5-3.6 |
| Loxorhynchus crispatus | moss crab | 1 | 13 | 1.1 | 2 | 10-19 | 2.6-5.9 |
| Portunus xantusii | Xantus' swimming crab |  |  |  | 1 | 46 | 10.0 |
| Pugettia producta | northern kelp crab | 8 | 11-58 | 0.9-40.0 | 9 | 7-45 | 0.1-32.3 |
| Pugettia richii | cryptic kelp crab |  |  |  | 2 | 6-8 | 0.1-0.4 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp | 4 | 9-13 | 0.9-2.2 | 1 | 14 | 2.0 |
| Cephalopods |  |  |  |  |  |  |  |
| Loligo opalescens | market squid | 1 | 42 | 2.8 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 1 | 10 | 0.1 | 4 | 6-35 | 0.1-20.0 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0052 | $08 / 31 / 00$ | $09 / 01 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H1-53. Morro Bay Power Plant Impingement Abundance Survey 53, September 7, 2000.

|  |  | Units 1 and 2 |  |  | Units 3 and 4 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Count | Length Range (mm) | Weight Range <br> (g) | Count | Length Range (mm) | Weight Range (g) |
| Elasmobranchs |  |  |  |  |  |  |  |
| Platyrhinoidis triseriata | thornback |  |  |  | 10 | 90-590 | 4.5-1473.5 |
| Torpedo californica | Pacific electric ray | 1 | 180 | 120.0 |  |  |  |
| Teleosts |  |  |  |  |  |  |  |
| Artedius lateralis | smoothhead sculpin | 1 | 80 | 8.6 |  |  |  |
| Artedius spp. | sculpins | 1 | 63 | 10.0 |  |  |  |
| Atherinops affinis | topsmelt | 2 | 80-109 | 7.1-10.2 | 1 | 41 | 3.7 |
| Brachyistius frenatus | kelp surfperch |  |  |  | 1 | 85 | 12.0 |
| Citharichthys sordidus | Pacific sanddab |  |  |  | 1 | - | 4.9 |
| Citharichthys stigmaeus | speckled sanddab |  |  |  | 2 | 44-67 | 4.2-5.0 |
| Cymatogaster aggregata | shiner surfperch | 1 | 54 | - |  |  |  |
| Engraulis mordax | northern anchovy |  |  |  | 1 | 57 | 2.4 |
| Leptocottus armatus | Pacific staghorn sculpin | 1 | 107 | 22.6 |  |  |  |
| Osmeridae unid. | smelts |  |  |  | 1 | 51 | 1.0 |
| Porichthys notatus | plainfin midshipmen | 1 | 246 | 150.0 |  |  |  |
| Sardinops sagax | Pacific sardine |  |  |  | 6 | 163-190 | 54.5-77.5 |
| Scorpaenichthys marmoratus | cabezon | 2 | 67-370 | 10.2-996.0 |  |  |  |
| Syngnathus spp. | pipefishes | 1 | 12 | 3.3 | 1 | 230 | 3.9 |
| Crabs |  |  |  |  |  |  |  |
| Cancer antennarius | brown rock crab | 27 | 14-92 | 3.2-161.0 | 3 | 13-58 | 0.9-17.3 |
| Cancer gracilis | slender rock crab | 1 | 12 | 0.1 |  |  |  |
| Cancer jordani | hairy rock crab | 5 | 11-23 | 0.5-3.5 | 4 | 12-21 | 0.5-3.4 |
| Loxorhynchus crispatus | moss crab |  |  |  | 4 | 9-53 | 3.0-99.5 |
| Pachygrapsus crassipes | striped shore crab | 1 | 11 | 2.9 | 1 | 12 | 1.0 |
| Portunus xantusii | Xantus' swimming crab | 1 | 51 | 15.0 | 3 | 53-57 | 19.0-24.8 |
| Pugettia producta | northern kelp crab | 3 | 14-32 | 2.0-11.5 | 4 | 9-37 | 0.2-24.9 |
| Pugettia richii | cryptic kelp crab | 1 | 6 | - | 4 | 6-13 | 0.2-3.3 |
| Shrimps |  |  |  |  |  |  |  |
| Crangon nigricauda | black-tailed bay shrimp |  |  |  | 1 | 8 | 1.0 |
| Crangon nigromaculata | spotted bay shrimp |  |  |  | 1 | 17 | 4.5 |
| Crangon spp. | bay shrimp |  |  |  | 1 | - | 2.3 |
| Pandalus spp. | unidentified shrimp | 1 | 9 | 1.0 |  |  |  |
| Sea Urchins |  |  |  |  |  |  |  |
| Strongylocentrotus purpuratus | purple sea urchin | 2 | 11-12 | 0.8 | 5 | 8-22 | 0.1-5.7 |

Pump operating status (hours of operation during 24-hour sampling period):

| Survey | Start | End | Unit 1 | Unit 1 | Unit 2 | Unit 2 | Unit 3 | Unit 3 | Unit 4 | Unit 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Date | Date | Pump 1 | Pump 2 | Pump 3 | Pump 4 | Pump 5 | Pump 6 | Pump 7 | Pump 8 |
| MBIAS0053 | $09 / 07 / 00$ | $09 / 08 / 00$ | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |

Table H2-1. Estimates of the weekly numbers and biomass of northern anchovy Engraulis mordax impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey |  | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 13 | 117.2 | 0.96 | 8.49 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 6 | 73.4 | 0.38 | 4.37 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 28 | 196.6 | 1.62 | 11.48 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 26.2 | 0.42 | 1.75 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 27 | 319.6 | 1.59 | 18.88 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 79.4 | 0.79 | 4.68 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 0 | 0.0 | 0.00 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 107.6 | 0.50 | 9.62 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 81 | * | 4.72 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 0 | 0.0 | 0.00 | 0.00 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 11 | * | 1.31 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 6 | * | 0.65 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Apr-00 | 9-Apr-00 | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 14 | 9.2 | 2.62 | 1.70 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 0 | 0.0 | 0.00 | 0.00 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 34 | 420.7 | 1.97 | 24.38 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 8 | 128.3 | 0.49 | 7.82 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 19 | 83.7 | 1.09 | 4.75 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 51,212 | 413718.0 | 2934.11 | 23703.38 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 2,303 | 14685.1 | 130.41 | 831.55 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 92 | 469.7 | 6.68 | 34.15 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 37 | 412.4 | 2.25 | 24.94 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 68 | 1013.4 | 2.72 | 40.70 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 12.0 | 0.40 | 0.44 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 155 | 2291.1 | 8.86 | 131.09 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 13 | 137.9 | 0.79 | 8.29 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 6 | 15.4 | 0.38 | 0.92 |
|  |  | Totals: | 54,170 | 434,317 |  |  |

[^12]Table H2-2. Estimates of the weekly numbers and biomass topsmelt Atherinops affinis impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 7 | 116.5 | 0.48 | 8.45 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 14 | 57.7 | 0.81 | 3.37 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 7 | 251.1 | 0.40 | 14.42 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 7 | 35.6 | 0.40 | 2.10 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 13 | 33.3 | 0.80 | 2.01 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 6 | 38.8 | 0.50 | 3.01 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 7 | * | 0.41 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 7 | 14.7 | 0.40 | 0.83 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 7 | 44.4 | 0.39 | 2.65 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 3,728 | 132183.7 | 313.49 | 11114.75 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 5 | 135.5 | 0.66 | 16.81 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 12 | 34.1 | 1.31 | 3.60 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Apr-00 | $9-A p r-00$ | 13,993,977 | 6 | 137.9 | 0.43 | 9.86 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 4 | 122.3 | 1.07 | 29.51 |
| 1-May-00 | 7-May-00 | 9,774,471 | 5 | 172.4 | 0.55 | 17.64 |
| 8-May-00 | 14-May-00 | 5,421,440 | 7 | 218.1 | 1.31 | 40.23 |
| 15-May-00 | 21-May-00 | 10,171,036 | 22 | 404.6 | 2.18 | 39.78 |
| 22-May-00 | 28-May-00 | 16,869,355 | 33 | 518.1 | 1.96 | 30.71 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 48 | 1448.7 | 2.76 | 83.94 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 0 | 0.0 | 0.00 | 0.00 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 10 | * | 0.55 | 0.00 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 13 | 335.1 | 0.75 | 19.20 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 13 | 101.4 | 0.79 | 6.01 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 25 | 101.2 | 1.50 | 6.12 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 48 | 556.2 | 1.94 | 22.34 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 13.1 | 0.40 | 0.48 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 7 | 49.4 | 0.41 | 2.84 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 18 | 204.0 | 1.04 | 11.67 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 13 | 41.4 | 0.79 | 2.49 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 19 | 135.1 | 1.15 | 8.03 |
|  |  | Totals: | 4,124 | 137504.3 |  |  |

[^13]Table H2-3. Estimates of the weekly numbers and biomass plainfin midshipman Porichthys notatus impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | Impingement Rate $\left(\# / 10^{6} \mathrm{~m}^{3}\right)$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 13 | 16.7 | 0.77 | 1.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 96.6 | 0.42 | 6.47 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 7 | * | 0.40 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 6 | 7.1 | 0.50 | 0.55 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 7 | 7.3 | 0.52 | 0.52 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 12 | 121.5 | 1.02 | 10.36 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 5 | 5.8 | 0.48 | 0.53 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 8 | 4.0 | 0.46 | 0.23 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 0 | 0.0 | 0.00 | 0.00 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 7 | 14.0 | 0.40 | 0.79 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 7 | 212.5 | 0.66 | 20.72 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Apr-00 | 9-Apr-00 | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 11 | 1245.6 | 1.10 | 127.43 |
| 8-May-00 | 14-May-00 | 5,421,440 | 64 | 2426.1 | 11.79 | 447.50 |
| 15-May-00 | 21-May-00 | 10,171,036 | 44 | 2420.9 | 4.37 | 238.02 |
| 22-May-00 | 28-May-00 | 16,869,355 | 937 | 38027.7 | 55.56 | 2254.25 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 572 | 22896.8 | 33.14 | 1326.77 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 1,646 | 62684.3 | 100.31 | 3820.28 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 106 | 3488.3 | 6.01 | 197.94 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 414 | 14558.6 | 23.72 | 834.12 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 38 | 1162.8 | 2.13 | 65.84 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 8 | 479.3 | 0.56 | 34.85 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 13 | 325.4 | 0.79 | 19.30 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 7 | 1398.5 | 0.39 | 84.04 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 6 | 965.3 | 0.38 | 57.39 |
|  |  | Totals: | 3,944 | 152565.1 |  |  |

[^14]Table H2-4. Estimates of the weekly numbers and biomass speckled sanddab Citharichthys stigmaeus impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 22 | 168.3 | 1.32 | 9.95 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 27 | 235.0 | 1.59 | 13.89 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 7 | 81.2 | 0.40 | 4.74 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 33 | 186.0 | 2.01 | 11.20 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 44 | 400.9 | 3.97 | 35.84 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 13 | 43.3 | 1.00 | 3.36 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 16 | 15.2 | 1.31 | 1.25 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 7 | 36.6 | 0.52 | 2.58 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 54 | 385.5 | 4.59 | 32.86 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 10 | 54.9 | 0.97 | 5.09 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 26 | 155.7 | 1.97 | 11.94 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 24 | 122.7 | 1.39 | 7.08 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 7 | 3.4 | 0.39 | 0.20 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 21 | 29.3 | 1.19 | 1.66 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 42 | 55.4 | 2.37 | 3.13 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 123 | 489.5 | 10.35 | 41.16 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 5 | 4.8 | 0.66 | 0.59 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 28 | 29.2 | 1.76 | 1.82 |
| 3-Apr-00 | $9-A p r-00$ | 13,993,977 | 24 | 36.4 | 1.71 | 2.60 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 4 | 2.7 | 1.07 | 0.64 |
| 1-May-00 | 7-May-00 | 9,774,471 | 65 | 244.6 | 6.61 | 25.02 |
| 8-May-00 | 14-May-00 | 5,421,440 | 107 | 125.0 | 19.66 | 23.06 |
| 15-May-00 | 21-May-00 | 10,171,036 | 255 | 427.3 | 25.10 | 42.02 |
| 22-May-00 | 28-May-00 | 16,869,355 | 238 | 489.1 | 14.09 | 28.99 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 579 | 1483.8 | 33.53 | 85.98 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 40 | 100.0 | 2.46 | 6.10 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 164 | 531.3 | 9.29 | 30.15 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 13 | 71.0 | 0.75 | 4.07 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 75 | 297.9 | 4.25 | 16.87 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 23 | 119.4 | 1.67 | 8.68 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 47 | 136.7 | 2.77 | 8.11 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 12 | 57.1 | 0.75 | 3.46 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 135 | 681.0 | 5.44 | 27.35 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 7 | 51.6 | 0.41 | 2.97 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 27 | 164.8 | 1.56 | 9.43 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 7 | 51.2 | 0.39 | 3.08 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 13 | 59.2 | 0.77 | 3.52 |
|  |  | Totals: | 2,345 | 7627.0 |  |  |

Table H2-5. Estimates of the weekly numbers and biomass Pacific sardine Sardinops sagax impinged at the MBPP September 6, 1999 through September 10, 2000

| Survey <br> Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 13 | 468.7 | 0.96 | 33.97 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 6 | 130.7 | 0.38 | 7.77 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 7 | 227.1 | 0.44 | 13.43 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 41 | 1820.6 | 2.38 | 104.53 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 20 | 987.8 | 1.19 | 58.36 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 287.8 | 0.79 | 16.97 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 27 | 1422.0 | 1.61 | 85.66 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 11 | 467.4 | 0.99 | 41.79 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 13 | 840.3 | 1.00 | 65.25 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 8 | 653.7 | 0.46 | 37.72 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 0 | 0.0 | 0.00 | 0.00 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 7 | 446.9 | 0.39 | 26.70 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Apr-00 | $9-\mathrm{Apr}-00$ | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 0 | 0.0 | 0.00 | 0.00 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 0 | 0.0 | 0.00 | 0.00 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 0 | 0.0 | 0.00 | 0.00 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 26 | 958.0 | 1.51 | 54.89 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Jul-00 | $9-\mathrm{Jul} 00$ | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 31 | 2510.5 | 1.88 | 151.82 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 58 | 4888.5 | 2.33 | 196.34 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 44 | 3270.7 | 1.59 | 119.63 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 7 | 534.6 | 0.41 | 30.74 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 9 | 779.5 | 0.52 | 44.60 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 39 | 2281.6 | 2.37 | 137.11 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 39 | 1395.8 | 2.30 | 82.98 |
|  |  | Totals: | 421 | 24372.4 |  |  |

Table H2-6. Estimates of the weekly numbers and biomass cabezon Scorpaenichthys marmoratus impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 20 | 341.6 | 1.44 | 24.76 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 7 | 833.8 | 0.41 | 48.66 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 15 | 276.3 | 0.88 | 16.33 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 12 | 1150.7 | 0.84 | 77.12 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 860.8 | 0.79 | 50.75 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 7 | 328.7 | 0.40 | 19.80 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 200.1 | 0.50 | 17.90 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 8 | 918.6 | 0.66 | 75.53 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 7 | 192.6 | 0.52 | 13.59 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 5 | 170.4 | 0.48 | 15.80 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 1271.4 | 0.93 | 73.37 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 14 | 614.4 | 0.79 | 35.65 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 7 | 471.3 | 0.40 | 26.69 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 7 | 524.7 | 0.40 | 29.67 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 7 | * | 0.40 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 18 | 694.6 | 1.48 | 58.41 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-A p r-00$ | 9-Apr-00 | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 11 | 1365.2 | 1.10 | 139.67 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 0 | 0.0 | 0.00 | 0.00 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 7 | 11.6 | 0.39 | 0.67 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 8 | 6269.2 | 0.49 | 382.07 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 10 | 22.1 | 0.55 | 1.26 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 7 | 65.7 | 0.38 | 3.76 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 50 | 190.3 | 2.84 | 10.77 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 20 | 97.4 | 1.19 | 5.77 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 6 | 83.2 | 0.38 | 5.03 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 29 | 85.1 | 1.17 | 3.42 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 46.8 | 0.40 | 1.71 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 9 | 136.6 | 0.52 | 7.82 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 13 | 6475.3 | 0.77 | 384.96 |
|  |  | Totals: | 349 | 23698.5 |  |  |

[^15]Table H2-7. Estimates of the weekly numbers and biomass rockfishes Scorpaenidae impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate <br> $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 26 | 791.8 | 1.92 | 57.39 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 13 | 106.2 | 0.77 | 6.32 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 7 | 2292.9 | 0.41 | 133.82 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 7 | 14.9 | 0.44 | 0.88 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 0.0 | 0.42 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 7 | 492.2 | 0.40 | 29.08 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 27 | 43.0 | 1.59 | 2.54 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 20 | 281.2 | 1.20 | 16.43 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 20 | 350.0 | 1.20 | 21.08 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 39 | 481.6 | 3.01 | 37.39 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 40 | 500.0 | 3.28 | 41.11 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 22 | 284.1 | 1.55 | 20.04 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 6 | 58.1 | 0.51 | 4.95 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 6 | 495.4 | 0.49 | 37.99 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 341.7 | 0.93 | 19.72 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 0 | 0.0 | 0.00 | 0.00 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 12 | 225.7 | 0.99 | 18.98 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 6 | 136.4 | 0.65 | 14.39 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-\mathrm{Apr}-00$ | 9-Apr-00 | 13,993,977 | 6 | 75.8 | 0.43 | 5.42 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 4 | 630.6 | 1.07 | 152.13 |
| 1-May-00 | 7-May-00 | 9,774,471 | 5 | 0.0 | 0.55 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 7 | 6.6 | 0.39 | 0.39 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 20 | 122.5 | 1.18 | 7.10 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 8 | 227.5 | 0.49 | 13.87 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 10 | 6.7 | 0.55 | 0.38 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 13 | 212.2 | 0.75 | 12.16 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 25 | 33.8 | 1.42 | 1.91 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 7 | 4.0 | 0.40 | 0.24 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 12 | 1069.5 | 0.75 | 64.68 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 29 | 94.8 | 1.17 | 3.81 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 81.6 | 0.40 | 2.98 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 9 | 18.2 | 0.52 | 1.04 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 0 | 0.0 | 0.00 | 0.00 |
|  |  | Totals: | 448 | 9479.1 |  |  |

Table H2-8. Estimates of the weekly numbers and biomass market squid Loligo opalescens impinged at the MBPP September 6, 1999 through September 10, 2000

| Survey <br> Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 13 | 68.2 | 0.96 | 4.94 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 7 | 282.7 | 0.40 | 16.70 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 0 | 0.0 | 0.00 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 6 | 86.0 | 0.50 | 6.68 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 0 | 0.0 | 0.00 | 0.00 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 13 | 92.8 | 0.78 | 5.54 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-A p r-00$ | $9-A p r-00$ | 13,993,977 | 12 | 50.2 | 0.85 | 3.58 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 7 | 130.7 | 0.39 | 7.75 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 34 | 213.8 | 1.97 | 12.39 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 113 | 448.6 | 6.88 | 27.34 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 154 | 450.5 | 8.74 | 25.56 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 16,368 | 35789.6 | 937.76 | 2050.51 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 25 | 63.8 | 1.42 | 3.61 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 15 | 160.8 | 1.11 | 11.69 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 12 | 75.2 | 0.75 | 4.54 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 10 | * | 0.39 | 0.00 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 23.9 | 0.40 | 0.88 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 7 | 81.7 | 0.41 | 4.70 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 7 | 18.4 | 0.39 | 1.10 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 0 | 0.0 | 0.00 | 0.00 |
|  |  | Totals: | 16,814 | 38036.7 |  |  |

[^16]Table H2-9. Estimates of the weekly numbers and biomass black-tailed bay shrimp Crangon nigricauda impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 13 | 38.6 | 0.77 | 2.30 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 7 | 7.4 | 0.44 | 0.44 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 3.7 | 0.42 | 0.25 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 12.1 | 0.79 | 0.71 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 0 | 0.0 | 0.00 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 6.7 | 0.50 | 0.59 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 8 | 25.5 | 0.66 | 2.10 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 22 | 29.3 | 1.55 | 2.07 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 60 | 111.7 | 5.10 | 9.52 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 5 | 1.0 | 0.48 | 0.10 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 39 | 56.6 | 2.96 | 4.34 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 24 | 69.8 | 1.39 | 4.03 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 88 | 136.3 | 5.12 | 7.91 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 34 | 70.0 | 2.05 | 4.23 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 77 | 81.7 | 4.35 | 4.62 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 56 | 157.7 | 3.17 | 8.91 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 13 | 15.7 | 0.78 | 0.94 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 873 | 1849.4 | 73.44 | 155.51 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 16 | 30.7 | 1.97 | 3.81 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 68 | 63.2 | 7.20 | 6.67 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 40 | 63.2 | 3.93 | 6.16 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 9 | 10.4 | 0.59 | 0.65 |
| $3-A p r-00$ | 9-Apr-00 | 13,993,977 | 84 | 148.1 | 5.97 | 10.58 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 35 | 113.5 | 4.37 | 14.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 18 | 13.7 | 4.28 | 3.31 |
| 1-May-00 | 7-May-00 | 9,774,471 | 119 | 359.9 | 12.13 | 36.82 |
| 8-May-00 | 14-May-00 | 5,421,440 | 21 | 32.0 | 3.93 | 5.90 |
| 15-May-00 | 21-May-00 | 10,171,036 | 333 | 623.4 | 32.74 | 61.29 |
| 22-May-00 | 28-May-00 | 16,869,355 | 218 | 636.3 | 12.91 | 37.72 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 3,860 | 6717.7 | 223.67 | 389.26 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 315 | 619.7 | 19.18 | 37.76 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 510 | 929.0 | 28.95 | 52.72 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 105 | 306.2 | 6.02 | 17.54 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 75 | 154.0 | 4.25 | 8.72 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 73 | 206.7 | 4.35 | 12.26 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 43 | 93.8 | 2.63 | 5.67 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 135 | 327.9 | 5.44 | 13.17 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 22 | 26.1 | 0.80 | 0.95 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 21 | 56.6 | 1.24 | 3.26 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 18 | 18.2 | 1.04 | 1.04 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 33 | 49.2 | 1.97 | 2.96 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 6 | 6.4 | 0.38 | 0.38 |
|  |  | Totals: | 7,524 | 14279.3 |  |  |

Table H2-10. Estimates of the weekly numbers and biomass Xantus' swimming crab Portunus xantusii impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 225 | 2338.3 | 16.31 | 169.48 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 380 | 5313.3 | 22.59 | 316.07 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 604 | 6643.2 | 35.28 | 387.72 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 164 | 1574.9 | 9.68 | 93.10 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 248 | 2887.3 | 14.26 | 165.78 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 50 | 543.3 | 3.34 | 36.41 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 60 | 1517.0 | 3.57 | 89.62 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 340.3 | 0.79 | 20.06 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 61 | 1336.5 | 3.59 | 78.07 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 87 | 1560.7 | 5.22 | 94.01 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 50 | 972.5 | 4.46 | 86.95 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 123 | 2679.7 | 9.54 | 208.09 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 48 | 1014.3 | 3.93 | 83.40 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 110 | 2664.1 | 7.75 | 187.97 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 287 | 7572.3 | 24.49 | 645.42 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 110 | 2970.9 | 10.18 | 275.47 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 116 | 2631.2 | 8.88 | 201.77 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 56 | 1410.2 | 3.24 | 81.37 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 312 | 7296.2 | 18.10 | 423.35 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 68 | 1677.8 | 4.10 | 101.34 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 84 | 2048.5 | 4.78 | 116.02 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 119 | 3121.3 | 6.72 | 176.51 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 77 | 2294.4 | 4.35 | 129.59 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 314 | 7391.2 | 18.74 | 441.59 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 299 | 6519.0 | 25.14 | 548.16 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 64 | 1055.8 | 7.88 | 130.98 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 19 | 336.6 | 1.96 | 35.53 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 20 | 517.0 | 1.97 | 50.42 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-A p r-00$ | $9-A p r-00$ | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 14 | 348.1 | 2.62 | 64.21 |
| 15-May-00 | 21-May-00 | 10,171,036 | 6 | 112.1 | 0.55 | 11.02 |
| 22-May-00 | 28-May-00 | 16,869,355 | 33 | 508.9 | 1.96 | 30.17 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 34 | 599.8 | 1.97 | 34.75 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 32 | 749.6 | 1.97 | 45.68 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 48 | 1277.3 | 2.73 | 72.48 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 39 | 928.4 | 2.26 | 53.19 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 13 | * | 0.71 | 0.00 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 69 | 1245.0 | 5.01 | 90.51 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 73 | 1420.4 | 4.35 | 84.24 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 50 | 842.8 | 3.00 | 50.97 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 48 | 698.4 | 1.94 | 28.05 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 87 | 1755.5 | 3.18 | 64.21 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 14 | 198.5 | 0.82 | 11.41 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 73 | 1213.9 | 4.17 | 69.45 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 7 | 65.7 | 0.39 | 3.95 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 26 | 516.1 | 1.53 | 30.68 |
|  |  | Totals: | 4,834 | 90708.3 |  |  |

[^17]Table H2-11. Estimates of the weekly numbers and biomass hairy rock crab Cancer jordani impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 33 | 135.1 | 2.40 | 9.79 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 71 | 326.4 | 4.21 | 19.41 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 76 | 190.4 | 4.46 | 11.11 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 30 | 88.6 | 1.76 | 5.24 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 14 | 14.5 | 0.79 | 0.83 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 31.2 | 0.42 | 2.09 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 54 | 118.9 | 3.17 | 7.02 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 40 | 290.5 | 2.38 | 17.13 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 48 | 77.1 | 2.79 | 4.51 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 27 | 284.7 | 1.61 | 17.15 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 13.3 | 0.50 | 1.19 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 149 | 1602.6 | 11.54 | 124.45 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 64 | 82.9 | 5.25 | 6.82 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 132 | 303.1 | 9.30 | 21.39 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 108 | 195.1 | 9.18 | 16.63 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 146 | 356.8 | 13.57 | 33.08 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 51 | 178.5 | 3.95 | 13.69 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 144 | 1848.9 | 8.33 | 106.69 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 109 | 522.2 | 6.30 | 30.30 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 75 | 827.7 | 4.52 | 49.99 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 106 | 694.3 | 5.98 | 39.32 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 112 | 211.0 | 6.32 | 11.93 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 42 | 119.1 | 2.37 | 6.73 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 150 | 368.5 | 8.98 | 22.02 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 123 | 407.7 | 10.35 | 34.28 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 48 | 87.3 | 5.91 | 10.83 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 25 | 26.0 | 2.62 | 2.75 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 87 | 149.9 | 8.52 | 14.62 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 47 | 25.4 | 2.94 | 1.59 |
| $3-A p r-00$ | $9-A p r-00$ | 13,993,977 | 72 | 113.7 | 5.12 | 8.13 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 9 | 25.7 | 1.09 | 3.17 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 18 | 33.1 | 3.70 | 6.66 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 44 | 97.0 | 10.69 | 23.41 |
| 1-May-00 | 7-May-00 | 9,774,471 | 43 | 118.8 | 4.41 | 12.15 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 55 | 203.1 | 5.46 | 19.97 |
| 22-May-00 | 28-May-00 | 16,869,355 | 33 | 64.0 | 1.96 | 3.80 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 95 | 140.2 | 5.52 | 8.13 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 89 | 324.4 | 5.41 | 19.77 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 106 | 133.4 | 6.01 | 7.57 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 33 | 88.7 | 1.88 | 5.08 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 125 | 389.3 | 7.09 | 22.04 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 38 | 75.0 | 2.78 | 5.46 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 47 | 120.7 | 2.77 | 7.16 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 99 | 273.9 | 6.01 | 16.56 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 193 | 503.9 | 7.77 | 20.24 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 294 | 1003.9 | 10.74 | 36.72 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 129 | 345.4 | 7.42 | 19.86 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 137 | 316.9 | 7.82 | 18.13 |
| 28-Aug-00 | 3 -Sep-00 | 16,640,754 | 59 | 229.1 | 3.55 | 13.77 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 58 | 137.7 | 3.44 | 8.19 |
|  |  | Totals: | 3,898 | 14316.2 |  |  |

Table H2-12. Estimates of the weekly numbers and biomass brown rock crab Cancer antennarius impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 53 | 4939.4 | 3.84 | 358.01 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 6 | 479.6 | 0.38 | 28.53 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 28 | 1383.4 | 1.62 | 80.74 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 60 | 2757.4 | 3.52 | 163.01 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 21 | 1509.4 | 1.19 | 86.66 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 44 | 3911.3 | 2.92 | 262.13 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 27 | 585.6 | 1.59 | 34.60 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 27 | 390.5 | 1.59 | 22.81 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 67 | 3999.4 | 4.02 | 240.90 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 17 | 154.1 | 1.49 | 13.78 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 8 | 59.0 | 0.66 | 4.85 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 15 | 563.0 | 1.03 | 39.73 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 12 | 372.3 | 1.02 | 31.73 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 10 | 723.5 | 0.97 | 67.09 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 26 | 239.3 | 1.97 | 18.35 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 32 | 2312.6 | 1.85 | 133.45 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 20 | 1034.9 | 1.18 | 60.05 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 14 | 495.4 | 0.82 | 29.92 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 7 | 80.9 | 0.40 | 4.58 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 28 | 109.0 | 1.58 | 6.16 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 35 | 329.7 | 1.98 | 18.62 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 20 | 483.5 | 1.17 | 28.89 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 18 | 656.5 | 1.48 | 55.20 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 11 | 75.2 | 1.31 | 9.32 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 31 | 291.4 | 3.27 | 30.75 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 10 | 115.6 | 2.62 | 30.29 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 20 | 925.8 | 1.97 | 90.28 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 66 | 710.8 | 4.11 | 44.36 |
| 3-Apr-00 | 9-Apr-00 | 13,993,977 | 185 | 669.6 | 13.23 | 47.85 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 27 | 140.1 | 3.28 | 17.28 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 14 | 192.3 | 2.78 | 38.69 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 18 | 119.6 | 4.28 | 28.87 |
| 1-May-00 | 7-May-00 | 9,774,471 | 32 | 314.1 | 3.31 | 32.13 |
| 8-May-00 | 14-May-00 | 5,421,440 | 14 | 174.1 | 2.62 | 32.10 |
| 15-May-00 | 21-May-00 | 10,171,036 | 44 | 241.1 | 4.37 | 23.71 |
| 22-May-00 | 28-May-00 | 16,869,355 | 40 | 106.3 | 2.35 | 6.30 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 102 | 933.3 | 5.92 | 54.08 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 73 | 844.8 | 4.43 | 51.48 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 48 | 226.2 | 2.73 | 12.84 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 79 | 758.9 | 4.52 | 43.48 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 488 | 8078.4 | 27.64 | 457.44 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 214 | 3368.5 | 15.59 | 244.88 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 240 | 4010.5 | 14.24 | 237.85 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 87 | 1781.9 | 5.26 | 107.76 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 184 | 5263.7 | 7.38 | 211.40 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 337 | 6231.5 | 12.33 | 227.93 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 172 | 3647.6 | 9.89 | 209.75 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 382 | 5695.2 | 21.88 | 325.87 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 190 | 2519.3 | 11.44 | 151.39 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 193 | 7304.6 | 11.48 | 434.27 |
|  |  | Totals: | 3,894 | 82310.1 |  |  |

Table H2-13. Estimates of the weekly numbers and biomass cryptic kelp crab Pugettia richii impinged at the MBPP September 6, 1999 through September 10, 2000

| Survey Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 14 | 11.8 | 0.81 | 0.69 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 7 | 12.1 | 0.40 | 0.71 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 13 | 12.0 | 0.80 | 0.72 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 6.1 | 0.50 | 0.55 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 26 | 16.2 | 2.01 | 1.25 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 8 | 12.8 | 0.66 | 1.05 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 37 | 33.7 | 2.58 | 2.38 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 18 | 10.8 | 1.53 | 0.92 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 31 | 32.4 | 2.91 | 3.01 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 6 | 13.5 | 0.49 | 1.04 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 16.0 | 0.93 | 0.93 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 14 | 21.0 | 0.79 | 1.22 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 7 | 6.8 | 0.41 | 0.41 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 28 | 21.1 | 1.59 | 1.20 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 7 | 7.0 | 0.40 | 0.40 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 13 | 4.6 | 0.78 | 0.27 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 18 | 28.7 | 1.48 | 2.42 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 21 | 14.8 | 2.63 | 1.84 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 15 | 5.0 | 3.93 | 1.31 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 27 | 35.0 | 2.62 | 3.41 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 38 | 29.2 | 2.35 | 1.82 |
| $3-A p r-00$ | 9-Apr-00 | 13,993,977 | 18 | 8.4 | 1.28 | 0.60 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 27 | 20.4 | 3.28 | 2.52 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 5 | 0.5 | 0.93 | 0.09 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 27 | 4.0 | 6.41 | 0.96 |
| 1-May-00 | 7-May-00 | 9,774,471 | 38 | 51.4 | 3.86 | 5.26 |
| 8-May-00 | 14-May-00 | 5,421,440 | 21 | 7.8 | 3.93 | 1.44 |
| 15-May-00 | 21-May-00 | 10,171,036 | 44 | 53.6 | 4.37 | 5.27 |
| 22-May-00 | 28-May-00 | 16,869,355 | 73 | 21.1 | 4.30 | 1.25 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 34 | 25.2 | 1.97 | 1.46 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 32 | 107.3 | 1.97 | 6.54 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 10 | 6.7 | 0.55 | 0.38 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 26 | 27.6 | 1.51 | 1.58 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 38 | 60.1 | 2.13 | 3.40 |
| 3-Jul-00 | $9-J u l-00$ | 13,755,343 | 69 | 52.8 | 5.01 | 3.84 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 20 | 34.7 | 1.19 | 2.06 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 56 | 190.1 | 3.38 | 11.49 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 77 | 110.3 | 3.11 | 4.43 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 44 | 69.6 | 1.59 | 2.55 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 21 | 66.6 | 1.24 | 3.83 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 18 | 7.3 | 1.04 | 0.42 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 13 | 3.3 | 0.79 | 0.20 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 32 | 24.5 | 1.91 | 1.45 |
|  |  | Totals: | 1,111 | 1303.7 |  |  |

Table H2-14. Estimates of the weekly numbers and biomass northern kelp crab Pugettia producta impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 73 | 1112.2 | 5.28 | 80.61 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 71 | 1365.3 | 4.21 | 81.22 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 21 | 98.0 | 1.22 | 5.72 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 52 | 743.1 | 3.08 | 43.93 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 28 | 191.8 | 1.58 | 11.01 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 19 | 31.8 | 1.25 | 2.13 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 20 | 566.8 | 1.19 | 33.49 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 14.8 | 0.79 | 0.87 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 34 | 360.4 | 1.99 | 21.05 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 20 | 60.0 | 1.20 | 3.61 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 28 | 33.8 | 2.48 | 3.02 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 78 | 204.3 | 6.02 | 15.86 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 48 | 1313.4 | 3.93 | 107.99 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 29 | 568.2 | 2.07 | 40.09 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 24 | 132.9 | 2.04 | 11.33 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 73 | 1305.6 | 6.79 | 121.06 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 6 | 14.8 | 0.49 | 1.13 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 56 | 534.2 | 3.24 | 30.83 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 14 | 33.2 | 0.79 | 1.93 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 48 | 277.2 | 2.87 | 16.75 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 21 | 71.8 | 1.20 | 4.06 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 49 | 149.5 | 2.77 | 8.46 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 42 | 65.9 | 2.37 | 3.72 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 33 | 448.9 | 1.95 | 26.82 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 18 | 56.9 | 1.48 | 4.78 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 11 | 18.0 | 1.31 | 2.23 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 43 | 392.4 | 4.58 | 41.42 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 10 | 15.5 | 2.62 | 4.07 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 74 | 1045.5 | 7.21 | 101.95 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 38 | 21.7 | 2.35 | 1.35 |
| $3-\mathrm{Apr}-00$ | $9-\mathrm{Apr}-00$ | 13,993,977 | 54 | 32.8 | 3.84 | 2.35 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 62 | 709.5 | 7.66 | 87.49 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 14 | 3.7 | 2.78 | 0.74 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 13 | 12.9 | 3.21 | 3.10 |
| 1-May-00 | 7-May-00 | 9,774,471 | 124 | 367.7 | 12.68 | 37.62 |
| 8-May-00 | 14-May-00 | 5,421,440 | 57 | 60.4 | 10.48 | 11.14 |
| 15-May-00 | 21-May-00 | 10,171,036 | 78 | 78.8 | 7.64 | 7.75 |
| 22-May-00 | 28-May-00 | 16,869,355 | 99 | 351.8 | 5.87 | 20.85 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 163 | 1458.5 | 9.47 | 84.52 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 56 | 85.5 | 3.44 | 5.21 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 19 | 463.0 | 1.09 | 26.27 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 72 | 934.4 | 4.14 | 53.53 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 200 | 1731.1 | 11.34 | 98.02 |
| 3-Jul-00 | $9-\mathrm{Jul}-00$ | 13,755,343 | 100 | 359.9 | 7.24 | 26.16 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 147 | 744.8 | 8.70 | 44.17 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 112 | 1362.3 | 6.76 | 82.38 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 193 | 1798.1 | 7.77 | 72.22 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 174 | 2221.1 | 6.37 | 81.24 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 86 | 983.9 | 4.95 | 56.58 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 137 | 1887.7 | 7.82 | 108.01 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 112 | 773.5 | 6.71 | 46.48 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 45 | 377.8 | 2.68 | 22.46 |
|  |  | Totals: | 3,209 | 28046.9 |  |  |

Table H2-15. Estimates of the weekly numbers and biomass brown shrimp Peneaus californiensis impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey Start | End | Total Flow $\left(\mathrm{m}^{3}\right)$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 0 | 0.0 | 0.00 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 6 | 295.5 | 0.50 | 26.42 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 32 | 1597.3 | 2.51 | 124.03 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 8 | 254.4 | 0.66 | 20.92 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 220 | 7029.5 | 20.36 | 651.80 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 26 | 806.1 | 1.97 | 61.81 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 104 | 2941.4 | 6.02 | 169.74 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 54 | 1544.8 | 3.15 | 89.63 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 306 | 8533.5 | 18.47 | 515.47 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 106 | 3039.7 | 5.98 | 172.15 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 42 | 1238.1 | 2.37 | 70.01 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 70 | 1894.2 | 3.96 | 106.99 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 13 | 323.4 | 0.78 | 19.32 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 12 | 378.1 | 0.99 | 31.79 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 5 | 271.0 | 0.66 | 33.62 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 12 | 285.2 | 1.31 | 30.10 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-A p r-00$ | $9-A p r-00$ | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 0 | 0.0 | 0.00 | 0.00 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 0 | 0.0 | 0.00 | 0.00 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 8 | 341.3 | 0.49 | 20.80 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 0 | 0.0 | 0.00 | 0.00 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 0 | 0.0 | 0.00 | 0.00 |
|  |  | Totals: | 1,024 | 30773.5 |  |  |

Table H2-16. Estimates of the weekly numbers and biomass purple sea urchin Strongylocentrotus purpuratus impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 46 | 410.5 | 3.36 | 29.75 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 19 | 160.9 | 1.15 | 9.57 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 14 | 88.9 | 0.81 | 5.19 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 15 | 40.2 | 0.88 | 2.38 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 28 | 69.7 | 1.58 | 4.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 34 | 73.2 | 1.98 | 4.32 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 40 | 204.4 | 2.38 | 12.05 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 20 | 8.2 | 1.20 | 0.48 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 13 | 22.3 | 0.80 | 1.35 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 33 | 86.5 | 2.97 | 7.73 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 39 | 157.1 | 3.01 | 12.20 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 37 | 164.9 | 3.39 | 15.29 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 0 | 0.0 | 0.00 | 0.00 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 24.9 | 0.93 | 1.43 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 14 | 48.8 | 0.79 | 2.83 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 14 | 61.2 | 0.82 | 3.69 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 35 | 213.1 | 1.98 | 12.05 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 28 | 126.8 | 1.58 | 7.16 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 13 | 59.5 | 0.78 | 3.55 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 29 | 192.9 | 2.46 | 16.22 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 26 | 336.1 | 3.28 | 41.69 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 12 | 11.2 | 1.31 | 1.18 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 13 | 208.4 | 1.31 | 20.33 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 19 | 76.3 | 1.18 | 4.76 |
| 3-Apr-00 | $9-\mathrm{Apr}-00$ | 13,993,977 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 14 | 47.4 | 2.78 | 9.53 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 9 | 143.1 | 2.14 | 34.53 |
| 1-May-00 | 7-May-00 | 9,774,471 | 0 | 0.0 | 0.00 | 0.00 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 17 | 136.0 | 1.64 | 13.37 |
| 22-May-00 | 28-May-00 | 16,869,355 | 33 | 268.0 | 1.96 | 15.89 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 0 | 0.0 | 0.00 | 0.00 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 73 | 551.1 | 4.43 | 33.58 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 7 | 3.3 | 0.38 | 0.19 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 88 | 1329.7 | 4.96 | 75.30 |
| 3-Jul-00 | $9-\mathrm{Jul} 00$ | 13,755,343 | 54 | 854.5 | 3.90 | 62.12 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 60 | 795.6 | 3.56 | 47.18 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 19 | 141.0 | 1.13 | 8.53 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 39 | 8.7 | 1.55 | 0.35 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 131 | 231.7 | 4.77 | 8.47 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 29 | 7.9 | 1.65 | 0.45 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 64 | 30.1 | 3.65 | 1.72 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 33 | 135.9 | 1.97 | 8.17 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 45 | 50.8 | 2.68 | 3.02 |
|  |  | Totals: | 1,269 | 7580.6 |  |  |

Table H2-17. Estimates of the weekly numbers and biomass spotted bay shrimp Crangon nigromaculata impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total <br> (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 0 | 0.0 | 0.00 | 0.00 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 0 | 0.0 | 0.00 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 0 | 0.0 | 0.00 | 0.00 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 0 | 0.0 | 0.00 | 0.00 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 0 | 0.0 | 0.00 | 0.00 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 0 | 0.0 | 0.00 | 0.00 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 18 | 21.5 | 1.53 | 1.84 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 16 | 31.4 | 1.45 | 2.91 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 19 | 35.4 | 1.48 | 2.71 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 46.5 | 0.93 | 2.68 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 41 | 84.8 | 2.36 | 4.92 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 35 | 76.0 | 1.99 | 4.30 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 21 | 18.2 | 1.19 | 1.03 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 21 | 23.8 | 1.19 | 1.35 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 346 | 1017.7 | 29.08 | 85.57 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 21 | 22.8 | 2.63 | 2.82 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 99 | 91.8 | 10.47 | 9.68 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 7 | 10.8 | 0.66 | 1.05 |
| 25-Mar-00 | $2-A p r-00$ | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Apr-00 | $9-\mathrm{Apr}-00$ | 13,993,977 | 18 | 25.1 | 1.28 | 1.79 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 0 | 0.0 | 0.00 | 0.00 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 0 | 0.0 | 0.00 | 0.00 |
| 1-May-00 | 7-May-00 | 9,774,471 | 5 | 4.8 | 0.55 | 0.50 |
| 8-May-00 | 14-May-00 | 5,421,440 | 0 | 0.0 | 0.00 | 0.00 |
| 15-May-00 | 21-May-00 | 10,171,036 | 0 | 0.0 | 0.00 | 0.00 |
| 22-May-00 | 28-May-00 | 16,869,355 | 20 | 31.0 | 1.17 | 1.84 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 61 | 95.3 | 3.55 | 5.52 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 32 | 58.1 | 1.97 | 3.54 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 135 | 287.8 | 7.65 | 16.33 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 13 | 36.8 | 0.75 | 2.11 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 0 | 0.0 | 0.00 | 0.00 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 0 | 0.0 | 0.00 | 0.00 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 33 | 125.4 | 1.98 | 7.44 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 19 | 43.5 | 1.13 | 2.63 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 58 | 149.0 | 2.33 | 5.98 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 11 | 35.9 | 0.40 | 1.31 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 0 | 0.0 | 0.00 | 0.00 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 6 | 29.0 | 0.38 | 1.72 |
|  |  | Totals: | 1,072 | 2402.1 |  |  |

Table H2-18. Estimates of the weekly numbers and biomass sheep crab Loxorhyncus crispatus impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey Start | End | Total Flow ( $\mathrm{m}^{3}$ ) | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 7 | 463.4 | 0.48 | 33.59 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 13 | 220.2 | 0.77 | 13.10 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 0 | 0.0 | 0.00 | 0.00 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 7 | 3.4 | 0.40 | 0.20 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 6 | 13.7 | 0.42 | 0.92 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 7 | 3.4 | 0.40 | 0.20 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 13 | 5.4 | 0.79 | 0.32 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 20 | 26.0 | 1.20 | 1.57 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 22 | 61.5 | 1.98 | 5.50 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 13 | 22.0 | 1.00 | 1.71 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 7 | 14.6 | 0.52 | 1.03 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 12 | 364.5 | 1.02 | 31.07 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 31 | 132.2 | 2.91 | 12.26 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 13 | 13.5 | 0.99 | 1.04 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 8 | 7.2 | 0.46 | 0.42 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 20 | 97.7 | 1.18 | 5.67 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 7 | 5.4 | 0.41 | 0.33 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 0 | 0.0 | 0.00 | 0.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 7 | 2.1 | 0.40 | 0.12 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 0 | 0.0 | 0.00 | 0.00 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 94 | 274.6 | 7.89 | 23.09 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 6 | 3.1 | 0.65 | 0.33 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 5 | 11.5 | 1.31 | 3.02 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 7 | 8.7 | 0.66 | 0.85 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 0 | 0.0 | 0.00 | 0.00 |
| $3-A p r-00$ | $9-\mathrm{Apr}-00$ | 13,993,977 | 42 | 31.9 | 2.99 | 2.28 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 0 | 0.0 | 0.00 | 0.00 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 5 | 1.8 | 0.93 | 0.37 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 4 | 9.3 | 1.07 | 2.25 |
| 1-May-00 | 7-May-00 | 9,774,471 | 32 | 101.0 | 3.31 | 10.33 |
| 8-May-00 | 14-May-00 | 5,421,440 | 7 | 5.7 | 1.31 | 1.05 |
| 15-May-00 | 21-May-00 | 10,171,036 | 6 | 24.4 | 0.55 | 2.40 |
| 22-May-00 | 28-May-00 | 16,869,355 | 7 | 4.0 | 0.39 | 0.23 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 14 | 51.1 | 0.79 | 2.96 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 48 | 59.7 | 2.95 | 3.64 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 10 | 20.2 | 0.55 | 1.15 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 13 | 26.3 | 0.75 | 1.51 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 38 | 154.0 | 2.13 | 8.72 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 31 | 75.0 | 2.23 | 5.46 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 47 | 84.7 | 2.77 | 5.02 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 19 | 23.0 | 1.13 | 1.39 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 10 | 72.5 | 0.39 | 2.91 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 44 | 140.3 | 1.59 | 5.13 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 0 | 0.0 | 0.00 | 0.00 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 18 | 28.2 | 1.04 | 1.62 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 20 | 63.0 | 1.18 | 3.79 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 26 | 709.2 | 1.53 | 42.16 |
|  |  | Totals: | 763 | 3439.6 |  |  |

Table H2-19. Estimates of the weekly numbers and biomass Family Cancridae impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey <br> Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 172 | 5349.8 | 12.48 | 387.76 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 174 | 1171.6 | 10.34 | 69.69 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 188 | 3376.1 | 10.95 | 197.04 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 156 | 3007.6 | 9.24 | 177.80 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 55 | 1759.9 | 3.17 | 101.04 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 56 | 4012.8 | 3.76 | 268.94 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 168 | 961.0 | 9.92 | 56.77 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 81 | 306.7 | 4.76 | 18.08 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 89 | 520.8 | 5.18 | 30.42 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 133 | 4318.8 | 8.03 | 260.14 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 72 | 214.6 | 6.44 | 19.18 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 252 | 1826.4 | 19.58 | 141.82 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 80 | 141.9 | 6.56 | 11.67 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 212 | 1013.4 | 14.98 | 71.50 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 132 | 671.0 | 11.22 | 57.19 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 167 | 1088.2 | 15.51 | 100.90 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 187 | 782.6 | 14.31 | 60.01 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 209 | 4244.1 | 12.03 | 244.91 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 176 | 1626.2 | 10.23 | 94.36 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 163 | 3729.6 | 9.85 | 225.29 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 169 | 912.4 | 9.56 | 51.67 |
| 31-Jan-00 | 6 -Feb-00 | 17,683,818 | 238 | 742.0 | 13.43 | 41.96 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 210 | 914.2 | 11.87 | 51.63 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 301 | 1834.1 | 17.96 | 109.58 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 193 | 1200.2 | 16.27 | 100.92 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 101 | 197.9 | 12.47 | 24.56 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 87 | 624.3 | 9.16 | 65.89 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 30 | 150.1 | 7.87 | 39.34 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 182 | 1171.2 | 17.70 | 114.21 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 198 | 843.6 | 12.34 | 52.65 |
| 3-Apr-00 | $9-A p r-00$ | 13,993,977 | 334 | 921.6 | 23.89 | 65.86 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 89 | 213.8 | 10.94 | 26.36 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 41 | 228.2 | 8.33 | 45.91 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 71 | 223.3 | 17.11 | 53.88 |
| 1-May-00 | 7-May-00 | 9,774,471 | 129 | 500.5 | 13.23 | 51.20 |
| 8-May-00 | 14-May-00 | 5,421,440 | 71 | 249.4 | 13.10 | 45.99 |
| 15-May-00 | 21-May-00 | 10,171,036 | 277 | 1742.4 | 27.28 | 171.31 |
| 22-May-00 | 28-May-00 | 16,869,355 | 119 | 209.2 | 7.04 | 12.40 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 422 | 2837.4 | 24.46 | 164.42 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 250 | 1535.4 | 15.24 | 93.58 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 173 | 375.0 | 9.83 | 21.28 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 164 | 938.9 | 9.41 | 53.80 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 713 | 8758.1 | 40.40 | 495.93 |
| 3-Jul-00 | $9-J u l-00$ | 13,755,343 | 429 | 3908.3 | 31.17 | 284.13 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 720 | 5347.7 | 42.71 | 317.15 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 441 | 3683.1 | 26.67 | 222.73 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 1,325 | 7639.3 | 53.22 | 306.81 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 1,022 | 8707.1 | 37.40 | 318.48 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 387 | 8806.5 | 22.25 | 506.42 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 619 | 6462.6 | 35.43 | 369.78 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 276 | 2776.7 | 16.57 | 166.86 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 257 | 7443.0 | 15.30 | 442.49 |
|  |  | Totals: | 12,961 | 122220.5 |  |  |

Table H2-20. Estimates of the weekly numbers and biomass unidentified cancer crabs Cancer spp . impinged at the MBPP September 6, 1999 through September 10, 2000.

| Survey Start | End | $\begin{aligned} & \text { Total Flow } \\ & \left(\mathrm{m}^{3}\right) \end{aligned}$ | Estimate of Total (\#) | Estimate of Total (g) | $\begin{aligned} & \text { Impingement } \\ & \text { Rate } \\ & \left(\# / 10^{6} \mathrm{~m}^{3}\right) \end{aligned}$ | Impingement Rate $\left(\mathrm{g} / 10^{6} \mathrm{~m}^{3}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6-Sep-99 | 12-Sep-99 | 13,796,838 | 46 | 76.1 | 3.36 | 5.52 |
| 13-Sep-99 | 19-Sep-99 | 16,810,758 | 19 | 43.1 | 1.15 | 2.57 |
| 20-Sep-99 | 26-Sep-99 | 17,134,181 | 14 | 22.2 | 0.81 | 1.30 |
| 27-Sep-99 | 3-Oct-99 | 16,915,689 | 7 | 3.7 | 0.44 | 0.22 |
| 4-Oct-99 | 10-Oct-99 | 17,417,176 | 7 | * | 0.40 | 0.00 |
| 11-Oct-99 | 17-Oct-99 | 14,921,089 | 0 | 0.0 | 0.00 | 0.00 |
| 18-Oct-99 | 24-Oct-99 | 16,926,137 | 54 | 118.9 | 3.17 | 7.02 |
| 25-Oct-99 | 31-Oct-99 | 16,962,928 | 40 | 16.1 | 2.38 | 0.95 |
| 1-Nov-99 | 7-Nov-99 | 17,119,645 | 0 | 0.0 | 0.00 | 0.00 |
| 8-Nov-99 | 14-Nov-99 | 16,601,805 | 33 | 30.0 | 2.01 | 1.81 |
| 15-Nov-99 | 20-Nov-99 | 11,184,467 | 50 | 47.1 | 4.46 | 4.21 |
| 21-Nov-99 | 27-Nov-99 | 12,877,899 | 78 | 77.6 | 6.02 | 6.03 |
| 28-Nov-99 | 5-Dec-99 | 12,162,467 | 0 | 0.0 | 0.00 | 0.00 |
| 6-Dec-99 | 12-Dec-99 | 14,173,408 | 37 | 33.7 | 2.58 | 2.38 |
| 13-Dec-99 | 18-Dec-99 | 11,732,285 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Dec-99 | 25-Dec-99 | 10,784,727 | 5 | 0.5 | 0.48 | 0.05 |
| 26-Dec-99 | 1-Jan-00 | 13,040,517 | 64 | 45.0 | 4.93 | 3.45 |
| 2-Jan-00 | 9-Jan-00 | 17,329,512 | 16 | 14.4 | 0.93 | 0.83 |
| 10-Jan-00 | 16-Jan-00 | 17,234,569 | 34 | 10.2 | 1.97 | 0.59 |
| 17-Jan-00 | 23-Jan-00 | 16,555,014 | 68 | 62.2 | 4.10 | 3.76 |
| 24-Jan-00 | 30-Jan-00 | 17,657,018 | 35 | 17.6 | 1.99 | 1.00 |
| 31-Jan-00 | 6-Feb-00 | 17,683,818 | 77 | 27.9 | 4.35 | 1.58 |
| 7-Feb-00 | 13-Feb-00 | 17,704,714 | 119 | 101.6 | 6.73 | 5.74 |
| 14-Feb-00 | 20-Feb-00 | 16,737,624 | 118 | 76.4 | 7.03 | 4.57 |
| 21-Feb-00 | 27-Feb-00 | 11,892,635 | 29 | 92.6 | 2.46 | 7.79 |
| 28-Feb-00 | 5-Mar-00 | 8,060,616 | 32 | 18.5 | 3.94 | 2.30 |
| 6-Mar-00 | 12-Mar-00 | 9,475,595 | 19 | 18.6 | 1.96 | 1.96 |
| 13-Mar-00 | 17-Mar-00 | 3,815,676 | 20 | 34.5 | 5.25 | 9.05 |
| 18-Mar-00 | 24-Mar-00 | 10,254,629 | 61 | 87.4 | 5.90 | 8.52 |
| 25-Mar-00 | 2-Apr-00 | 16,024,015 | 66 | 56.5 | 4.11 | 3.53 |
| $3-A p r-00$ | $9-A p r-00$ | 13,993,977 | 48 | 76.8 | 3.41 | 5.49 |
| 10-Apr-00 | 16-Apr-00 | 8,110,119 | 53 | 47.9 | 6.56 | 5.91 |
| 17-Apr-00 | 23-Apr-00 | 4,969,914 | 9 | 2.8 | 1.85 | 0.56 |
| 24-Apr-00 | 30-Apr-00 | 4,145,001 | 9 | 6.6 | 2.14 | 1.60 |
| 1-May-00 | 7-May-00 | 9,774,471 | 11 | 17.8 | 1.10 | 1.82 |
| 8-May-00 | 14-May-00 | 5,421,440 | 50 | 46.9 | 9.17 | 8.65 |
| 15-May-00 | 21-May-00 | 10,171,036 | 67 | 84.4 | 6.55 | 8.29 |
| 22-May-00 | 28-May-00 | 16,869,355 | 13 | 5.9 | 0.78 | 0.35 |
| 29-May-00 | 4-Jun-00 | 17,257,509 | 109 | 108.2 | 6.31 | 6.27 |
| 5-Jun-00 | 11-Jun-00 | 16,408,296 | 65 | 56.5 | 3.93 | 3.44 |
| 12-Jun-00 | 18-Jun-00 | 17,622,722 | 0 | 0.0 | 0.00 | 0.00 |
| 19-Jun-00 | 25-Jun-00 | 17,453,970 | 26 | 41.4 | 1.51 | 2.37 |
| 26-Jun-00 | 2-Jul-00 | 17,659,970 | 50 | 115.2 | 2.84 | 6.52 |
| 3-Jul-00 | 9-Jul-00 | 13,755,343 | 153 | 166.9 | 11.13 | 12.13 |
| 10-Jul-00 | 16-Jul-00 | 16,861,860 | 287 | 337.3 | 17.01 | 20.00 |
| 17-Jul-00 | 23-Jul-00 | 16,536,163 | 130 | 212.4 | 7.89 | 12.85 |
| 24-Jul-00 | 2-Aug-00 | 24,898,843 | 571 | 684.8 | 22.92 | 27.50 |
| 3-Aug-00 | 13-Aug-00 | 27,339,851 | 283 | 485.1 | 10.34 | 17.74 |
| 14-Aug-00 | 20-Aug-00 | 17,389,693 | 43 | 27.9 | 2.47 | 1.61 |
| 21-Aug-00 | 27-Aug-00 | 17,477,023 | 18 | 7.9 | 1.04 | 0.45 |
| 28-Aug-00 | 3-Sep-00 | 16,640,754 | 0 | 0.0 | 0.00 | 0.00 |
| 4-Sep-00 | 10-Sep-00 | 16,820,636 | 0 | 0.0 | 0.00 | 0.00 |
|  |  | Totals: | 3,142 | 3665.6 |  |  |

[^18]
# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

Appendix I
CDFG Morro Bay Otter Trawl Data, Pacific States Marine Fisheries Commission (PSMFC) PacFin Data, and California Department of Fish and Game (CDFG) Commercial Landings

## Appendix I

This appendix contains three set of data: (1) CDFG Morro Bay otter trawl survey results from the years 1992 through 1999 (source: CDFG unpublished data), (2) Pacific States Marine Fisheries Commission (PSMFC) PacFin Data commercial landings data, both by dollar value and by weight (data from PacFin website, query dated May 4, 2001), and (3) CDFG poundage and value of landings of commercial fish into California by area for the year 1999 (source: California Department of Fish and Game, 2000, Final California Commercial Landings for 1999).

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix I

## Part 1

CDFG Morro Bay Otter Trawl Survey Results, 1992 through 1999

## APPENDIX I PART 1 CDFG Morro Bay Otter Trawl Survey Results 1992 THROUGH 1999

The California Department of Fish and Game (CDFG) otter trawl survey of the Morro Bay estuary was conducted on a monthly basis from March 1992 through March 1995 (except May 1993) and on a semi-monthly basis between March 1995 and July 1999. A total of two sampling efforts was made between November 1995 and January 1998 (April 1996 and October 1997) because no vessel was available to conduct the surveys. Five tow locations were chosen within the bay; one in the outer harbor, two in the mid-harbor area and two in the back-bay. The outer harbor station, located between the west and south breakwaters, was abandoned after November 1993 because sedimentation near the harbor mouth created unsafe conditions for the survey.

Table I-1a. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 1 during 1992.

| Common Name | $\begin{aligned} & 1992 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1992 \\ \text { Range } \end{gathered}$ | Station 1: 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | April |  | May |  | June |  | July |  | August |  | September |  | October |  | November |  | December |  |
|  |  |  | Count | Range |
| speckled sanddab | 517 | 15-142 | 14 | 45-112 | 70 | 27-117 | 77 | 38-118 | 50 | 15-142 | 87 | 31-115 | 61 | 42-132 | 86 | 43-111 | 56 | 40-129 | 16 | 42-127 |
| bay pipefish | 159 | 78-288 | 4 | 109-218 | 28 | 100-220 | 49 | 131-288 | 21 | 78-255 | 27 | 129-249 | 9 | 153-233 | 14 | 122-220 | 6 | 131-230 | 1 | 140 |
| staghorn sculpin | 43 | 84-147 |  |  | 12 | 86-109 | 11 | 84-112 | 8 | 95-130 | 5 | 105-145 | 3 | 110-147 | 2 | 118-120 | 2 | 104-105 |  |  |
| cabezon | 41 | 47-114 |  |  | 6 | 47-53 | 9 | 48-75 | 4 | 66-86 | 17 | 62-114 | 5 | 50-95 |  |  |  |  |  |  |
| round stingray | 23 | 320-456 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 | 327-456 | 18 | 320-426 |
| California halibut | 9 | 188-702 | 1 | 672 |  |  |  |  | 1 | 380 |  |  | 4 | 188-702 | 1 | 385 | 1 | 663 | 1 | 263 |
| English sole | 7 | 32-82 |  |  | 2 | 32-82 | 1 | 48 | 3 | 47-63 | 1 | 37 |  |  |  |  |  |  |  |  |
| striped kelpfish | 7 | 60-113 |  |  |  |  | 1 | 74 |  |  | 2 |  | 4 | 60-113 |  |  |  |  |  |  |
| pricklebreast poacher | 5 | 48-104 |  |  |  |  |  |  | 4 | 48-63 |  |  |  |  | 1 | 104 |  |  |  |  |
| poacher, unidentified | 4 | 44-46 |  |  |  |  | 4 | 44-46 |  |  |  |  |  |  |  |  |  |  |  |  |
| tubesnout | 3 | 89-127 | 2 | 89-101 |  |  |  |  | 1 | 127 |  |  |  |  |  |  |  |  |  |  |
| sand sole | 3 | 304-318 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 311 | 2 | 304-318 |  |  |
| spotfin surfperch | 2 | 53-56 |  |  | 1 | 56 |  |  | 1 | 53 |  |  |  |  |  |  |  |  |  |  |
| bay goby | 2 | 25 |  |  |  |  |  |  | 2 | 25 |  |  |  |  |  |  |  |  |  |  |
| big skate | 1 | 331 | 1 | 331 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| bocaccio | 1 | 98 |  |  |  |  |  |  |  |  |  |  | 1 | 98 |  |  |  |  |  |  |
| plainfin midshipman | 1 | 38 |  |  |  |  |  |  |  |  | 1 | 38 |  |  |  |  |  |  |  |  |
| shiner surfperch | 1 | 57 |  |  |  |  |  |  | 1 | 57 |  |  |  |  |  |  |  |  |  |  |
| Total | 829 |  | 22 |  | 119 |  | 152 |  | 96 |  | 140 |  | 87 |  | 105 |  | 72 |  | 36 |  |

Table I-1b. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 1 during 1993.

| Common Name | $\begin{aligned} & 1993 \\ & \text { Total } \end{aligned}$ | 1993 <br> Range | Station 1: 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mar |  | Apr |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  |
|  |  |  | Count | Range |
| speckled sanddab | 127 | 27-116 | 1 | 49 | 1 | 66 | 1 | 90 | 6 | 54-102 | 11 | 55-99 | 19 | 44-105 | 38 | 56-116 | 50 | 27-115 |
| bay pipefish | 41 | 86-230 |  |  |  |  |  |  |  |  | 22 | 129-230 | 8 | 86-208 | 4 | 100-188 | 7 | 102-190 |
| English sole | 16 | 50-92 |  |  |  |  | 1 | 60 | 7 | 50-58 | 7 | 56-92 |  |  |  |  | 1 | 50 |
| spotfin surfperch | 11 | 52-59 |  |  |  |  |  |  |  |  | 11 | 52-59 |  |  |  |  |  |  |
| tubesnout | 3 | 122-126 |  |  |  |  |  |  |  |  | 3 | 122-126 |  |  |  |  |  |  |
| diamond turbot | 3 | 212-244 | 1 | 244 |  |  |  |  |  | 239 |  |  | 1 | 212 |  |  |  |  |
| staghorn sculpin | 2 | 105-131 |  |  |  |  |  |  | 1 | 105 | 1 | 131 |  |  |  |  |  |  |
| sand sole | 2 | 54-75 |  |  |  |  |  |  |  | 54 | 1 | 75 |  |  |  |  |  |  |
| California halibut | 1 | 149 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 149 |  |  |
| pricklebreast poacher | 1 | 22 |  |  |  |  |  |  |  |  | 1 | 22 |  |  |  |  |  |  |
| walleye surfperch | 1 | 93 |  |  |  |  |  |  |  |  | 1 | 93 |  |  |  |  |  |  |
| white surfperch | 1 | 73 |  |  |  |  |  |  |  |  | 1 | 73 |  |  |  |  |  |  |
| Total | 209 |  | 2 |  | 1 |  | 2 |  | 16 |  | 59 |  | 28 |  | 43 |  | 58 |  |

Table I-2a. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1992.

| Common Name | $\begin{gathered} 1992 \\ \text { Totals } \end{gathered}$ | $\begin{gathered} 1992 \\ \text { Range } \end{gathered}$ | Station 2: 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 1,059 | 30-118 | 16 | 30-60 | 27 | 31-55 | 50 | 31-87 | 96 | 35-95 | 64 | 32-90 | 165 | 31-99 | 336 | 30-115 | 184 | 36-118 | 97 | 38-115 | 24 | 34-69 |
| bay pipefish | 131 | 102-241 | 3 | 116-135 | 14 | 109-222 | 18 | 102-218 | 21 | 140-226 | 7 | 171-225 | 13 | 102-224 | 7 | 133-230 | 38 | 129-241 | 6 | 148-191 | 4 | 104-168 |
| northern anchovy | 91 |  |  |  | 91 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| staghorn sculpin | 32 | 77-136 |  |  |  |  | 8 | 77-115 | 8 | 91-110 | 3 | 98-113 | 6 | 100-125 | 7 | 105-136 |  |  |  |  |  |  |
| spotfin surfperch | 16 | 50-65 |  |  |  |  | 2 |  | 14 | 50-65 |  |  |  |  |  |  |  |  |  |  |  |  |
| English sole | 15 | 37-99 |  |  |  |  | 8 | 57-80 | 1 | 82 | 1 | 67 | 3 | 37-99 | 2 | 59-79 |  |  |  |  |  |  |
| shiner surfperch | 12 | 53-65 |  |  |  |  |  |  | 12 | 53-65 |  |  |  |  |  |  |  |  |  |  |  |  |
| tubesnout | 9 | 120-140 |  |  |  |  |  |  |  |  |  |  | 3 | 127-140 | 5 | 120-137 | 1 | 133 |  |  |  |  |
| cabezon | 3 | 70-95 |  |  | 1 | 70 | 1 | 74 |  |  |  |  |  |  | 1 | 95 |  |  |  |  |  |  |
| California halibut | 3 | 210-305 |  |  |  |  |  |  |  |  |  |  | 1 | 215 | 1 | 305 | 1 | 210 |  |  |  |  |
| sand sole | 3 | 199-305 |  |  |  |  | 1 | 199 |  |  | 2 | 290-305 |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 3 | 53-149 | 1 | 53 |  |  |  |  | 1 | 83 |  |  | 1 | 149 |  |  |  |  |  |  |  |  |
| round stingray | 2 | 365-394 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 365 | 1 | 394 |
| bonyhead sculpin | 1 | 47 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 47 |  |  |  |  |  |  |
| kelp clingfish | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| lingcod | 1 | 86 | 1 | 86 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| California lizardfish | 1 | 108 |  |  |  |  | 1 | 108 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| plainfin midshipman | 1 | 35 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 35 |  |  |  |  |  |  |
| rubberlip surfperch | 1 | 98 |  |  |  |  |  |  |  |  | 1 | 98 |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 1 | 299 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 299 |  |  |
| striped kelpfish | 1 |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 1,387 |  | 21 |  | 134 |  | 90 |  | 153 |  | 78 |  | 192 |  | 361 |  | 224 |  | 105 |  | 29 |  |

Table I-2b. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1993.

| Common Name | $\begin{aligned} & 1993 \\ & \text { Total } \end{aligned}$ | 1993 <br> Range | Station 2: 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 505 | 28-119 | 32 | 34-60 | 5 | 44-65 | 13 | 38-74 | 5 | 46-75 | 23 | 40-102 | 5 | 45-100 | 43 | 46-112 | 55 | 32-98 | 196 | 29-119 | 40 | 28-89 | 88 | 30-82 |
| English sole | 185 | 30-115 |  |  |  |  |  |  | 2 | 50-51 | 93 | 30-99 | 22 | 51-80 | 60 | 48-87 | 5 | 68-99 | 2 | 115 |  |  | 1 | 53 |
| bay pipefish | 38 | 113-256 | 1 | 186 | 2 | 117-139 |  | 150-256 |  |  | 1 | 200 | 3 | 113-208 | 8 | 120-211 | 11 | 125-214 | 2 | 180-203 | 2 | 147-187 | 5 | 125-197 |
| plainfin midshipman | 7 | 40-52 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 | 40-52 |  |  | 3 | 42-48 |
| tubesnout | 3 | 95-152 |  | 95-108 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |
| giant kelpfish | 2 | 125-126 |  |  |  |  |  | 125-126 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| seniorita | 2 | 71-74 |  |  |  |  |  | 71-74 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| cabezon | 1 | 58 |  |  |  |  |  |  | 1 | 58 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| California halibut | 1 | 179 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 179 |  |  |  |  |
| diamond turbot | 1 | 205 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 205 |  |  |  |  |
| lingcod | 1 | 122 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 122 |  |  |  |  |  |  |
| round stingray | 1 | 358 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 358 |  |  |  |  |
| sarcastic fringehead | 1 | 138 |  |  | 1 | 138 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| California tonguefish | 1 | 101 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 101 |  |  |  |  |
| Total | 749 |  | 35 |  | 8 |  | 20 |  | 8 |  | 117 |  | 30 |  | 111 |  | 72 |  | 208 |  | 42 |  | 98 |  |

Table I-2c. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1994.

| Common Name | $\begin{aligned} & 1994 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1994 \\ \text { Range } \end{gathered}$ | Station 2: 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 4,101 | 29-122 | 318 | 32-89 | 154 | 30-97 | 152 | 29-73 | 386 | 31-89 | 736 | 31-110 | 514 | 35-118 | 639 | 40-111 | 368 | 41-122 | 390 | 35-116 | 72 | 38-113 | 322 | 29-121 | 50 | 30-85 |
| English sole | 235 | 19-128 |  |  | 1 | 19 |  |  |  |  | 68 | 22-70 | 32 | 33-85 | 28 | 39-105 | 81 | 66-111 | 22 | 76-114 | 3 | 106-128 |  |  |  |  |
| lingcod | 101 | 81-243 | 1 | 243 |  |  | 1 | 81 |  |  |  |  | 42 | 107-146 | 28 | 109-168 | 15 | 132-190 | 12 | 147-203 | 2 | 195-231 |  |  |  |  |
| staghorn sculpin | 70 | 84-131 |  |  |  |  |  |  |  |  | 8 | 95-122 | 17 | 90-118 | 32 | 84-131 | 6 | 104-123 | 7 | 109-125 |  |  |  |  |  |  |
| bay pipefish | 35 | 98-219 | 3 | 155-202 | 4 | 108-179 |  |  | 4 | 147-211 |  |  | 2 | 196-219 | 2 | 200-208 |  |  | 5 | 166-178 | 7 | 98-216 | 5 | 98-194 | 3 | 109-146 |
| tubesnout | 32 | 98-159 |  |  |  |  |  |  |  | 98-106 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 29 | 100-159 |
| cabezon | 24 | 41-221 | 1 | 46 | 2 | 41-57 |  |  |  | 42-45 | 1 | 62 | 6 | 54-81 | 6 | 54-100 | 3 | 67-105 | 1 | 123 | 1 | 221 |  |  | 1 | 194 |
| Syngnathus exilis | 23 | 146-261 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 | 190-245 | 13 | 196-253 | 3 | 234-261 |  |  | 2 | 146-175 |
| shiner surfperch | 21 | 96-134 |  |  |  |  |  |  |  |  |  |  | 18 | 96-134 | 1 | 113 | 2 | 119-121 |  |  |  |  |  |  |  |  |
| plainfin midshipman | 6 | 32-174 |  |  |  |  |  |  |  |  |  |  | 4 | 161-174 |  |  |  |  |  |  |  |  |  |  | 2 | 32-42 |
| vermilion rockfish | 3 | 34-94 | 1 | 34 |  |  |  |  |  |  |  |  | 2 | 71-94 |  |  |  |  |  |  |  |  |  |  |  |  |
| curlfin turbot | 2 | 73-98 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 73-98 |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 2 | 84-87 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 84-87 |  |  |  |  |  |  |  |  |
| white surfperch | 2 | 89-91 |  |  |  |  |  |  |  |  |  |  | 2 | 89-91 |  |  |  |  |  |  |  |  |  |  |  |  |
| bonyhead sculpin | 1 | 92 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 92 |  |  |  |  |  |  |
| giant kelpfish | 1 | 130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 130 |
| jack mackerel | 1 | 169 |  |  |  |  |  |  |  |  |  |  | 1 | 169 |  |  |  |  |  |  |  |  |  |  |  |  |
| night smelt | 1 | 78 |  |  | 1 | 78 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| penpoint gunnel | 1 | 134 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 134 |
| rockweed gunnel | 1 | 90 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 90 |  |  |
| round stingray | 1 | 355 |  |  |  |  |  |  |  |  | 1 | 355 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sand sole | 1 | 284 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 284 |  |  |
| spotted turbot | 1 | 142 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 142 |  |  |  |  |  |  |
| striped kelpfish | 1 | 76 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | , | 76 |  |  |
| Total | 4,667 |  | 324 |  | 162 |  | 153 |  | 395 |  | 814 |  | 640 |  | 736 |  | 484 |  | 452 |  | 88 |  | 330 |  | 89 |  |

Table I-2d. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1995.

| Common Name | $\begin{aligned} & 1995 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1995 \\ \text { Range } \end{gathered}$ | Station 2: 1995 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| speckled sanddab | 773 | 31-114 | 115 | 35-108 | 67 | 39-101 | 318 | 31-114 | 96 | 40-103 | 28 | 37-88 | 114 | 43-96 | 35 | 32-95 |
| English sole | 136 | 25-110 |  |  | 1 | 60 | 4 | 40-50 | 9 | 25-88 | 100 | 51-91 | 21 | 67-110 | 1 | 109-110 |
| staghorn sculpin | 91 | 73-151 |  |  |  |  | 1 | 90 | 14 | 95-151 | 57 | 73-143 | 19 | 100-124 |  |  |
| shiner surferch | 9 | 84-127 |  |  |  |  | 8 | 84-127 |  |  | 1 | 120 |  |  |  |  |
| California tonguefish | 6 | 49-52 |  |  |  |  | 6 | 49-52 |  |  |  |  |  |  |  |  |
| bay pipefish | 5 | 115-196 |  |  | 4 | 115-190 |  |  |  |  |  |  |  |  | 1 | 196 |
| bay goby | 4 | 32-90 |  |  |  |  | 1 | 89 |  |  | 2 | 79-90 |  |  | 1 | 32 |
| Syngnathus exilis | 4 | 180-212 |  |  |  |  |  |  | 1 | 186 |  |  |  |  | 3 | 180-212 |
| sand sole | 3 | 126-265 | 1 | 126 |  |  | 1 | 176 |  |  |  |  |  |  | 1 | 265 |
| tubesnout | 3 | 112-134 | 3 | 112-134 |  |  |  |  |  |  |  |  |  |  |  |  |
| cabezon | 2 | 58-61 |  |  | 1 | 58 | 1 | 61 |  |  |  |  |  |  |  |  |
| lingcod | 2 | 320-424 | 1 | 424 |  |  |  |  | 1 | 320 |  |  |  |  |  |  |
| starry flounder | 2 | 351-382 |  |  |  |  |  |  |  | 382 |  |  | 1 | 351 |  |  |
| barred sand bass | 1 | 146 | 1 | 146 |  |  |  |  |  |  |  |  |  |  |  |  |
| gopher rockfish | 1 | 56 |  |  |  |  |  |  |  |  |  |  | 1 | 56 |  |  |
| California lizardfish | 1 | 89 |  |  |  |  |  |  |  |  | 1 | 89 |  |  |  |  |
| spotted cusk-eel | 1 | 122 |  |  |  |  | 1 | 122 |  |  |  |  |  |  |  |  |
| Pacific tomcod | , | 56 |  |  |  |  |  |  |  |  | 1 | 56 |  |  |  |  |
| white surfperch | 1 | 190 |  |  |  |  | 1 | 190 |  |  |  |  |  |  |  |  |
| Total | 1,046 |  | 121 |  | 73 |  | 342 |  | 122 |  | 190 |  | 156 |  | 42 |  |

Table I-2d. CDFG otter trawl survey counts and length ranges ( mm ) of fishes collected at station 2 during 1996.

| Common Name | Station 2: 1996 |  |
| :--- | :---: | :---: |
|  | Apr |  |
|  | Count | Range |
| speckled sanddab | 137 | $33-84$ |
| English sole | 75 | $24-81$ |
| northern anchovy | 41 | $45-60$ |
| staghorn sculpin | 10 | $71-113$ |
| Pacific herring | 7 | $56-64$ |
| cabezon | 3 | $40-46$ |
| bay goby | 2 | $75-82$ |
| white surfperch | 2 | $76-192$ |
| shiner surfperch | 1 | 92 |
| swell shark | 1 | 444 |
| Total | 279 |  |
|  |  |  |

Table I-2e. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1998.

| Common Name | $\begin{aligned} & 1998 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1998 \\ \text { Range } \end{gathered}$ | Station 2: 1998 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| speckled sanddab | 170 | 24-123 | 23 | 34-85 | 27 | 33-90 | 52 | 40-107 | 2 | 76-86 | 27 | 24-100 | 39 | 38-123 |
| shiner surfperch | 75 | 86-151 |  |  | 12 | 86-102 | 34 | 104-151 | 29 | 106-138 |  |  |  |  |
| English sole | 47 | 31-90 |  |  |  |  | 31 | 31-67 | 13 | 46-76 | 3 | 71-90 |  |  |
| staghorn sculpin | 12 | 69-127 |  |  |  |  | 3 | 79-90 | 6 | 69-101 | 1 | 127 | 2 | 99-103 |
| California tonguefish | 6 | 58-71 |  |  | 2 | 65-67 | 4 | 58-71 |  |  |  |  |  |  |
| white surfperch | 4 | 168-182 | 1 | 168 |  |  | 1 | 180 | 2 | 182 |  |  |  |  |
| pile surfperch | 3 | 164-229 |  |  | 1 | 164 |  |  | 2 | 222-229 |  |  |  |  |
| plainfin midshipman | 3 | 39-158 |  |  |  |  | 1 | 158 |  |  | 1 | 39 | 1 | 47 |
| sarcastic fringehead | 2 | 115-139 |  |  |  |  | 2 | 115-139 |  |  |  |  |  |  |
| spotted scorpionfish | 2 | 44 |  |  | 2 | 44 |  |  |  |  |  |  |  |  |
| spotted cusk-eel | 2 | 131-167 |  |  |  |  | 2 | 131-167 |  |  |  |  |  |  |
| bat ray | 1 | 850 |  |  |  |  | 1 | 850 |  |  |  |  |  |  |
| bay goby | 1 | 37 |  |  |  |  | 1 | 37 |  |  |  |  |  |  |
| bay pipefish | 1 | 145 |  |  |  |  | 1 | 145 |  |  |  |  |  |  |
| California halibut | 1 | 175 |  |  |  |  |  |  |  |  | 1 | 175 |  |  |
| lingcod | , | 438 |  |  |  |  |  |  | 1 | 438 |  |  |  |  |
| sand sole | 1 | 322 |  |  |  |  | 1 | 322 |  |  |  |  |  |  |
| Total | 332 |  | 24 | 34-168 | 44 | 33-164 | 134 | 31-850 | 55 | 46-438 | 33 | 24-175 | 42 | 38-123 |

Table I-2f. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 2 during 1999.

| Common Name | $\begin{aligned} & 1999 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1999 \\ \text { Range } \end{gathered}$ | Station 2: 1999 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  |  | Mar |  | May |  | Jul |  |
|  |  |  | Count |  | Range | Count | Range | Count | Range | Count | Range |
| speckled sanddab | 393 | 39-115 |  | 7 | 40-57 | 22 | 39-73 | 230 | 41-94 | 134 | 50-115 |
| English sole | 160 | 46-115 |  |  |  |  |  | 121 | 46-100 | 39 | 73-115 |
| lingcod | 87 | 98-178 |  |  |  |  |  | 18 | 98-144 | 69 | 114-178 |
| Pacific herring | 39 | 68-72 |  |  |  |  |  | 39 | 68-72 |  |  |
| staghorn sculpin | 23 | 80-132 |  |  |  |  |  | 1 | 80 | 22 | 87-132 |
| kelp greenling | 12 | 90-125 |  |  |  |  |  |  |  | 12 | 90-125 |
| vermilion rockfish | 8 | 38-55 |  |  |  | 7 | 38-51 | 1 | 55 |  |  |
| pile surfperch | 7 | 103-219 |  |  |  |  |  |  |  | 7 | 103-219 |
| cabezon | 4 | 75-150 |  |  |  |  |  |  |  | 4 | 75-150 |
| black surfperch | 1 | 75 |  |  |  |  |  |  |  | 1 | 75 |
| bocaccio | 1 | 118 |  |  |  |  |  |  |  | 1 | 118 |
| gunnel, unidentified. | 1 | 65 |  |  |  |  |  | 1 | 65 |  |  |
| northern anchovy | 1 | 74 |  |  |  |  |  | 1 | 74 |  |  |
| plainfin midshipman | 1 | 148 |  |  |  |  |  | 1 | 148 |  |  |
| rainbow surfperch | 1 | 65 |  |  |  |  |  |  |  | 1 | 65 |
| shiner surfperch | 1 | 106 |  |  |  |  |  | 1 | 106 |  |  |
| white surfperch | 1 | 136 |  |  |  |  |  |  |  | 1 | 136 |
| Total | 741 |  |  | 7 |  | 29 |  | 414 |  | 291 |  |

Table I-3a. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1992.

| Common Name | $\begin{aligned} & 1992 \\ & \text { Total } \end{aligned}$ | $1992$ <br> Range | Station 3: 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 1,519 | 31-116 | 58 | 50-87 | 72 | 31-89 | 64 | 41-106 | 85 | 37-115 | 89 | 33-113 | 99 | 33-106 | 376 | 31-110 | 313 | 37-116 | 235 | 32-114 | 128 | 32-108 |
| bay pipefish | 116 | 101-270 | 10 |  | 22 | 106-160 | 3 | 150-218 | 3 | 153-220 | 3 | 114-160 | 15 | 101-251 | 26 | 135-230 | 10 | 158-270 | 12 | 165-266 | 12 | 115-201 |
| staghorn sculpin | 28 | 85-141 |  |  | 1 | 141 | 2 | 85-101 | 10 | 95-105 | 2 | 90-101 | 2 | 116-119 | 8 | 100-128 | 3 | 115-126 |  |  |  |  |
| cabezon | 23 | 43-132 |  |  | 3 | 53-86 | 7 | 43-64 | 4 | 60-69 | 1 | 76 | 4 | 68-109 | 2 | 90-125 | 2 | 80-132 |  |  |  |  |
| sarcastic fringehead | 20 | 60-140 |  |  | 9 | 60-80 | 3 | 69-105 | 6 | 72-140 |  |  | 1 | 116 |  |  | 1 | 103 |  |  |  |  |
| northern anchovy | 5 | 36-41 |  |  |  | 36-41 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| c-o turbot | 3 | 288-293 |  |  |  |  |  |  |  |  |  |  | 2 | 288-293 | 1 | 290 |  |  |  |  |  |  |
| English sole | 3 | 46-94 |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 46-59 |  |  | 1 | 94 |  |  |
| bay goby | 2 | 31-73 |  |  |  |  |  |  |  |  |  |  | 1 | 31 | , | 73 |  |  |  |  |  |  |
| plainfin midshipman | 2 | 56-120 |  |  |  |  |  |  | 1 | 120 |  |  |  |  |  |  |  | 56 |  |  |  |  |
| spotted turbot | 2 | 114-213 |  |  |  |  | 1 | 213 |  |  |  |  |  |  |  |  | 1 | 114 |  |  |  |  |
| bat ray | 1 | 300 |  |  |  |  |  |  |  |  | 1 | 300 |  |  |  |  |  |  |  |  |  |  |
| diamond turbot | 1 | 203 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 203 |  |  |
| shiner surfperch | 1 | 127 |  |  |  |  |  |  | 1 | 127 |  |  |  |  |  |  |  |  |  |  |  |  |
| white surfperch | 1 | 174 |  |  | 1 | 174 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 1,727 |  | 68 |  | 113 |  | 80 |  | 110 |  | 96 |  | 124 |  | 416 |  | 331 |  | 249 |  | 140 |  |

Table I-3b. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1993.

| Common Name | $\begin{aligned} & 1993 \\ & \text { Total } \end{aligned}$ | Range | Station 3: 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 637 | 34-127 | 85 | 36-85 | 25 | 39-105 | 23 | 42-77 | 9 | 55-83 | 69 | 47-127 | 75 | 39-118 | 25 | 52-106 | 18 | 42-123 | 67 | 53-119 | 93 | 35-114 | 148 | 34-102 |
| bay pipefish | 78 | 75-242 | 5 | 113-162 | 1 | 165 | 4 | 108-155 |  |  | 1 | 242 | 4 | 143-210 | 10 | 129-214 | 8 | 120-214 | 20 | 96-216 | 10 | 138-225 | 15 | 75-210 |
| English sole | 63 | 41-113 |  |  |  |  |  |  |  |  | 31 | 52-82 | 25 | 41-94 | 3 | 64-79 | 2 | 80-94 | 2 | 110-113 |  |  |  |  |
| plainfin midshipman | 10 | 45-62 | 1 | 59 | 1 | 62 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 8 | 45-62 |
| tubesnout | 9 | 97-143 | 2 | 134-140 | 2 | 124-136 | 1 | 126 | 1 | 137 |  |  |  |  |  |  |  |  | 1 | 130 | 1 | 97 | 1 | 143 |
| cabezon | 8 | 45-112 |  |  |  |  |  |  |  | 45-75 | 1 | 62 |  |  |  | 82-110 |  |  | 1 | 112 |  |  |  |  |
| grass rockfish | 8 | 43-52 |  |  |  |  |  |  |  |  |  |  | 2 |  |  | 43-52 |  |  |  |  |  |  |  |  |
| lingcod | 8 | 113-164 |  |  |  |  |  |  |  |  |  |  | 1 | 113 |  | 130-145 | 3 | 136-164 |  |  |  |  |  |  |
| staghorn sculpin | 5 | 54-147 | 1 | 147 |  |  |  |  | 1 | 54 | 1 | 116 |  |  |  |  |  |  | 2 | 72-146 |  |  |  |  |
| c-o turbot | 3 | 96-291 |  |  | 1 | 291 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 96-290 |
| rubberlip surfperch | 3 | 97-105 |  |  |  |  |  |  |  |  |  |  |  |  | 3 | 97-105 |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 3 | 95-124 |  |  |  |  |  |  |  |  |  | 95-124 |  |  |  |  |  |  |  |  |  |  |  |  |
| California tonguefish | 2 | 35-38 |  |  |  |  |  | 35-38 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| white surfperch | 2 | 85-214 |  | 214 |  |  |  |  |  |  |  |  |  |  | 1 | 85 |  |  |  |  |  |  |  |  |
| brown rockfish | 1 | 67 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 67 |  |  |  |  |
| California halibut | 1 | 274 |  |  |  |  |  |  |  |  |  |  | 1 | 274 |  |  |  |  |  |  |  |  |  |  |
| diamond turbot | 1 | 226 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 226 |  |  |
| sand sole | 1 | 339 |  |  |  | 339 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 1 | 105 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 105 |  |  |
| Total | 844 |  | 95 |  | 31 |  | 30 |  | 14 |  | 106 |  | 108 |  | 55 |  | 31 |  | 94 |  | 106 |  | 174 |  |

Table I-3c. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1994.

| Common Name | $\begin{aligned} & 1994 \\ & \text { Total } \end{aligned}$ | $1994$ <br> Range | Station 3: 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 2,228 | 30-140 | 427 | 34-140 | 221 | 32-104 | 88 | 32-73 | 173 | 30-99 | 272 | 37-125 | 240 | 38-126 | 220 | 38-106 | 178 | 44-109 | 72 | 36-100 | 50 | 47-106 | 254 | 30-109 | 33 | 36-82 |
| bay pipefish | 106 | 85-232 | 5 | 114-155 | 3 | 96-171 | 7 | 95-134 | 7 | 131-150 | 4 | 157-226 | 12 | 143-201 | 7 | 191-232 |  | 205 | 13 | 119-190 | 14 | 119-229 | 28 | 85-216 | 5 | 133-192 |
| lingcod | 49 | 98-245 |  |  |  |  |  |  |  |  | 5 | 114-135 | 19 | 101-141 | 12 | 98-134 | 7 | 125-144 | 4 | 147-189 | 1 | 167 |  |  | , | 245 |
| cabezon | 48 | 39-149 | 1 | 39 |  |  |  |  |  |  | 12 | 52-75 | 18 | 62-91 | 6 | 60-105 | 3 | 70-112 | 5 | 89-149 | 2 | 71-144 | 1 | 127 |  |  |
| staghorn sculpin | 41 | 68-151 |  |  | 1 | 151 |  |  |  |  | 7 | 71-123 | 7 | 99-112 | 16 | 68-123 | 7 | 98-118 | 3 | 125-136 |  |  |  |  |  |  |
| Syngnathus exilis | 21 | 185-247 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 13 | 205-247 | 7 | 193-240 |  |  | 1 | 185 |  |  |
| English sole | 18 | 35-90 |  |  |  |  | 1 | 38 | 1 | 55 | 8 | 35-75 | 6 | 35-67 |  |  | 1 | 62 | 1 | 90 |  |  |  |  |  |  |
| vermilion rockfish | 8 | 36-88 |  |  |  |  | 1 | 46 | 2 | 36-50 |  |  | 4 | 51-88 | 1 | 72 |  |  |  |  |  |  |  |  |  |  |
| plainfin midshipman | 7 | 46-174 | 1 | 48 |  |  |  |  |  |  | 1 | 150 | 3 | 167-174 |  |  | 1 | 115 |  |  |  |  | 1 | 46 |  |  |
| sarcastic fringehead | 5 | 110-178 |  |  | 1 | 110 |  |  | 1 | 144 |  |  |  |  | 3 | 110-178 |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 5 | 106-126 |  |  |  |  |  |  |  |  |  |  | 5 | 106-126 |  |  |  |  |  |  |  |  |  |  |  |  |
| California tonguefish | 5 | 53-79 |  |  | 1 | 53 |  |  |  |  | 1 | 64 | 1 | 75 | 2 | 72-79 |  |  |  |  |  |  |  |  |  |  |
| grass rockfish | 4 | 42-132 |  |  |  |  |  |  |  |  |  |  | 1 | 132 |  |  |  | 42-50 |  |  |  |  |  |  |  |  |
| snubnose pipefish | 4 | 105-150 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 | 105-150 |  |  |  |  |  |  |  |  |
| bonyhead sculpin | 3 | 81-105 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 81-105 |  |  | 1 | 84 |  |  |
| black surfperch | 2 | 75-75 |  |  |  |  |  |  |  |  | 1 | 75 |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |
| c-o turbot | 2 | 226-244 |  | 244 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 226 |  |  |  |  |
| tubesnout | 2 | 143-145 | 1 | 143 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 145 |  |  |  |  |  |  |
| northern anchovy | 1 | 135 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 135 |  |  |  |  |  |  |  |  |  |  |
| spearnose poacher | 1 | 90 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| stripetail rockfish | 1 | 45 |  |  |  |  |  |  |  |  |  |  | 1 | 45 |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 2,561 | 30-247 | 436 | 34-244 | 227 | 32-171 | 97 | 32-134 | 184 | 30-150 | 311 | 35-226 | 318 | 35-201 | 268 | 38-232 | 218 | 42-247 | 109 | 36-240 | 68 | 47-229 | 286 | 30-216 | 39 | 36-245 |

Table I-3d. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1995.

| Common Name | $\begin{aligned} & 1995 \\ & \text { Total } \end{aligned}$ | 1995 <br> Range | Station 3: 1995 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| speckled sanddab | 562 | 32-120 | 31 | 34-98 | 63 | 41-97 | 204 | 32-120 | 169 | 37-116 | 6 | 56-101 | 38 | 42-90 | 51 | 35-92 |
| shiner surfperch | 196 | 54-147 | 1 | 92 | 25 | 78-127 | 11 | 94-139 |  |  | 159 | 54-147 |  |  |  |  |
| staghorn sculpin | 42 | 82-165 |  |  |  | 150-165 |  |  | 17 | 99-128 | 20 | 82-165 | 3 | 91-102 |  |  |
| English sole | 28 | 25-80 |  |  |  |  | 3 | 35-59 | 4 | 25-52 | 21 | 60-80 |  |  |  |  |
| California tonguefish | 16 | 46-88 |  |  |  |  | 9 | 46-52 | 2 | 57-65 |  | 58-88 | 1 | 68 |  |  |
| bay goby | 9 | 48-90 |  |  |  |  | 9 | 48-90 |  |  |  |  |  |  |  |  |
| white surfperch | 9 | 164-261 |  | 226-246 |  | 164-261 | 1 | 208 |  |  |  |  |  |  |  |  |
| pile surfperch | 8 | 196-306 |  |  |  | 196-231 |  |  |  |  |  | 231-306 |  |  |  |  |
| cabezon | 4 | 47-107 |  |  |  |  | 1 | 47 |  |  | 1 |  | 2 | 81-107 |  |  |
| California halibut | 4 | 257-686 |  |  |  |  | 1 | 482 |  | 257-686 |  |  |  |  |  |  |
| Syngnathus exilis | 4 | 178-210 |  |  |  |  | 1 | 178 |  | 210 |  |  | 1 | 178 | 1 | 183 |
| black surfperch | 3 | 65-250 |  |  | 1 | 250 | 1 | 182 | 1 |  |  |  |  |  |  |  |
| sarcastic fringehead | 3 | 95-136 |  |  |  |  | 1 | 106 |  | 95-136 |  |  |  |  |  |  |
| spotted cusk-eel | 3 | 105-210 |  |  |  |  |  | 105-210 |  |  |  |  |  |  |  |  |
| bay pipefish | 2 | 127-201 |  | 127-201 |  |  |  |  |  |  |  |  |  |  |  |  |
| lingcod | 2 | 185-249 |  |  | 1 | 249 |  |  |  |  |  |  | 1 | 185 |  |  |
| sand sole | 2 | 146-168 |  |  |  |  |  | 146-168 |  |  |  |  |  |  |  |  |
| bonyhead sculpin | 1 | 107 |  |  | 1 | 107 |  |  |  |  |  |  |  |  |  |  |
| c-o turbot | 1 | 80 |  |  |  |  |  |  | 1 | 80 |  |  |  |  |  |  |
| diamond turbot | 1 | 245 |  |  |  |  | 1 | 245 |  |  |  |  |  |  |  |  |
| plainfin midshipman | 1 | 51 |  |  |  |  |  |  |  |  |  |  | 1 | 51 |  |  |
| spearnose poacher | 1 | 93 |  | 93 |  |  |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 1 | 360 |  |  |  |  |  |  |  |  | 1 | 360 |  |  |  |  |
| walleye surfperch | 1 | 210 |  |  |  |  |  |  |  |  | 1 | 210 |  |  |  |  |
| Total | 904 |  | 37 | 34-246 | 102 | 41-261 | 248 | 32-482 | 200 | 25-686 | 218 | 54-360 | 47 | 42-185 | 52 | 35-183 |

Table I-3e. CDFG otter trawl survey counts and length ranges ( mm ) of fishes collected at station 3 during
1996.

| Common Name | Station 3: 1996 |  |  |
| :--- | :---: | :---: | :---: |
|  | Apr |  |  |
|  | Count | Range |  |
| northern anchovy | 50 | $34-49$ |  |
| speckled sanddab | 32 | $36-82$ |  |
| English sole | 21 | $46-75$ |  |
| white surfperch | 6 | $174-214$ |  |
| staghorn sculpin | 4 | $68-103$ |  |
| shiner surfperch | 3 | $122-154$ |  |
| bay pipefish | 1 | 147 |  |
| cabezon | 1 | 91 |  |
| Pacific herring | 1 | 51 |  |
| pile surfperch | 1 | 223 |  |
| Syngnathus exilis | 1 | 151 |  |
| Total | 121 |  |  |
|  |  |  |  |

Table I-3f. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1998.

| Common Name | $\begin{aligned} & 1998 \\ & \text { Total } \end{aligned}$ | $1998$Range | Station 3: 1998 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| shiner surfperch | 359 | 42-157 | 4 | 83-97 | 102 | 70-142 | 215 | 90-157 | 38 | 42-145 |  |  |  |  |
| speckled sanddab | 124 | 34-105 | 8 | 34-76 | 19 | 51-88 | 19 | 54-98 | 3 | 74-85 | 11 | 39-96 | 64 | 39-105 |
| California tonguefish | 11 | 39-79 |  |  | 7 | 39-63 | 3 | 53-78 | 1 | 79 |  |  |  |  |
| bay pipefish | 9 | 113-215 | 1 | 204 | 1 | 155 | 3 | 113-125 |  |  | 1 | 183 | 3 | 142-215 |
| English sole | 8 | 47-117 |  |  |  |  | 3 | 47-65 | 3 | 55-64 | 1 | 99 | 1 | 117 |
| black surfperch | 6 | 157-190 |  |  |  |  | 6 | 157-190 |  |  |  |  |  |  |
| pile surfperch | 6 | 198-350 | 4 | 198-350 | 1 | 248 | 1 | 257 |  |  |  |  |  |  |
| staghorn sculpin | 3 | 80-97 |  |  |  |  | 1 | 84 | 2 | 80-97 |  |  |  |  |
| California halibut | 2 | 290-299 |  |  |  |  | 1 | 290 | 1 | 299 |  |  |  |  |
| plainfin midshipman | 2 | 149-158 |  |  |  |  | 1 | 149 |  | 158 |  |  |  |  |
| bat ray | 1 | 1050 |  |  |  |  | 1 | 1050 |  |  |  |  |  |  |
| California lizardfish | 1 | 141 |  |  |  |  |  |  |  |  |  |  | 1 | 141 |
| rubberlip surferch | 1 | 259 |  |  |  |  | 1 | 259 |  |  |  |  |  |  |
| starry flounder | 1 | 264 |  |  | 1 | 264 |  |  |  |  |  |  |  |  |
| thornback | 1 | 318 |  |  |  |  |  |  | 1 | 318 |  |  |  |  |
| topsmelt | 1 | 275 |  |  |  |  |  |  | 1 | 275 |  |  |  |  |
| white surfperch | 1 | 197 | 1 | 197 |  |  |  |  |  |  |  |  |  |  |
| Total | 537 |  | 18 | 34-350 | 131 | 39-264 | 255 | 47-1050 | 51 | 42-318 | 13 | 39-183 | 69 | 39-215 |

Table I-3g. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 3 during 1999.

| Common Name | $\begin{aligned} & 1999 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1999 \\ \text { Range } \end{gathered}$ | Station 3: 1999 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  |
|  |  |  | Count | Range | Count | Range | Count | Range | Count | Range |
| speckled sanddab | 578 | 41-115 | 37 | 45-114 | 35 | 41-82 | 361 | 46-106 | 145 | 51-115 |
| shiner surfperch | 105 | 44-149 |  |  |  |  | 34 | 84-143 | 71 | 44-149 |
| English sole | 57 | 51-96 |  |  |  |  | 52 | 51-93 | 5 | 75-96 |
| staghorn sculpin | 31 | 67-130 |  |  | 2 | 67-92 | 4 | 71-122 | 25 | 85-130 |
| vermilion rockfish | 25 | 35-61 |  |  | 14 | 35-46 | 11 | 42-61 |  |  |
| California tonguefish | 16 | 44-85 |  |  |  |  | 7 | 44-85 | 9 | 46-75 |
| cabezon | 13 | 57-90 |  |  |  |  | 13 | 57-90 |  |  |
| lingcod | 11 | 102-140 |  |  |  |  | 4 | 102-115 | 7 | 118-140 |
| pile surfperch | 9 | 92-286 |  |  |  |  |  |  | 9 | 92-286 |
| California halibut | 6 | 123-369 | 4 | 123-137 | 1 | 303 |  |  | 1 | 369 |
| Pacific herring | 3 | 64-69 |  |  |  |  | 3 | 64-69 |  |  |
| thornback | 3 | 462-558 |  |  |  |  |  |  | 3 | 462-558 |
| white surfperch | 3 | 235-288 |  |  |  |  | 1 | 267 | 2 | 235-288 |
| diamond turbot | 2 | 198-241 | 2 | 198-241 |  |  |  |  |  |  |
| sand sole | 2 | 285-318 | 1 | 285 | 1 | 318 |  |  |  |  |
| black surfperch | 1 | 74 |  |  |  |  |  |  | 1 | 74 |
| bocaccio | 1 | 112 |  |  |  |  |  |  | 1 | 112 |
| grass rockfish | 1 | 50 |  |  |  |  | 1 | 50 |  |  |
| northern anchovy | 1 | 22 |  |  | 1 | 22 |  |  |  |  |
| plainfin midshipman | 1 | 151 |  |  |  |  | 1 | 151 |  |  |
| rockpool blenny | 1 | 80 |  |  |  |  | 1 | 80 |  |  |
| shovelnose guitarfish | 1 | 1025 |  |  |  |  | 1 | 1025 |  |  |
| turbot, unidentified | 1 | 68 |  |  |  |  | 1 | 68 |  |  |
| Total | 872 | 22-1025 | 44 | 45-285 | 54 | 22-318 | 495 | 42-1025 | 279 | 44-558 |

Table I-4a. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 4 during 1992.

| Common Name | $\begin{aligned} & 1992 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1992 \\ \text { Range } \end{gathered}$ | Station 4: 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 373 | 31-145 | 13 | 44-90 | 29 | 52-112 | 24 | 63-106 | 34 | 31-110 | 24 | 37-122 | 31 | 47-113 | 83 | 39-145 | 75 | 52-109 | 60 | 50-105 |
| staghorn sculpin | 206 | 44-131 | 25 | 44-102 | 61 | 73-131 | 62 | 72-118 | 32 | 76-107 | 4 | 88-114 | 6 | 91-114 | 16 | 97-113 |  |  |  |  |
| shiner surferch | 76 | 43-136 | 24 | 99-128 | 2 | 108-121 | 34 | 43-136 | 16 | 51-120 |  |  |  |  |  |  |  |  |  |  |
| English sole | 75 | 31-95 | 20 | 31-78 | 37 | 42-86 | 10 | 58-95 |  |  |  |  |  |  | 1 | 67 | 5 | 75-91 | 2 | 74-85 |
| bay pipefish | 21 | 105-203 | 1 | 128 | 1 | 192 |  |  | 1 | 200 | 4 | 105-140 |  |  | 2 | 155-179 | 7 | 127-203 | 5 | 116-202 |
| California halibut | 17 | 68-746 | 2 | 170-746 |  |  | 5 | 68-509 | 2 | 410-440 | 3 | 161-306 |  |  | 1 | 170 | 4 | 179-290 |  |  |
| northern anchovy | 12 | 42-52 | 12 | 42-52 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| California tonguefish | 11 | 46-92 |  |  | 3 | 47-65 | 4 | 46-92 | 4 | 61-69 |  |  |  |  |  |  |  |  |  |  |
| bay goby | 9 | 23-61 | 5 | 23-59 | 2 | 60-61 |  |  |  |  | 2 | 23-24 |  |  |  |  |  |  |  |  |
| white croaker | 7 | 27-33 | 7 | 27-33 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| black surfperch | 4 | 92-107 |  |  |  |  |  |  |  | 92-107 |  |  |  |  |  |  |  |  |  |  |
| California lizardfish | 4 | 88-135 |  |  | 2 | 88-109 | 2 | 120-135 |  |  |  |  |  |  |  |  |  |  |  |  |
| Pacific sardine | 4 | 41-44 |  | 41-44 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| plainfin midshipman | 4 | 33-60 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 52 | 3 | 33-60 |  |  |
| bat ray | 2 | 580-790 | 2 | 580-790 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| horn shark | 2 | 160-165 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 160-165 |  |  |
| cabezon | 1 | 42 |  |  | 1 | 42 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| c-o turbot | 1 | 60 |  |  |  | 60 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| diamond turbot | 1 | 203 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 203 |  |  |
| gopher rockfish | 1 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |
| round stingray | 1 | 358 |  |  |  | 358 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 1 | 79 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 79 |
| shovelnose guitarfish | 1 | 965 |  |  |  |  | 1 | 965 |  |  |  |  |  |  |  |  |  |  |  |  |
| thornback | 1 | 648 |  |  |  |  |  |  | 1 | 648 |  |  |  |  |  |  |  |  |  |  |
| Total | 835 | 23-965 | 115 | 23-790 | 140 | 42-358 | 142 | 43-965 | 94 | 31-648 | 37 | 23-306 | 38 | 47-114 | 104 | 39-179 | 97 | 33-290 | 68 | 50-202 |

Table I-4b. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 4 during 1993.

| Common Name | $\begin{aligned} & 1993 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1993 \\ \text { Range } \end{gathered}$ | Station 4: 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 274 | 32-127 | 82 | 40-117 | 51 | 48-89 | 21 | 51-92 | 7 | 71-114 | 5 | 46-85 | 1 | 111 | 6 | 67-114 | 4 | 60-80 | 11 | 59-123 | 25 | 38-127 | 61 | 32-125 |
| English sole | 126 | 30-124 | 1 | 85 |  |  |  |  | 10 | 30-62 | 58 | 32-85 | 42 | 52-92 | 4 | 70-79 | 1 | 113 | 7 | 104-124 |  | 99-100 | 1 | 55 |
| bay pipefish | 46 | 80-223 | 5 | 119-165 |  | 105-185 | 4 | 100-163 |  |  | 1 | 185 | 2 | 122-223 | 4 | 145-220 | 1 | 214 | 6 | 147-215 |  | 101-222 | 3 | 80-160 |
| staghorn sculpin | 30 | 35-157 | 6 | 117-157 | 2 | 35-77 | 2 | 57-62 |  |  | 7 | 88-136 | 9 | 96-142 | 3 | 99-145 |  |  | 1 | 133 |  |  |  |  |
| California halibut | 25 | 63-431 |  |  |  | 224-270 | 4 | 149-330 |  | 198-313 | 1 | 310 | 1 | 284 | 1 | 305 | 1 | 431 | 3 | 64-358 |  | 63-329 | 1 | 132 |
| plainfin midshipman | 22 | 31-66 | 10 | 31-50 |  |  |  |  |  |  |  |  |  |  | 1 | 32 |  |  | 2 | 38-46 |  | 42-66 |  |  |
| California tonguefish | 22 | 34-82 | 5 | 41-57 | 8 | 35-52 | 3 | 34-47 |  |  |  |  | 4 | 60-82 | 2 | 60-81 |  |  |  |  |  |  |  |  |
| topsmelt | 15 | 163-198 |  | 163-198 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| grass rockfish | 6 | 43-60 |  |  |  |  |  |  |  |  |  |  | 3 | 43-45 | 3 | 54-60 |  |  |  |  |  |  |  |  |
| horn shark | 4 | 695-760 |  | 695-760 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 4 | 46-94 | 1 | 84 |  |  |  |  |  |  |  |  | 3 | 46-94 |  |  |  |  |  |  |  |  |  |  |
| round stingray | 3 | 347-390 |  |  |  |  |  |  | 1 | 390 |  |  | 1 | 347 |  |  |  |  | 1 | 368 |  |  |  |  |
| thornback | 3 | 425-655 |  |  |  |  |  |  |  |  | 1 | 655 |  |  | 1 | 515 | 1 | 425 |  |  |  |  |  |  |
| brown rockfish | 2 | 50-59 |  |  |  |  |  |  |  |  |  |  | 2 | 50-59 |  |  |  |  |  |  |  |  |  |  |
| diamond turbot | 2 | 211-224 |  |  |  |  | 1 | 211 | 1 | 224 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| tubesnout | 2 | 125-127 | 1 | 125 | 1 | 127 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| arrow goby | 1 | 40 |  |  |  |  |  |  |  |  |  | 40 |  |  |  |  |  |  |  |  |  |  |  |  |
| bat ray | 1 | 630 |  |  |  |  |  |  |  |  |  | 630 |  |  |  |  |  |  |  |  |  |  |  |  |
| bay goby | 1 | 72 |  |  |  |  | 1 | 72 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 1 | 101 |  | 101 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shovelnose guitarfish | 1 | 1060 | 1 | 1060 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| spotted cusk-eel | 1 | 78 | 1 | 78 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rockfish, unidentified | 1 | 34 |  |  |  |  |  |  |  |  | 1 | 34 |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 593 | 30-1060 | 133 | 31-1060 | 72 | 35-270 | 36 | 34-330 | 24 | 30-390 | 76 | 32-655 | 68 | 43-347 | 25 | 32-515 | 8 | 60-431 | 31 | 38-368 | 54 | 38-329 | 66 | 32-160 |

Table I-4c. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 4 during 1994.

| Common Name | 19941994 <br> Total Range |  | Station 4: 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 797 | 26-157 | 215 | 30-157 | 170 | 31-104 | 51 | 54-129 | 19 | 65-96 | 17 | 53-115 | 12 | 66-113 | 62 | 26-134 | 26 | 45-108 | 10 | 38-122 | 16 | 45-121 | 102 | 32-120 | 97 | 36-101 |
| staghorn sculpin | 299 | 39-158 |  |  | 2 | 49-97 | 12 | 39-74 | 27 | 46-80 | 50 | 64-116 | 67 | 64-114 | 78 | 81-118 | 47 | 72-122 | 13 | 90-117 |  |  |  |  | 3 | 113-158 |
| English sole | 149 | 23-116 | 2 | 52-68 |  |  | 5 | 25-47 | 4 | 26-68 | 22 | 23-76 | 40 | 25-92 | 43 | 23-78 | 17 | 28-83 | 12 | 52-116 | 3 | 84-108 | 1 | 93 |  |  |
| California tonguefish | 77 | 44-95 | 3 | 45-51 |  |  | 15 | 45-66 | 20 | 44-73 | 17 | 58-79 | 10 | 62-93 | 12 | 58-95 |  |  |  |  |  |  |  |  |  |  |
| California halibut | 68 | 108-528 |  |  |  |  | 5 | 108-199 | 10 | 116-244 | 13 | 151-424 | 22 | 110-454 | 5 | 240-528 | 3 | 213-342 | 8 | 240-361 | 2 | 247-265 |  |  |  |  |
| bay pipefish | 42 | 70-209 | 9 | 70-201 | 4 | 146-195 |  |  | 2 | 149-150 | 3 | 153-186 | 1 | 170 | 3 | 114-185 | 2 | 130-150 | 7 | 99-209 |  |  | 5 | 105-190 | 6 | 107-198 |
| plainfin midshipman | 11 | 30-168 | 8 | 30-64 |  |  |  |  |  |  |  |  | 1 | 168 |  |  |  |  | 1 | 40 | 1 | 33 |  |  |  |  |
| night smelt | 6 | 77-106 |  |  |  |  | 6 | 77-106 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| diamond turbot | 3 | 189-235 |  |  |  |  | , | 235 |  |  |  |  | 1 | 189 |  |  |  |  |  |  |  |  | 1 | 215 |  |  |
| round stingray | 3 | 348-395 |  |  |  |  |  |  |  | 348-395 |  |  | 1 | 376 |  |  |  |  |  |  |  |  |  |  |  |  |
| cabezon | 2 | 76-102 |  |  |  |  |  |  |  |  | 1 | 76 |  | 102 |  |  |  |  |  |  |  |  |  |  |  |  |
| c-o turbot | 2 | 119-230 |  |  | 1 | 230 |  |  | 1 | 119 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| horn shark | 2 | 693-725 | 1 | 693 | 1 | 725 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| lingcod | 2 | 114-122 |  |  |  |  |  |  |  |  |  |  | 1 | 114 | 1 | 122 |  |  |  |  |  |  |  |  |  |  |
| vermilion rockfish barred sand bass | 2 1 | $36-63$ 122 |  |  |  |  |  | $36-63$ 122 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| giant kelpfish |  | 58 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 58 |  |  |  |  |  |  |  |  |  |  |
| northern anchovy | 1 | 74 |  |  |  |  |  |  |  |  |  |  | 1 | 74 |  |  |  |  |  |  |  |  |  |  |  |  |
| rubberlip surfperch | 1 | 98 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 98 |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 1 | 123 |  |  |  |  |  |  |  |  |  |  | 1 | 123 |  |  |  |  |  |  |  |  |  |  |  |  |
| shovelnose guitarfish | 1 | 326 | 1 | 326 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| spotted turbot | 1 | 222 |  |  |  |  | 1 | 222 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| starry flounder | , | 249 |  |  |  |  |  |  |  |  |  |  | 1 | 249 |  |  |  |  |  |  |  |  |  |  |  |  |
| Syngnathus exilis | 1 | 220 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 220 |  |  |  |  |  |  |
| tubesnout | 1 | 155 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 155 |
| Total | 1475 |  | 239 | 30-693 | 178 | 31-725 | 99 | 25-235 | 85 | 26-395 | 123 | 23-424 | 160 | 25-454 | 206 | 23-528 | 95 | 28-342 | 52 | 38-361 | 22 | 33-265 | 109 | 32-215 | 107 | 36-198 |

Table I-4d. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 4 during 1995.

| Common Name | $\begin{aligned} & 1995 \\ & \text { Total } \end{aligned}$ | $1995$ <br> Range | Station 4: 1995 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| staghorn sculpin | 1,861 | 21-160 | 1 | 130 | 17 | 56-155 | 84 | 21-160 | 440 | 68-131 | 1084 | 67-134 | 235 | 81-120 |  |  |
| northern anchovy | 848 | 41-114 |  |  | 48 | 70-114 | 5 | 52-56 |  |  | 143 | 41-80 | 652 | 62-76 |  |  |
| shiner surfperch | 234 | 60-140 | 2 | 89-120 | 82 | 82-135 | 27 | 80-134 | 74 | 60-140 | 36 | 94-140 | 13 | 75-126 |  |  |
| English sole | 131 | 19-115 | 1 | 19 | 3 | 42-51 |  |  | 6 | 28-35 | 109 | 30-86 | 11 | 80-115 | 1 | 83 |
| arrow goby | 127 | 35-55 |  |  |  |  | 127 | 35-55 |  |  |  |  |  |  |  |  |
| speckled sanddab | 125 | 40-124 | 41 | 42-105 | 65 | 42-124 | 9 | 40-78 | 2 | 72-84 |  |  | 1 | 111 | 7 | 57-84 |
| bay goby | 82 | 34-106 |  |  |  |  | 81 | 34-106 |  |  | 1 | 89 |  |  |  |  |
| dwarf surfperch | 32 | 81-140 |  |  | 28 | 108-140 | 3 | 81-127 |  |  | 1 | 140 |  |  |  |  |
| California tonguefish | 14 | 40-94 |  |  | 1 | 52 | 10 | 40-63 | 1 | 74 | 2 | 74-94 |  |  |  |  |
| bay pipefish | 13 | 83-225 |  |  | 2 | 155-225 | 11 | 83-171 |  |  |  |  |  |  |  |  |
| California halibut | 13 | 151-683 | 1 | 326 | 1 | 257 | 2 | 151-307 | 1 | 452 | 4 | 378-683 | 1 | 351 | 3 | 280-326 |
| plainfin midshipman | 9 | 41-155 |  |  |  |  |  |  |  |  | 6 | 145-155 | 1 | 46 | 2 | 41-43 |
| night smelt | 7 | 62-71 | 1 | 63 | 1 | 71 |  |  |  |  |  |  |  |  | 5 | 62-71 |
| bonyhead sculpin | 4 | 78-116 | 1 | 78 | 3 | 103-116 |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 4 | 139-351 |  |  |  |  | 1 | 236 |  |  | 1 | 310 | 1 | 139 | 1 | 351 |
| bat ray | 3 | 485-890 |  |  | 1 | 485 |  |  |  |  | 2 | 815-890 |  |  |  |  |
| black surfperch | 3 | 153-236 | 1 | 236 | 2 | 153-165 |  |  |  |  |  |  |  |  |  |  |
| horn shark | 3 | 750-771 | 1 | 771 | 1 | 750 |  |  |  |  | 1 | 766 |  |  |  |  |
| round stingray | 3 | 325-360 |  |  |  |  |  |  |  |  | 2 | 325-348 |  |  | 1 | 360 |
| leopard shark | 2 | 250-270 |  |  |  |  |  |  | 1 | 250 | 1 | 270 |  |  |  |  |
| pacific herring | 2 | 49 |  |  |  |  | 2 | 49 |  |  |  |  |  |  |  |  |
| c-o turbot | 1 | 68 |  |  |  |  | 1 | 68 |  |  |  |  |  |  |  |  |
| jacksmelt | 1 | 262 | 1 | 262 |  |  |  |  |  |  |  |  |  |  |  |  |
| California killifish | 1 | 59 |  |  |  |  | 1 | 59 |  |  |  |  |  |  |  |  |
| rubberlip surfeerch | 1 | 99 |  |  |  |  |  |  |  |  | 1 | 99 |  |  |  |  |
| sand sole | 1 | 150 | 1 | 150 |  |  |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 1 | 85 | 1 | 85 |  |  |  |  |  |  |  |  |  |  |  |  |
| thornback | 1 | 395 |  |  |  |  |  |  |  |  | 1 | 395 |  |  |  |  |
| tubesnout | 1 | 130 | 1 | 130 |  |  |  |  |  |  |  |  |  |  |  |  |
| walleye surfperch | 1 | 50 |  |  |  |  |  |  | 1 | 50 |  |  |  |  |  |  |
| white surfperch | 1 | 81 |  |  |  |  |  |  | 1 | 81 |  |  |  |  |  |  |
| Total | 3,530 |  | 54 | 19-771 | 255 | 42-750 | 364 | 21-307 | 527 | 28-452 | 1395 | 30-890 | 915 | 46-351 | 20 | 41-360 |

Table I-4e. CDFG otter trawl survey counts and length ranges ( mm ) of fishes collected at station 4 during 1996.

| Common Name | Station 4: 1996 |  |
| :--- | :---: | :---: |
|  | Total | Apr |
|  | Range |  |
| English sole | 681 | $20-89$ |
| staghorn sculpin | 198 | $56-128$ |
| California halibut | 15 | $168-374$ |
| northern anchovy | 13 | $33-40$ |
| shiner surfperch | 11 | $110-152$ |
| speckled sanddab | 2 | $57-60$ |
| white surfperch | 2 | 40 |
| diamond turbot | 1 | 278 |
| Pacific herring |  |  |
| white croaker |  |  |
| rockfish, unidentified | 1 | 59 |
| Total | 1 | 30 |
|  |  | $20-374$ |

Table I-4f. CDFG otter trawl survey counts and length ranges ( mm ) of fishes collected at station 4 during 1997.

| Common Name | Station 4: 1997 |  |
| :--- | :---: | :---: |
|  | Total | Oct |
|  | Range |  |
| speckled sanddab | 17 | $48-102$ |
| round stingray | 4 | $337-384$ |
| bay pipefish | 3 | $80-190$ |
| California halibut | 2 | $95-134$ |
| staghorn sculpin | 1 | 103 |
| starry flounder | 1 | 216 |
| Syngnathus exilis | 1 | 179 |
| Total | 29 | $48-384$ |

Table I-4g. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 4 during 1998.

| Common Name | $\begin{aligned} & 1998 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1998 \\ \text { Range } \end{gathered}$ | Station 4: 1998 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| staghorn sculpin | 278 | 56-172 |  |  | 40 | 62-172 | 36 | 56-113 | 198 | 60-110 | 4 | 91-127 |  |  |
| shiner surferch | 221 | 45-152 |  |  | 196 | 52-152 | 20 | 114-133 | 3 | 45-118 | 2 | 108-118 |  |  |
| California halibut | 78 | 89-797 |  |  | 58 | 89-244 | 8 | 148-249 | 5 | 255-318 | 5 | 141-797 | 2 | 215-355 |
| English sole | 46 | 27-114 |  |  | 1 | 108 | 15 | 27-50 | 27 | 31-79 | 1 | 67 | 2 | 99-114 |
| speckled sanddab | 35 | 36-109 | 5 | 57-85 | 19 | 50-109 | 2 | 63-98 |  |  | 2 | 58-68 | 7 | 36-94 |
| California tonguefish | 35 | 46-91 | 1 | 56 | 9 | 46-70 | 17 | 61-90 | 8 | 63-91 |  |  |  |  |
| round stingray | 27 | 287-444 |  |  | 7 | 343-395 |  |  | 3 | 302-374 |  |  | 17 | 287-444 |
| northern anchovy | 16 | 42-60 |  |  |  |  | 16 | 42-60 |  |  |  |  |  |  |
| Pacific herring | 15 | 20-35 |  |  | 15 | 20-35 |  |  |  |  |  |  |  |  |
| bat ray | 8 | 490-1100 |  |  |  |  | 5 | 640-1050 | 3 | 490-1100 |  |  |  |  |
| kelp bass | 8 | 36-89 | 8 | 36-89 |  |  |  |  |  |  |  |  |  |  |
| topsmelt | 7 | 70-183 |  |  | 1 | 183 | 2 | 122-132 | 4 | 70-181 |  |  |  |  |
| bay pipefish | 2 | 163-240 | 2 | 163-240 |  |  |  |  |  |  |  |  |  |  |
| leopard shark | 2 | 242-1200 |  |  |  |  | 1 | 242 | 1 | 1200 |  |  |  |  |
| plainfin midshipman | 2 | 129-180 |  |  |  |  | 2 | 129-180 |  |  |  |  |  |  |
| thornback | 2 | 413-509 |  |  |  |  |  |  | 2 | 413-509 |  |  |  |  |
| white croaker | 2 | 34-39 |  |  |  |  | 1 | 39 | 1 | 34 |  |  |  |  |
| grass rockfish | 1 | 101 |  |  |  |  |  |  | 1 | 101 |  |  |  |  |
| shovelnose guitarfish | 1 | 263 |  |  |  |  |  |  |  |  | 1 | 263 |  |  |
| snubnose pipefish | 1 | 104 | 1 | 104 |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 1 | 275 |  |  | 1 | 275 |  |  |  |  |  |  |  |  |
| Total | 788 | 20-1200 | 17 | 36-240 | 347 | 20-395 | 125 | 27-1050 | 256 | 31-1200 | 15 | 58-797 | 28 | 36-444 |

Table I-4h. CDFG otter trawl survey counts and length ranges (mm) of fishes
collected at station 4 during 1999.

| Common Name | $\begin{aligned} & 1999 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1999 \\ \text { Range } \end{gathered}$ | Station 4: 1999 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  |
|  |  |  | Count | Range | Count | Range | Count | Range | Count | Range |
| Pacific herring | 574 | 30-45 |  |  | 574 | 30-45 |  |  |  |  |
| northern anchovy | 188 | 30-74 | 2 | 47-50 | 181 | 30-60 | 5 | 44-74 |  |  |
| staghorn sculpin | 152 | 44-146 | 1 | 57 | 8 | 44-112 | 56 | 63-146 | 87 | 69-131 |
| speckled sanddab | 92 | 45-88 |  |  | 14 | 45-62 | 76 | 46-88 | 2 | 49-62 |
| English sole | 63 | 34-98 |  |  | 5 | 34-54 | 58 | 51-98 |  |  |
| shiner surfeerch | 21 | 46-146 |  |  | 2 | 144-146 | 6 | 121-145 | 13 | 46-128 |
| California halibut | 19 | 102-644 | 2 | 102-147 | 5 | 106-472 | 8 | 190-355 | 4 | 243-644 |
| bay pipefish | 6 | 91-222 |  |  |  |  |  |  | 6 | 91-222 |
| starry flounder | 5 | 251-512 | 1 | 423 | 2 | 251-280 | 1 | 303 | 1 | 512 |
| bat ray | 4 | 545-1023 |  |  |  |  | 2 | 545-1023 | 2 | 675-705 |
| queenfish | 3 | 81-95 |  |  |  |  | 3 | 81-95 |  |  |
| black rockfish | 2 | 57-62 |  |  |  |  |  |  | 2 | 57-62 |
| arrow goby | 1 | 62 |  |  |  |  | 1 | 62 |  |  |
| diamond turbot | 1 | 218 |  | 218 |  |  |  |  |  |  |
| grass rockfish | 1 | 90 |  |  |  |  | 1 | 90 |  |  |
| horn shark | 1 | 715 | 1 | 715 |  |  |  |  |  |  |
| leopard shark | 1 | 264 |  |  |  |  |  |  | 1 | 264 |
| night smelt | 1 | 57 |  |  |  |  |  |  | 1 | 57 |
| shovelnose guitarfish | 1 | 885 |  |  |  |  | 1 | 885 |  |  |
| Syngnathus exilis | 1 | 198 |  |  |  |  |  |  | 1 | 198 |
| topsmelt | 1 | 91 |  |  |  |  | 1 | 91 |  |  |
| Total | 1138 |  | 8 | 47-715 | 791 | 30-472 | 219 | 44-1023 | 120 | 46-705 |

Table I-5a. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1992.

| Common Name | $\begin{aligned} & 1992 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1992 \\ \text { Range } \end{gathered}$ | Station 5: 1992 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| northern anchovy | 348 | 35-75 | 3 | 35-38 | 345 | 50-75 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| speckled sanddab | 258 | 36-117 | 15 | 36-106 | 27 | 52-114 | 24 | 74-116 | 29 | 72-110 | 16 | 36-114 | 16 | 43-105 | 71 | 36-117 | 33 | 43-116 | 27 | 38-76 |
| staghorn sculpin | 166 | 20-134 | 32 | 40-128 | 44 | 20-110 | 46 | 86-129 | 32 | 80-115 | 9 | 83-134 |  |  | 3 | 94-130 |  |  |  |  |
| shiner surfperch | 69 | 37-149 | 45 | 89-149 | 6 | 110-130 | 9 | 112-135 | 8 | 37-120 | 1 | 65 |  |  |  |  |  |  |  |  |
| bay pipefish | 57 | 50-219 |  |  | 5 | 50-179 | 2 | 90-200 | 1 | 195 | 16 | 77-167 | 7 | 81-219 | 6 | 142-190 | 11 | 92-202 | 9 | 105-200 |
| English sole | 46 | 31-95 | 12 | 31-56 | 26 | 36-95 | 2 | 81-84 |  |  |  |  |  |  | 5 | 58-78 | 1 | 74 |  |  |
| California halibut | 31 | 87-440 |  |  |  | 87-440 | 5 | 93-267 | 7 | 106-386 | 7 | 142-214 | 3 | 153-222 | 6 | 162-218 |  |  |  |  |
| California tonguefish | 20 | 37-94 | 2 | 50 | 6 | 37-58 | 6 | 41-94 | 5 | 50-62 | 1 | 89 |  |  |  |  |  |  |  |  |
| bay goby | 17 | 20-58 | 4 | 23-29 | 1 | 20 | 2 | 48-58 | 10 | 25 |  |  |  |  |  |  |  |  |  |  |
| plainfin midshipman | 7 | 27-35 |  |  |  |  |  |  |  | 27-30 |  |  | 1 | 27 |  |  |  |  | 3 | 34-35 |
| bat ray | 2 | 470-614 | 1 | 614 |  |  | 1 | 470 |  |  |  |  |  |  |  |  |  |  |  |  |
| round stingray | 2 | 275-390 | 1 | 390 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 275 |  |  |
| white croaker | 2 | 26-27 | 2 | 26-27 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| black surfperch | 1 | 140 |  |  |  |  |  |  |  |  | 1 | 140 |  |  |  |  |  |  |  |  |
| diamond turbot | 1 | 189 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 189 |  |  |  |  |
| horn shark | 1 | 327 |  |  | 1 | 327 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| California lizardfish | 1 | 171 |  |  |  |  |  |  | 1 | 171 |  |  |  |  |  |  |  |  |  |  |
| rubberlip surfperch | 1 | 99 |  |  |  |  |  | 99 |  |  |  |  |  |  |  |  |  |  |  |  |
| tubesnout | 1 | 141 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 141 |  |  |  |  |
| white surfperch | 1 | 65 |  |  |  |  | 1 | 65 |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 1,032 |  | 117 | 23-614 | 464 | 20-440 | 99 | 41-470 | 96 | 25-386 | 51 | 36-214 | 27 | 27-222 | 93 | 36-218 | 46 | 43-275 | 39 | 34-200 |

Table I-5b. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1993.

| Common Name | $\begin{aligned} & 1993 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1993 \\ \text { Range } \end{gathered}$ | Station 5: 1993 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 345 | 36-129 | 38 | 36-107 | 41 | 37-89 | 41 | 48-96 | 7 | 41-96 | 15 | 72-115 | 12 | 47-123 | 21 | 58-129 | 30 | 42-121 | 37 | 37-121 | 49 | 36-111 | 54 | 36-124 |
| bay pipefish | 105 | 62-248 | 24 | 70-189 | 6 | 89-228 | 7 | 109-145 | 2 | 113-120 | 1 | 85 | 2 | 106-125 | 9 | 78-191 | 5 | 85-174 | 6 | 80-154 | 40 | 62-248 | 3 | 193-205 |
| English sole | 55 | 15-107 |  |  |  |  |  |  | 4 | 15-47 | 23 | 36-80 | 21 | 54-87 | 1 | 70 | 2 | 92-104 | 4 | 103-107 |  |  |  |  |
| California halibut | 48 | 17-614 | 1 | 143 | 4 | 204-266 | 13 | 118-275 | 1 | 256 | 1 | 614 | 3 | 290-367 | 2 | 284-348 | 8 | 31-192 | 8 | 85-251 | 4 | 17-90 | 3 | 52-81 |
| plainfin midshipman | 33 | 30-65 | 1 | 48 |  |  |  |  |  |  |  |  |  |  | 1 | 30 | 5 | 33-51 | 5 | 39-50 | 18 | 34-65 | 3 | 47-51 |
| California tonguefish | 32 | 33-90 | 3 | 46-50 | 6 | 33-46 | 17 | 37-59 |  |  | 1 | 59 |  |  | 2 | 65-90 | 3 | 70-80 |  |  |  |  |  |  |
| staghorn sculpin | 22 | 32-150 | 8 | 104-124 |  |  | 5 | 32-96 | 1 | 105 | 4 | 78-150 |  |  | 2 | 121-124 |  |  | 1 | 107 | 1 | 128 |  |  |
| round stingray | 9 | 331-409 |  |  | 2 | 372-409 | 1 | 395 |  |  |  |  | 3 | 340-399 | 2 | 331-370 |  |  | 1 | 360 |  |  |  |  |
| bay goby | 5 | 25-87 | 2 | 80-87 |  |  |  |  |  |  |  |  | 1 | 39 |  |  |  |  |  |  | 2 | 25-52 |  |  |
| grass rockfish | 4 | 36-63 |  |  |  |  |  |  |  |  |  |  | 1 | 36 | 3 | 56-63 |  |  |  |  |  |  |  |  |
| horn shark | 3 | 168-747 |  |  | 1 | 747 | 1 | 168 | 1 | 740 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shovelnose guitarfish | 3 | 257-892 |  |  |  |  |  |  |  |  |  |  | 1 | 892 |  | 879 |  |  | 1 | 257 |  |  |  |  |
| bat ray | 2 | 775-803 |  |  |  |  |  |  |  |  | 1 | 775 | 1 | 803 |  |  |  |  |  |  |  |  |  |  |
| brown rockfish | 2 | 45-60 |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 45-60 |  |  |  |  |  |  |  |  |
| northern anchovy | 2 | 48 |  |  |  |  |  |  | 2 | 48 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| pile surfperch | 2 | 266-302 |  |  |  |  | 2 | 266-302 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 2 | 70-102 |  |  |  |  |  |  | 1 | 102 |  |  | 1 | 70 |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 2 | 118-321 |  |  |  |  |  | 321 |  |  |  |  |  |  |  |  |  |  | 1 | 118 |  |  |  |  |
| black surfperch | 1 | 130 | 1 | 130 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| bonyhead sculpin | 1 | 107 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 107 |
| c-o turbot | 1 | 98 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 98 |
| diamond turbot | 1 | 196 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 196 |  |  |  |  |  |  |
| kelp bass | 1 | 30 | 1 | 30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| spotted turbot | 1 | 83 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 83 |  |  |
| thornback | 1 | 506 |  |  |  |  |  |  |  |  | 1 | 506 |  |  |  |  |  |  |  |  |  |  |  |  |
| tubesnout | 1 | 153 |  |  |  |  |  |  | 1 | 153 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| white surfperch | 1 | 111 | 1 | 111 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 685 |  | 80 | 30-189 | 60 | 33-747 | 88 | 32-395 | 20 | 15-740 | 47 | 36-775 | 46 | 36-892 | 46 | 30-879 | 54 | 31-196 | 64 | 37-360 | 115 | 17-248 | 65 | 36-205 |

Table I-5c. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1994.

| Common Name | 1994 <br> Totals | $\begin{gathered} 1994 \\ \text { Range } \end{gathered}$ | Station 5: 1994 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | Apr |  | May |  | Jun |  | Jul |  | Aug |  | Sep |  | Oct |  | Nov |  | Dec |  |
|  |  |  | Count | Range |
| speckled sanddab | 707 | 33-139 | 167 | 34-128 | 55 | 37-136 | 92 | 33-104 | 42 | 35-115 | 35 | 44-122 | 26 | 66-125 | 54 | 36-132 | 48 | 44-124 | 19 | 66-139 | 20 | 44-128 | 79 | 42-115 | 70 | 35-119 |
| English sole | 240 | 22-111 |  |  |  |  | 21 | 30-48 | 8 | 52-67 | 51 | 22-75 | 70 | 23-89 | 51 | 23-89 | 36 | 28-94 | 2 | 64-85 | 1 | 111 |  |  |  |  |
| California tonguefish | 144 | 25-94 | 3 | 47-69 | 2 | 55-65 | 58 | 35-78 | 33 | 45-76 | 24 | 55-83 | 16 | 58-94 | 3 | 73-86 | 4 | 58-85 |  |  |  |  |  |  |  | 25 |
| staghorn sculpin | 138 | 43-171 | 3 | 43-135 |  |  | 1 | 171 | 1 | 125 | 17 | 77-112 | 10 | 75-100 | 37 | 70-119 | 63 | 68-125 | 2 | 95-114 |  |  |  |  | 4 | 111-136 |
| bay pipefish | 72 | 63-244 | 5 | 81-200 | 3 | 106-166 | 1 | 162 |  |  | 4 | 131-201 | 1 | 185 | 21 | 63-235 | 1 | 94 | 1 | 135 |  |  | 27 | 70-195 | 8 | 66-244 |
| California halibut | 32 | 104-520 |  |  |  |  | 6 | 104-495 | 4 | 156-520 | 4 | 224-373 | 4 | 170-401 | 3 | 246-255 | 7 | 166-301 | 1 | 181 | 3 | 219-251 |  |  |  |  |
| plainfin midshipman | 15 | 32-168 | 4 | 41-62 |  |  |  |  |  |  | 1 | 168 |  |  |  |  |  |  | 2 | 32-47 |  |  | 3 | 36-48 | 5 | 40-57 |
| tubesnout | 8 | 85-138 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 85 |  | 105-138 |
| shiner surfperch | 7 | 42-118 |  |  |  |  |  |  |  |  |  |  | 2 | 110-111 | 3 | 42-109 | 2 | 60-118 |  |  |  |  |  |  |  |  |
| horn shark | 6 | 180-825 |  |  | 2 | 700-750 | 1 | 180 |  |  |  |  | 1 | 233 | 2 | 724-825 |  |  |  |  |  |  |  |  |  |  |
| round stingray | 4 | 307-420 |  |  |  | 420 |  |  | 1 | 307 |  |  |  |  |  |  |  |  |  |  | 2 | 370-395 |  |  |  |  |
| striped kelpfish | 4 | 92-110 |  |  |  |  |  |  |  |  |  |  |  |  |  | 92-110 |  |  |  |  |  |  |  |  |  |  |
| bat ray | 2 | 1080-1100 |  |  |  |  |  | 1100 |  |  |  |  | 1 | 1080 |  |  |  |  |  |  |  |  |  |  |  |  |
| bay goby | 2 | 36-74 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 74 | 1 | 36 |  |  |  |  |  |  |  |  |
| giant kelpfish | 2 | 84-85 |  |  |  |  |  |  |  |  | 1 | 85 |  |  |  |  |  |  |  |  |  |  | 1 | 84 |  |  |
| lingcod | 2 | 101-130 |  |  |  |  |  |  |  |  |  |  |  | 101-130 |  |  |  |  |  |  |  |  |  |  |  |  |
| vermilion rockfish | 2 | 36-62 |  |  |  |  |  | 62 |  |  |  |  |  |  | 1 | 36 |  |  |  |  |  |  |  |  |  |  |
| black surfperch | , | 70 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 70 |  |  |  |  |  |  |  |  |  |  |
| brown rockfish | 1 | 65 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 65 |  |  |  |  |  |  |  |  |  |  |
| c-o turbot | 1 | 190 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 190 |  |  |  |  |  |  |  |  |
| hornyhead turbot | 1 | 78 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 78 |  |  |  |  |
| night smelt | 1 | 70 | 1 | 70 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 1 | 101 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 101 |
| snubnose pipefish | 1 | 110 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 110 |
| spotted turbot | 1 | 121 | 1 | 121 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total | 1,395 |  | 184 | 34-200 | 63 | 37-750 | 182 | 30-1100 | 89 | 35-520 | 137 | 22-373 | 133 | 23-1080 | 182 | 23-825 | 163 | 28-301 | 27 | 32-181 | 27 | 44-395 | 111 | 36-195 | 97 | 25-244 |

Table I-5d. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1995.

| Common Name | $\begin{aligned} & 1995 \\ & \text { Total } \end{aligned}$ | 1995 <br> Range | Station 5: 1995 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Feb |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| staghorn sculpin | 1,914 | 46-198 | 88 | 62-171 | 14 | 92-181 | 205 | 54-198 | 276 | 46-134 | 1212 | 65-139 | 114 | 69-122 | 5 | 108-120 |
| shiner surfperch | 268 | 42-159 | 25 | 78-131 | 57 | 89-159 | 56 | 86-145 | 86 | 42-137 | 20 | 78-123 | 12 | 72-109 | 12 | 82-124 |
| speckled sanddab | 248 | 32-127 | 136 | 35-127 | 53 | 52-107 | 31 | 32-105 | 3 | 77-91 |  |  |  |  | 25 | 52-89 |
| English sole | 213 | 25-100 |  |  | 1 | 41 |  |  | 20 | 25-60 | 189 | 40-89 |  |  | 3 | 70-100 |
| northern anchovy | 182 | 41-91 |  |  | 5 | 45-52 |  |  | 66 | 50-71 | 6 | 41-65 | 2 | 64 | 103 | 67-91 |
| bay goby | 154 | 35-102 | 40 | 35-101 |  |  | 112 | 42-102 |  |  | 1 | 92 | 1 | 92 |  |  |
| arrow goby | 86 | 30-60 |  |  |  |  | 86 | 30-60 |  |  |  |  |  |  |  |  |
| bay pipefish | 86 | 65-249 | 74 | 65-249 | 1 | 110 | 10 | 96-215 |  |  |  |  |  |  | 1 | 165 |
| plainfin midshipman | 42 | 28-174 |  |  |  |  |  |  |  |  | 2 | 160-174 | 38 | 28-46 | 2 | 41-44 |
| California tonguefish | 35 | 35-98 | 2 | 35-59 | 3 | 46-50 | 22 | 52-61 | 7 | 67-82 |  |  | 1 | 98 |  |  |
| night smelt | 31 | 52-99 | 14 | 61-99 | 1 | 65 |  |  |  |  |  |  | 1 | 58 | 15 | 52-68 |
| dwarf surfperch | 13 | 59-148 | 3 | 75-105 | 7 | 115-148 | 2 | 116-135 |  |  | 1 | 59 |  |  |  |  |
| California halibut | 11 | 47-376 | 2 | 253-342 | 2 | 256-262 |  | 47-183 |  |  |  |  | 2 | 149-376 |  |  |
| topsmelt | , | 75-182 | 8 | 165-182 |  |  |  |  |  |  |  |  | 1 | 75 |  |  |
| tubesnout | 7 | 34-151 | 6 | 34-151 | 1 | 141 |  |  |  |  |  |  |  |  |  |  |
| black surfperch | 6 | 55-305 | 1 | 146 |  |  | 2 | 177-305 | 3 | 55-75 |  |  |  |  |  |  |
| bonyhead sculpin | 4 | 77-107 | 3 | 77-100 | 1 | 107 |  |  |  |  |  |  |  |  |  |  |
| round stingray | 4 | 360-401 |  |  |  |  |  |  | 1 | 360 | 3 | 362-401 |  |  |  |  |
| horn shark | 2 | 750-790 | 2 | 750-790 |  |  |  |  |  |  |  |  |  |  |  |  |
| white surfperch | 2 | 81-82 |  |  |  |  |  |  | 2 | 81-82 |  |  |  |  |  |  |
| bat ray | 1 | 320 |  |  |  |  |  |  |  |  | 1 | 320 |  |  |  |  |
| bocaccio | 1 | 100 |  |  |  |  |  |  |  |  |  |  | 1 | 100 |  |  |
| grey smoothound | 1 | 335 |  |  |  |  |  |  |  |  | 1 | 335 |  |  |  |  |
| hornyhead turbot | 1 | 73 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 73 |
| jacksmelt | 1 | 275 |  |  | 1 | 275 |  |  |  |  |  |  |  |  |  |  |
| leopard shark | 1 | 232 |  |  |  |  |  |  |  |  | 1 | 232 |  |  |  |  |
| queenfish | 1 | 92 |  |  |  |  |  |  | 1 | 92 |  |  |  |  |  |  |
| sand sole | 1 | 158 | 1 | 158 |  |  |  |  |  |  |  |  |  |  |  |  |
| spotted cusk-eel | 1 | 100 | 1 | 100 |  |  |  |  |  |  |  |  |  |  |  |  |
| starry flounder | 1 | 392 |  |  |  |  |  |  |  |  | 1 | 392 |  |  |  |  |
| thornback | 1 | 486 |  |  |  |  |  |  |  |  | 1 | 486 |  |  |  |  |
| vermilion rockfish | 1 | 35 |  |  | 1 | 35 |  |  |  |  |  |  |  |  |  |  |
| white croaker | 1 | 40 |  |  |  |  |  |  |  |  | 1 | 40 |  |  |  |  |
| Total | 3,330 | 25-790 | 406 | 34-790 | 148 | 35-275 | 531 | 30-305 | 465 | 25-360 | 1440 | 40-486 | 173 | 28-376 | 167 | 41-165 |

Table I-5e. CDFG otter trawl
survey counts and length ranges
$(\mathrm{mm})$ of fishes collected at station 5
during 1996.

| Common Name |  | Station 5: 1996 |  |
| :--- | :---: | :---: | :---: |
|  |  | Apr |  |  |
|  | Count | Range |  |
| staghorn sculpin | 536 | $40-110$ |  |
| English sole | 232 | $21-78$ |  |
| shiner surfperch | 25 | $101-146$ |  |
| California halibut | 8 | $72-350$ |  |
| speckled sanddab | 3 | $48-52$ |  |
| bat ray | 2 | $405-660$ |  |
| horn shark | 2 | $750-794$ |  |
| northern anchovy | 1 | 43 |  |
| thornback | 1 | 493 |  |
| California tonguefish | 1 | 58 |  |
| Total | 811 | $21-794$ |  |

Table I-5f. CDFG otter trawl
survey counts and length ranges ( mm ) of fishes collected at station 5 during 1997.

| Common Name | Station 5: 1997 |  |
| :--- | :---: | :---: |
|  | Count | Oct |
|  | Range |  |
| speckled sanddab | 2 | $60-103$ |
| bay goby | 1 | $37-47$ |
| bay pipefish | 1 | 184 |
| snubnose pipefish | 1 | 73 |
| California tonguefish | 1 | 86 |
| Total | 14 |  |

Table I-5g. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1998.

| Common Name | $\begin{aligned} & 1998 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1998 \\ \text { Range } \end{gathered}$ | Station 5: 1998 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  | Sep |  | Nov |  |
|  |  |  | Count | Range |
| English sole | 216 | 34-120 |  |  | 1 | 120 | 27 | 34-68 | 187 | 45-80 | 1 | 76 |  |  |
| staghorn sculpin | 170 | 63-164 |  |  | 5 | 63-164 | 39 | 74-116 | 120 | 69-111 | 4 | 99-105 | 2 | 118-127 |
| speckled sanddab | 141 | 36-140 | 5 | 46-73 | 5 | 46-94 | 7 | 64-140 | 121 | 71-104 | 1 | 82 | 2 | 36-48 |
| shiner surfperch | 108 | 38-151 | 1 | 97 | 25 | 80-147 | 35 | 38-134 | 39 | 40-151 | 8 | 79-116 |  |  |
| northern anchovy | 90 | 40-70 |  |  | 7 | 46-70 | 3 | 40-48 | 80 | 41-66 |  |  |  |  |
| California halibut | 36 | 50-345 | 1 | 119 | 18 | 92-200 | 5 | 175-239 | 6 | 233-345 | 5 | 50-315 | 1 | 345 |
| round stingray | 27 | 303-420 |  |  | 24 | 303-420 |  |  | 1 | 388 | 1 | 305 | 1 | 392 |
| Pacific herring | 23 | 29-66 |  |  | 21 | 29-41 | 2 | 56-66 |  |  |  |  |  |  |
| California tonguefish | 18 | 43-79 |  |  | 15 | 43-73 | 1 | 79 | 2 | 72 |  |  |  |  |
| white croaker | 14 | 26-42 |  |  |  |  | 9 | 26-42 | 5 | 30-40 |  |  |  |  |
| bat ray | 11 | 597-1150 |  |  |  |  | 8 | 597-1150 | 3 | 775-838 |  |  |  |  |
| bay goby | 9 | 31-66 | 3 | 53-63 | 2 | 51-66 |  |  | 1 | 47 |  |  | 3 | 31-39 |
| kelp bass | 9 | 36-103 | 5 | 42-65 | 3 | 46-103 |  |  |  |  |  |  | 1 | 36 |
| topsmelt | 7 | 111-201 |  |  |  |  | 6 | 111-201 |  |  | 1 | 200 |  |  |
| leopard shark | 4 | 231-730 |  |  |  |  | 1 | 231 | 3 | 625-730 |  |  |  |  |
| thornback | 4 | 466-631 |  |  |  |  | 2 | 466-631 | 2 | 525-620 |  |  |  |  |
| bay pipefish | 3 | 84-167 | 1 | 126 |  |  |  |  |  |  |  |  | 2 | 84-167 |
| white surfperch | 2 | 190-206 |  |  |  |  |  |  |  |  | 2 | 190-206 |  |  |
| dwarf surfperch | 1 | 126 |  |  | 1 | 126 |  |  |  |  |  |  |  |  |
| Gibbonsia spp. | 1 | 81 | 1 | 81 |  |  |  |  |  |  |  |  |  |  |
| jacksmelt | 1 | 40 |  |  |  |  | 1 | 40 |  |  |  |  |  |  |
| plainfin midshipman | , | 139 |  |  |  |  | 1 | 139 |  |  |  |  |  |  |
| queenfish | 1 | 117 |  |  |  |  |  |  | 1 | 117 |  |  |  |  |
| shovelnose guitarfish | 1 | 1050 |  |  | 1 | 1050 |  |  |  |  |  |  |  |  |
| Total | 898 |  | 17 | 42-126 | 128 | 29-1050 | 147 | 26-1150 | 571 | 30-838 | 23 | 50-315 | 12 | 31-392 |

Table I-5h. CDFG otter trawl survey counts and length ranges (mm) of fishes collected at station 5 during 1999.

| Common Name | $\begin{aligned} & 1999 \\ & \text { Total } \end{aligned}$ | $\begin{gathered} 1999 \\ \text { Range } \end{gathered}$ | Station 5: 1999 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Jan |  | Mar |  | May |  | Jul |  |
|  |  |  | Count | Range | Count | Range | Count | Range | Count | Range |
| staghorn sculpin | 261 | 36-169 | 1 | 62 | 15 | 36-165 | 123 | 66-169 | 122 | 75-128 |
| speckled sanddab | 91 | 37-97 | 13 | 37-52 | 29 | 41-76 | 26 | 43-72 | 23 | 56-97 |
| shiner surfperch | 69 | 39-146 |  |  | 4 | 134-140 | 53 | 54-146 | 12 | 39-125 |
| Pacific herring | 56 | 28-47 |  |  | 56 | 28-47 |  |  |  |  |
| English sole | 47 | 34-94 |  |  | 10 | 34-49 | 37 | 50-94 |  |  |
| northern anchovy | 33 | 22-84 |  |  | 27 | 22-55 | 5 | 47-77 | 1 | 84 |
| California halibut | 25 | 119-643 |  |  | 8 | 119-540 | 14 | 125-643 | 3 | 219-505 |
| bay pipefish | 10 | 100-224 | 2 | 111-200 |  |  | 2 | 100-166 | 6 | 134-224 |
| leopard shark | 7 | 233-734 |  |  |  |  | 4 | 233-734 | 3 | 266-268 |
| shovelnose guitarfish | 6 | 623-1350 | 2 | 623-1060 | 2 | 1030-1035 |  |  | 2 | 633-1350 |
| arrow goby | 5 | 45-55 | 1 | 49 | 1 | 45 | 3 | 53-55 |  |  |
| bat ray | 4 | 602-710 |  |  | 1 | 602 | 2 | 665-710 | 1 | 625 |
| pile surfperch | 4 | 75-302 |  |  | 1 | 302 | 3 | 75-124 |  |  |
| bay goby | 3 | 20-144 |  |  |  |  | 2 | 105-144 | 1 | 20 |
| horn shark | 3 | 733-774 |  |  | 1 | 735 |  |  | 2 | 733-774 |
| jacksmelt | 2 | 302-340 |  |  | 2 | 302-340 |  |  |  |  |
| plainfin midshipman | 2 | 46-201 |  |  | 1 | 46 | 1 | 201 |  |  |
| queenfish | 2 | 72-83 |  |  |  |  | 2 | 72-83 |  |  |
| round stingray | 2 | 290-350 | 2 | 290-350 |  |  |  |  |  |  |
| starry flounder | 2 | 451-594 |  | 451-594 |  |  |  |  |  |  |
| topsmelt | 2 | 90-98 |  |  |  |  | 2 | 90-98 |  |  |
| white surfperch | 2 | 44-79 |  |  |  |  | 2 | 44-79 |  |  |
| black surfperch | 1 | 61 |  |  |  |  | 1 | 61 |  |  |
| c-o turbot | 1 | 68 |  |  | 1 | 68 |  |  |  |  |
| diamond turbot | 1 | 230 |  |  |  |  |  |  | 1 | 230 |
| lingcod | 1 | 116 |  |  |  |  |  |  | 1 | 116 |
| Syngnathus exilis | 1 | 223 |  |  |  |  |  |  | 1 | 223 |
| thornback | 1 | 622 |  |  |  |  | 1 | 622 |  |  |
| vermilion rockfish | 1 | 46 |  |  | 1 | 46 |  |  |  |  |
| Total | 645 | 20-1350 | 23 | 37-1060 | 160 | 22-1035 | 283 | 43-734 | 179 | 20-1350 |

Table I-6a. Summary of fishes collected in CDFG otter trawl surveys: 1992.

| Common Name | $\begin{aligned} & 1992 \\ & \text { Total } \end{aligned}$ | 1992: Month / Station |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mar |  | Apr |  |  |  |  | May |  |  |  |  | Jun |  |  |  |  | Jul |  |  |  |  |
|  |  | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
| speckled sanddab | 3,726 | 16 | 58 | 14 | 27 | 72 | 13 | 15 | 70 | 50 | 64 | 29 | 27 | 77 | 96 | 85 | 24 | 24 | 50 | 64 |  | 34 | 29 |
| bay pipefish | 484 | 3 | 10 | 4 | 14 | 22 | 1 |  | 28 | 18 | 3 | 1 | 5 | 49 | 21 | 3 |  | 2 | 21 | 7 | 3 | 1 | 1 |
| staghorn sculpin | 475 |  |  |  |  | 1 | 25 | 32 | 12 | 8 | 2 | 61 | 44 | 11 | 8 | 10 | 62 | 46 | 8 | 3 | 2 | 32 | 32 |
| northern anchovy | 456 |  |  |  | 91 | 5 | 12 | 3 |  |  |  |  | 345 |  |  |  |  |  |  |  |  |  |  |
| shiner surfperch | 159 |  |  |  |  |  | 24 | 45 |  |  |  | 2 | 6 |  | 12 | 1 | 34 | 9 | 1 |  |  | 16 | 8 |
| English sole | 146 |  |  |  |  |  | 20 | 12 | 2 | 8 |  | 37 | 26 | 1 | 1 |  | 10 | 2 | 3 | 1 |  |  |  |
| cabezon | 68 |  |  |  | 1 | 3 |  |  |  | 1 | 7 | 1 |  | 9 |  | 4 |  |  | 4 |  | 1 |  |  |
| California halibut | 60 |  |  | 1 |  |  | 2 |  |  |  |  |  | 3 |  |  |  | 5 | 5 | , |  |  | 2 | 7 |
| California tonguefish | 31 |  |  |  |  |  |  | 2 |  |  |  | 3 | 6 |  |  |  | 4 | 6 |  |  |  | 4 | 5 |
| bay goby | 30 |  |  |  |  |  | 5 | 4 |  |  |  | 2 | 1 |  |  |  |  | 2 | 2 |  |  |  | 10 |
| round stingray | 28 |  |  |  |  |  |  | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| sarcastic fringehead | 24 | 1 |  |  |  | 9 |  |  |  |  | 3 |  |  |  | 1 | 6 |  |  |  |  |  |  |  |
| spotfin surfperch | 18 |  |  |  |  |  |  |  |  | 2 |  |  |  |  | 14 |  |  |  | 1 |  |  |  |  |
| plainfin midshipman | 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  | 3 |
| tubesnout | 13 |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |
| white croaker | 9 |  |  |  |  |  | 7 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| striped kelpfish | 8 |  |  |  |  |  |  |  |  | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |
| California lizardfish | 6 |  |  |  |  |  |  |  |  | 1 |  | 2 |  |  |  |  | 2 |  |  |  |  |  | 1 |
| sand sole | 6 |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  | 2 |  |  |  |
| bat ray | 5 |  |  |  |  |  | 2 | 1 |  |  |  |  |  |  |  |  |  | 1 |  |  | 1 |  |  |
| black surfperch | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |  |
| pricklebreast poacher | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 4 |  |  |  |  |
| C-O turbot | 4 |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| Pacific sardine | 4 |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Poacher, unidentified | 4 |  |  |  |  |  |  |  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
| diamond turbot | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| horn shark | 3 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| rubberlip surfperch | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 1 |  |  |  |
| spotted turbot | 2 |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |
| white surfperch | 2 |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| big skate | 1 |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| bocaccio | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| bonyhead sculpin | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| gopher rockfish | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| kelp clingfish | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| lingcod | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| shovelnose guitarfish | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |
| starry flounder | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| thornback | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |
| Grand Total | 5,810 | 21 | 68 | 22 | 134 | 113 | 115 | 117 | 119 | 90 | 80 | 140 | 464 | 152 | 153 | 110 | 142 | 99 | 96 | 78 | 96 | 94 | 96 |

Table I-6a (continued). Summary of fishes collected in CDFG otter trawl surveys: 1992.


Table I-6b. Summary of fishes collected in CDFG otter trawl surveys: 1993.


Table I-6b (continued). Summary of fishes collected in CDFG otter trawl surveys: 1993.


Table I-6c. Summary of fishes collected in CDFG otter trawl surveys: 1994.


Table I-6c (continued). Summary of fishes collected in CDFG otter trawl surveys: 1994.


Table I-6d. Summary of fishes collected in CDFG otter trawl surveys: 1995.


Table I-6d. Summary of fishes collected in CDFG otter trawl surveys: 1996.

| Common Name | $\begin{aligned} & 1996 \\ & \text { Total } \end{aligned}$ | 1996: Month / Station |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Apr |  |  |  |
|  |  | 2 | 3 | 4 | 5 |
| English sole | 1,009 | 75 | 21 | 681 | 232 |
| staghorn sculpin | 748 | 10 | 4 | 198 | 536 |
| speckled sanddab | 174 | 137 | 32 | 2 | 3 |
| northern anchovy | 105 | 41 | 50 | 13 | 1 |
| shiner surfperch | 40 | 1 | 3 | 11 | 25 |
| California halibut | 23 |  |  | 15 | 8 |
| white surfperch | 10 | 2 | 6 | 2 |  |
| Pacific herring | 9 | 7 | 1 | 1 |  |
| cabezon | 4 | 3 | 1 |  |  |
| bat ray | 2 |  |  |  | 2 |
| bay goby | 2 | 2 |  |  |  |
| horn shark | 2 |  |  |  | 2 |
| bay pipefish | 1 |  | 1 |  |  |
| diamond turbot | 1 |  |  | 1 |  |
| pile surfperch | 1 |  | 1 |  |  |
| swell shark | 1 | 1 |  |  |  |
| Syngnathus exilis | 1 |  | 1 |  |  |
| thornback | 1 |  |  |  | 1 |
| California tonguefish | 1 |  |  |  | 1 |
| white croaker | 1 |  |  | 1 |  |
| Grand Total | 2,136 | 279 | 121 | 925 | 811 |

Table I-6e. Summary of fishes collected in CDFG otter trawl surveys: 1997.

| Common Name |  | 1997 Total | 1997: Month / Station |  |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  | Oct |  |
| speckled sanddab | 26 | 17 | 9 |  |
| bay pipefish | 4 | 3 | 1 |  |
| round stingray | 4 | 4 | 2 |  |
| bay goby | 2 | 2 | 1 |  |
| California halibut | 2 |  |  |  |
| snubnose pipefish | 1 | 1 |  |  |
| staghorn sculpin | 1 | 1 |  |  |
| starry flounder | 1 | 1 | 1 |  |
| Syngnathus exilis | 1 | 29 | 14 |  |
| California tonguefish | 1 |  |  |  |
| Grand Total | 43 |  |  |  |

Table I-6f. Summary of fishes collected in CDFG otter trawl surveys: 1998.


Table I-6g. Summary of fishes collected in CDFG otter trawl surveys: 1999.

| Common Name | $\begin{aligned} & 1999 \\ & \text { Total } \end{aligned}$ | 1999: Month / Station |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Jan |  |  |  | Mar |  |  |  | May |  |  |  | Jul |  |  |  |
|  |  | 2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 |
| speckled sanddab | 1,154 | 7 | 37 |  | 13 | 22 | 35 | 14 | 29 | 230 | 361 | 76 | 26 | 134 | 145 | 2 | 23 |
| Pacific herring | 672 |  |  |  |  |  |  | 574 | 56 | 39 | 3 |  |  |  |  |  |  |
| staghorn sculpin | 467 |  |  | 1 | 1 |  | 2 | 8 | 15 | 1 | 4 | 56 | 123 | 22 | 25 | 87 | 122 |
| English sole | 327 |  |  |  |  |  |  | 5 | 10 | 121 | 52 | 58 | 37 | 39 | 5 |  |  |
| northern anchovy | 223 |  |  | 2 |  |  | 1 | 181 | 27 | 1 |  | 5 | 5 |  |  |  | 1 |
| shiner surfperch | 196 |  |  |  |  |  |  | 2 | 4 | 1 | 34 | 6 | 53 |  | 71 | 13 | 12 |
| lingcod | 99 |  |  |  |  |  |  |  |  | 18 | 4 |  |  | 69 | 7 |  | 1 |
| California halibut | 50 |  | 4 | 2 |  |  | 1 | 5 | 8 |  |  | 8 | 14 |  | 1 | 4 | 3 |
| vermilion rockfish | 34 |  |  |  |  | 7 | 14 |  | 1 | 1 | 11 |  |  |  |  |  |  |
| pile surfperch | 20 |  |  |  |  |  |  |  | 1 |  |  |  | 3 | 7 | 9 |  |  |
| cabezon | 17 |  |  |  |  |  |  |  |  |  | 13 |  |  | 4 |  |  |  |
| bay pipefish | 16 |  |  |  | 2 |  |  |  |  |  |  |  | 2 |  |  | 6 | 6 |
| California tonguefish | 16 |  |  |  |  |  |  |  |  |  | 7 |  |  |  | 9 |  |  |
| kelp greenling | 12 |  |  |  |  |  |  |  |  |  |  |  |  | 12 |  |  |  |
| bat ray | 8 |  |  |  |  |  |  |  | 1 |  |  | 2 | 2 |  |  | 2 | 1 |
| leopard shark | 8 |  |  |  |  |  |  |  |  |  |  |  | 4 |  |  | 1 | 3 |
| shovelnose guitarfish | 8 |  |  |  | 2 |  |  |  | 2 |  | 1 | 1 |  |  |  |  | 2 |
| starry flounder | 7 |  |  |  | 2 |  |  | 2 |  |  |  | 1 |  |  |  | 1 |  |
| arrow goby | 6 |  |  |  | 1 |  |  |  | 1 |  |  | 1 | 3 |  |  |  |  |
| white surfperch | 6 |  |  |  |  |  |  |  |  |  | 1 |  | 2 | 1 | 2 |  |  |
| queenfish | 5 |  |  |  |  |  |  |  |  |  |  | 3 | 2 |  |  |  |  |
| diamond turbot | 4 |  | 2 | 1 |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| horn shark | 4 |  |  | 1 |  |  |  |  | 1 |  |  |  |  |  |  |  | 2 |
| plainfin midshipman | 4 |  |  |  |  |  |  |  | 1 | 1 | 1 |  | 1 |  |  |  |  |
| thornback | 4 |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 3 |  |  |
| bay goby | 3 |  |  |  |  |  |  |  |  |  |  |  | 2 |  |  |  | 1 |
| black surfperch | 3 |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 |  |  |
| topsmelt | 3 |  |  |  |  |  |  |  |  |  |  | 1 | 2 |  |  |  |  |
| black rockfish | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |  |
| bocaccio | 2 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 |  |  |
| grass rockfish | 2 |  |  |  |  |  |  |  |  |  | 1 | 1 |  |  |  |  |  |
| jacksmelt | 2 |  |  |  |  |  |  |  | 2 |  |  |  |  |  |  |  |  |
| round stingray | 2 |  |  |  | 2 |  |  |  |  |  |  |  |  |  |  |  |  |
| sand sole | 2 |  | 1 |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |
| Syngnathus exilis | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 |
| c-o turbot | 1 |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |
| gunnel, unidentified | 1 |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |
| night smelt | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |
| rainbow surfperch | 1 |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |
| rockpool blenny | 1 |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |
| turbot, unidentified | 1 |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |
| Grand Total | 3,396 | 7 | 44 | 8 | 23 | 29 | 54 | 791 | 160 | 414 | 495 | 219 | 283 | 291 | 279 | 120 | 179 |

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix I

## Part 2

PFMC Commercial Landings for 1999

PFMC Port Group Report: Estimated Ex-vessel Revenue (\$1000) of Groundfish Landed-catch for 1999 for all Areas for all Gears
Notes: 1. Landed-catch excludes any fish discarded at sea

| T Species or Group | All Wash. Ports | Col R OR. | Tillamook | Newport | Coos Bay | Brookings | Crescent City | Eureka | Fort <br> Bragg | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ARROWTOOTH FLOUNDER | 655.3 | 395.2 | . 2 | 37.0 | 47.4 | 3.1 | 6.2 | 3.0 | . 1 | ARTH |
| BUTTER SOLE | . 0 | . 1 |  |  | . 2 |  | . 0 |  |  | BSOL |
| CURLFIN SOLE |  | . 3 | . 1 | . 9 | . 6 | . 1 |  |  |  | CSOL |
| DOVER SOLE | 578.3 | 1,372.6 | 19.1 | 504.8 | 1,070.3 | 291.5 | 434.2 | 795.6 | 524.1 | DOVR |
| ENGLISH SOLE | 140.0 | 86.0 | . 8 | 33.5 | 104.8 | 15.8 | 63.1 | 56.0 | 49.4 | EGLS |
| FLATHEAD SOLE |  | 2.2 |  |  |  |  |  |  |  | FSOL |
| Petrale sole | 552.6 | 458.0 | 14.4 | 272.5 | 583.4 | 91.0 | 181.9 | 404.5 | 142.3 | PTRL |
| REX SOLE | 17.6 | 65.7 | . 1 | 26.8 | 96.6 | 15.9 | 46.7 | 65.7 | 61.3 | REX |
| ROCK SOLE | . 3 | . 1 | . 1 | 1.3 | 1.8 | . 0 |  |  | . 3 | RSOL |
| SAND SOLE | . 8 | 57.3 | 12.8 | 17.4 | 44.5 | . 1 | 6.9 | . 6 |  | SSOL |
| SANDDABS | . 2 | 5.7 | 1.4 | 3.2 | 125.4 | 2.4 | 53.6 | 67.5 | 2.0 | SDAB |
| STARRY FLOUNDER | . 3 | 10.0 | . 9 | 2.0 | 4.9 | . 0 | 4.8 | 2.9 | . 0 | STRY |
| OTHER FLATFISH |  |  |  |  |  |  |  |  |  | OFLT |
| UNSP. FLATFISH | 7.0 |  |  |  |  |  | . 5 | 1.0 | . 0 | UFLT |
| 2 __ALL FLATFISH | 1,952.5 | 2,453.2 | 50.0 | 899.3 | 2,079.8 | 419.9 | 797.8 | 1,396.8 | 779.6 | 6 FLAT |
| 1 LONGSPINE THORNYHEA | 45.6 | 343.5 |  | 130.2 | 427.1 | 125.3 | 274.7 | 523.4 | 332.4 | LSPN |
| NOM. LONGSPINE THOR | . 0 | 35.4 |  | 49.9 | 28.3 | . 4 |  | . 2 | . 6 | LSP1 |
| NOM. SHORTSPINE THO | 28.5 | 26.8 | . 0 | 18.8 | 8.6 | . 7 |  | 12.8 | 1.7 | 7 SSP1 |
| SHORTSPINE THORNYHE | 75.0 | 187.5 |  | 149.3 | 183.6 | 78.9 | 120.0 | 230.2 | 154.4 | SSPN |
| THORNYHEADS (MIXED) |  |  |  | . 0 | . 0 | . 0 | 5.5 | 17.4 | 31.3 | THDS |
| 4 __THORNYHEADS COMPL | 149.1 | 593.2 | . 0 | 348.2 | 647.6 | 205.3 | 400.2 | 784.0 | 520.3 | TRNY |
| 1 NOM. SHORTBELLY ROC |  |  |  |  |  |  | . 5 | . 7 |  | SBL1 |
| NOM. WIDOW ROCKFISH | . 1 | 116.4 | . 1 | 65.5 | 60.2 | 48.2 | 1.0 | 3.0 | . 9 | 9 WDW1 |
| NOMINAL POP |  | 69.0 | . 0 | 3.5 | 6.2 | . 2 |  |  |  | POP2 |
| PACIFIC OCEAN PERCH | 129.1 | 124.6 | . 0 | 57.3 | 9.0 | 1.2 | . 0 | . 4 |  | POP |
| SHORTBELLY ROCKFISH |  |  |  |  | . 0 | . 0 |  | . 3 | . 1 | SBLY |
| UNSP. POP GROUP | . 0 |  |  |  |  |  |  |  |  | UPOP |
| WIDOW ROCKFISH | 428.7 | 672.4 |  | 971.1 | 294.1 | 107.6 | 102.6 | 121.9 | 115.1 | 1 WDOW |
| AURORA ROCKFISH | . 1 | . 5 | . 0 | 2.4 | 1.9 | . 5 | 1.0 | . 5 | . 1 | ARRA |
| BANK ROCKFISH |  | . 0 | . 0 | 3.0 | 1.2 | . 7 | . 2 | 1.4 | 4.2 | BANK |
| BLACK ROCKFISH |  |  |  |  |  | 84.7 | 55.5 | 15.5 | 8.8 | BLCK |
| BLACK+BLUE ROCKFISH |  |  |  |  |  |  | . 1 | . 1 |  | RCK9 |
| BLACK-AND-YELLOW RO |  |  |  |  |  |  |  |  | 26.8 | 8 BYEL |
| BLACKGILL ROCKFISH | 2.3 | . 0 |  | . 9 | 2.5 | . 6 | . 2 | . 4 | . 7 | BLGL |
| BLUE ROCKFISH |  |  |  |  |  | 4.0 | 7.3 | 3.5 | 7.2 | 2 BLUR |
| BOCACCIO | 8.7 | 3.3 | . 7 | 19.3 | 3.0 | 12.3 | 4.8 | 18.0 | 13.0 | BCAC |
| BRONZESPOTTED ROCKF |  |  |  |  |  |  |  | . 2 |  | BRNZ |
| BROWN ROCKFISH |  |  |  |  |  |  | 1.1 |  | . 3 | BRWN |
| CALIFORNIA SCORPION |  |  |  |  |  |  |  |  |  | SCOR |
| CANARY ROCKFISH | 98.8 | 72.0 |  | 124.3 | 55.7 | 84.4 | 22.6 | 39.8 | 29.3 | CNRY |
| CANARY+VERMILION RC |  |  |  |  |  |  |  |  |  | RCK8 |
| CHAMELEON ROCKFISH |  |  |  |  |  |  |  |  |  | CMEL |
| CHILIPEPPER | . 2 |  |  |  | 1.4 | . 1 | 4.2 | 19.8 | 322.8 | B CLPR |
| CHINA ROCKFISH |  |  |  |  | . 2 | 121.2 | 13.1 | 2.7 | 19.5 | CHNA |
| COPPER ROCKFISH |  |  |  |  |  | 21.9 | 15.7 | 31.4 | 13.0 | COPP |
| COWCOD ROCKFISH |  |  |  |  | 1.9 | . 1 |  |  |  | CWCD |
| DARKBLOTCHED ROCKFI | 8.6 | 38.5 | . 3 | 53.5 | 84.4 | 11.0 | 14.7 | 31.5 | 3.8 | B DBRK |

PFMC Port Group Report: Estimated Ex-vessel Revenue ( $\$ 1000$ ) of Groundfish Landed-catch for 1999 for all Areas for all Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
T Species or Group
1 FLAG ROCKFISH

GOPHER ROCKFISH
GRASS ROCKFISH
GREENBLOTCHED ROCKF GREENSPOTTED ROCKFI GREENSTRIPED ROCKFI HALFBANDED ROCKFISH HONEYCOMB ROCKFISH KELP ROCKFISH MEXICAN ROCKFISH NOM. BANK ROCKFISH NOM. BLACK ROCKFISH NOM. BLACK-AND-YELI NOM. BLACKGILL ROCK NOM. BLUE ROCKFISH NOM. BOCACCIO
NOM. BROWN ROCKFISH NOM. CANARY ROCKFIS NOM. CHILIPEPPER NOM. CHINA ROCKFISH NOM. COPPER ROCKFIS NOM. COWCOD ROCKFIS NOM DARB ROCKFISH NOM. FLAG ROCKFISH NOM. GPAS ROCKFIS NM M NOM. GRENACRIDED TOM KELD ROCKFTSH NOM OLTVE ROCKFTS NOM QUILtback ROCK NOM. REDBANDED ROCK TOM ROSETHORN ROCK NOM ROSY ROCKFISH NOM SPECKIFD ROCKF TOM. SPLITNOSE ROCK NOM. SQUITNESEOT NOM. STARRY ROCKFIS NOM. STARRY ROCKFIS
NOM. SWORDSPINE ROC NOM. TREEFISH
NOM. VERMILLION ROC NOM. VERMILLION ROC NOM. YELLOWEYE ROCK OLIVE ROCKFISH PINK ROCKFISH PYGMY ROCKFISH QUILLBACK ROCKFISH REDBANDED ROCKFISH REDSTRIPE ROCKFISH ROSETHORN ROCKFISH ROSY ROCKFISH

All Wash. Ports Col R OR. Tillamook Newport Coos Bay Brookings
Crescent
City Eureka
Fort
Bragg SPID

|  | 4.6 | . 1 | 1.7 | 12.7 | 1.2 | 1.5 |  | 38.333.6 | FLAG GPHR GRAS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | GRAS |
|  |  |  |  |  |  | . 3 | 2.6 | 2.6 | GSPT |
| 3.1 |  |  |  |  |  | 4.3 | 1.6 | 1.1 | GSRK |
|  |  |  |  |  |  | . 5 |  |  | HBRK |
|  |  |  |  |  |  |  |  |  | HNYC |
|  |  |  |  |  |  |  | . 0 | . 1 | KLPR |
|  |  |  |  |  |  |  |  |  | MXRF |
|  |  |  |  |  |  |  |  |  | BNK1 |
|  | 3.4 | 45.5 | 1.1 | 1.3 | 25.9 | . 2 | . 3 | . 1 | BLK1 |
|  |  |  |  |  |  | . 0 | . 0 | . 2 | BYL1 |
|  |  |  |  |  |  | . 4 |  | . 2 | BGL1 |
|  |  |  |  |  |  | 9.2 | 3.9 | . 0 | BLU1 |
|  |  |  |  |  |  | . 1 | . 3 | . 0 | BCC1 |
|  |  |  |  |  |  |  | 2.3 | . 6 | BRW1 |
| 6.3 | 51.7 | 2.7 | 35.0 | 61.7 | 30.0 | 1.4 | 1.3 | . 4 | CNR1 |
|  |  |  |  |  |  | . 5 | . 3 | 2.4 | CLP1 |
|  |  |  |  |  |  | . 3 | . 0 | . 5 | CHN1 |
|  |  |  |  |  |  | . 0 | . 3 |  | COP1 |
|  |  |  |  |  |  |  | . 0 |  | CWC1 |
|  |  |  |  |  |  | . 0 |  |  | DBR1 |
|  |  |  |  |  |  |  |  |  | FLG1 |
|  |  |  |  |  |  | . 1 | . 0 | . 7 | GPH1 |
|  |  |  |  |  |  |  | 1.5 | . 0 | GRS1 |
|  |  |  |  |  |  |  | . 1 | . 1 | GSP1 |
|  |  |  |  |  |  | . 0 |  |  | GSR1 |
|  |  |  |  |  |  |  |  | . 1 | KLP1 |
|  |  |  |  |  |  | . 5 | . 2 |  | OLV1 |
|  |  |  |  |  |  | . 2 | 8.7 | . 0 | QLB1 |
|  |  |  |  |  |  |  | . 1 |  | RDB1 |
|  |  |  |  |  |  | . 4 | . 1 | . 1 | RST1 |
|  |  |  |  |  |  |  |  |  | ROS1 |
|  |  |  |  |  |  |  |  |  | SPK1 |
|  |  |  |  |  |  | . 1 | 4.1 | . 0 | SNS1 |
|  |  |  |  |  |  |  |  |  | SQR1 |
|  |  |  |  |  |  |  |  |  | STR1 |
|  |  |  |  |  |  |  |  |  | SWS1 |
|  |  |  |  |  |  |  |  |  | TRE1 |
|  |  |  |  |  |  |  | . 0 | 1.0 | VRM1 |
|  |  |  |  |  |  | . 2 | . 4 | . 8 | YEY1 |
| 37.1 | 339.4 | 3.1 | 38.0 | 40.3 | 17.2 | . 9 | . 0 | . 1 | YTR1 |
|  |  |  |  |  |  |  |  |  | OLVE |
|  |  |  |  |  |  |  |  |  | PNKR |
|  |  |  |  |  |  |  |  |  | PGMY |
|  |  |  |  | . 0 | 25.1 | 18.2 | . 5 | 14.2 | QLBK |
| 10.3 | 2.9 | . 0 | 1.7 | 3.6 | 1.0 | 1.4 | 1.8 | . 4 | RDBD |
| 6.0 | 2.3 | . 0 | 3.6 | 7.4 | 1.4 | . 3 | . 7 | . 0 | REDS |
| . 0 | . 2 |  | . 1 | . 8 | 3.2 | . 3 | . 5 | . 0 | RSTN |
|  |  |  |  |  |  | . 2 |  | . 0 | ROSY |

PFMC Port Group Report: Estimated Ex-vessel Revenue (\$1000) of Groundfish Landed-catch for 1999 for all Areas for all Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
T Species or Group

- ROUGHEYE ROCKFISH
1 ROMARPCHIN ROCKFISH
SHARTM
SHORTRAKER ROCKISH
SILVERGREY ROCKFISH
SPECKLED ROCKFISH
SPLITNOSE ROCKFISH
STARRY ROCKFISH
STRIPETAIL ROCKFISH
TIGER ROCKFISH
TREEFISH TREEFISH
UNSP. BOLINA RCKFSH UNSP. GOPHER RCKFSH UNSP. REDS RCKFSH UNSP. ROSEFISH RCKF UNSP. SMALL REDS RC VERMILION ROCKFISH YELLOWEYE ROCKFISH YELLOWMOUTH ROCKFIS YELLOWTAIL ROCKFISH THER ROCKFIS
GEN. SHELF/SLOPE RF UNSP. NEAR-SHORE
UNSP. ROCKFISH

2 __ALL ROCKFISH
1 CABEZON
KELP GREENLING
LINGCOD
NOM. CABEZON
NOM. KELP GREENLING PACIFIC COD
PACIFIC WHITING SABLEFISH WALLEYE POLLOCK

2 _ALL ROUNDFISH
1 LEOPARD SHARK SOUPFIN SHARK SPINY DOGFISH RATFISH
RATFISH
CALIFORNIA SKATE
OTHER GROUNDFISH
UNSPECIFIED SKATE

| Corts | Col R OR. Ti |
| ---: | ---: |
| 15.8 | 12.8 |
| 4.6 | 10.8 |
| 11.3 | 26.8 |
| 22.1 | 23.6 |
| .7 | 6.3 |
|  | .0 |
| .1 | .1 |
|  |  |
|  |  |
|  |  |
|  |  |
| 8.5 | 1.3 |
| 3.9 | 2.5 |
| 410.3 | 555.7 |
|  | 5.9 |
|  |  |
| 318.6 | 137.1 |

-----1
.0
.0
.0
.0
.2
City Eureka

Fort
Bragg SPID
----------------------

City Eureka
REYE
.1 SHRP SRKR
. 0 SLGR .0 SPKL 17.7 SNOS
. 0 STAR
1.0 STRK

TIGR
TREE
. 0 RCK2
. 0 RCK7
. 3 RCK4
. 3 RCK4
13.2 RCK6
2.4 RCK5
7.7 VRML
9.1 YEYE
8.9 YMTRK

ORCK
POP1
USHR
. 6 URCK
1,684.6 2,877
$55.6 \quad 2,053.0 \quad 1,543.0 \quad 1,041.3 \quad 766.0 \quad 1,168.4 \quad 1,244.9 \mathrm{ROCK}$

| 1.7 | 7.2 | .2 | 89.7 | 18.1 | 11.0 | 216.0 | CBZN |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  | 27.0 | 3.7 | 57.6 | KLPG |


| 58.6 | 105.4 | 58.0 | 41.2 | 56.9 |
| ---: | ---: | ---: | ---: | ---: |
|  |  | .1 | .1 | 1.4 CBZ1 |
|  |  | .9 | .0 | .8 |
|  |  |  | KGLI |  |


| 226.6 | 36.0 |  | .4 | .8 | .0 | .9 | .0 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 802.5 | $3,169.8$ |  | $2,537.9$ | 204.3 | .7 | 104.3 | 11.0 |
| $5,059.9$ | $2,429.4$ | 3.4 | $2,412.0$ | $1,978.7$ | 871.1 | 590.6 | $1,192.3$ |
| 0 | 0 |  |  | 0 |  |  |  |
| 0 |  |  |  |  |  |  |  |

$16.25,011.0$
$2,241.9$
1,066.9
799.1 1,259.2

1,191.4 ROND

2 __MISC. GROUNDFISH
3 __ALL GROUNDFISH
9,944.6 11,083.0
122.0 7,994.6

5,945.3

| LSRK |
| ---: |
| .6 SSRK |
| DSRK |
| RATF |
| BSKT |
| CSKT |
| OGRN |
| 0.0 |
| GRDR |
| 2.9 |
| USKT |
|  |
| 3.6 MGRN |

Report \#020W 04MAY01 16:26 PacFIN Best Available Data (Orca) Part 1

PFMC Port Group Report: Estimated Ex-vessel Revenue (\$1000) of Groundfish Landed-catch for 1999 for all Areas for all Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
T Species or Group All Wash. Ports Col R OR. Tillamook
Newport Coos Bay Brookings

Crescent
City Eureka Bragg SPID

1 CALIFORNIA HALIBUT PACIFIC HALIBUT PINK SHRIMP
UNSPECIFIED OCTOPI
4 _-ALL SHARKS _ALL SKATES \& RAYS
1 UNSPECIFIED SCULPIN UNSPECIFIED SMELT UNSPECIFIED SQUID

|  |  |  | . 0 | . 1 |  | 10.7 | 2.3 |  | CHLB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 618.3 | 74.9 | 39.8 | 130.9 | 52.3 | 37.5 | . 1 | 1.5 | 6.5 | PHLB |
| 1,212.5 | 2,631.1 | 357.7 | 2,927.7 | 2,822.7 | 831.7 | 1,215.2 | 445.5 | 149.7 | PSHP |
| 1.3 | . 6 |  | 1.8 | . 3 | 2.7 | . 7 | . 2 | . 1 | ОСтР |
| 294.6 | 18.2 | . 0 | 1.4 | . 3 | . 1 | 3.6 | 4.1 | . 9 | SHRK |
| 27.8 | 37.5 | . 2 | 27.8 | 62.8 | 18.5 | 98.7 | 109.4 | 32.9 | SKAT |
|  |  |  | . 0 |  | . 0 |  |  | . 0 | SCLP |
| . 1 |  |  |  |  |  | 51.9 | 114.4 | 2.3 | SMLT |
| . 1 | . 0 |  | . 0 | . 0 |  | . 1 |  |  | SQID |

PFMC Port Group Report: Estimated Ex-vessel Revenue (\$1000) of Groundfish Landed-catch for 1999 for all Areas for all Gears

| T Species or Group | Bodega Bay | $\begin{gathered} \text { San } \\ \text { Francisco } \end{gathered}$ | Monterey | Morro Bay | Santa Barbara | $\begin{gathered} \text { Los } \\ \text { Angeles } \end{gathered}$ | $\begin{gathered} \text { San } \\ \text { Diego } \end{gathered}$ | Unkn Cal WOC at Sea | All Ports | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 ARROWTOOTH FLOUNDER | . 0 | 1.0 | . 0 |  |  |  |  | . 2 | 1,148.6 | ARTH |
| BUTTER SOLE |  | . 0 |  |  |  |  |  |  | . 3 | BSOL |
| CURLFIN SOLE |  |  |  |  |  | . 1 |  |  | 1.9 | CSOL |
| DOVER SOLE | 169.6 | 178.6 | 347.8 | 337.4 | . 2 | . 1 | . 0 |  | 6,624.1 | DOVR |
| ENGLISH SOLE | 10.7 | 72.5 | 35.2 | 7.1 | . 1 |  |  |  | 675.2 | EGLS |
| FLATHEAD SOLE |  |  |  |  |  |  |  |  | 2.2 | FSOL |
| PETRALE SOLE | 46.9 | 204.7 | 143.2 | 40.3 | 3.0 | . 1 | . 0 |  | 3,139.0 | PTRL |
| REX SOLE | 11.0 | 22.8 | 26.3 | 10.1 | . 0 | . 2 |  |  | 466.7 | REX |
| ROCK SOLE | . 1 | 5.5 | . 4 |  |  |  |  |  | 9.9 | RSOL |
| SAND SOLE | . 7 | 36.1 | 1.6 | . 8 |  |  | . 2 |  | 179.7 | SSOL |
| SANDDABS | . 4 | 381.5 | 122.6 | 11.6 | 1.2 | 25.8 | 1.6 |  | 806.1 | SDAB |
| StARRY FLOUNDER | 1.1 | 21.1 | 3.8 | 2.0 |  |  |  |  | 53.9 | StRy |
| OTHER FLATFISH |  | . 4 |  | . 1 | . 0 |  |  | . 1 | . 6 | OFLT |
| UNSP. FLATFISH | . 1 | 12.8 | 2.7 | 2.0 | 7.3 | 13.5 | . 2 |  | 47.2 | UFLT |
| $2 \ldots$ ALL FLATFISH | 240.7 | 937.0 | 683.6 | 411.4 | 11.9 | 39.7 | 1.9 | . 3 | 13,155.4 | FLAT |
| 1 LONGSPINE THORNYHEAD | 62.7 | 82.9 | 215.5 | 188.5 | 1.3 | 59.5 |  |  | 2,812.4 | LSPN |
| NOM. LONGSPINE THORNY | 2.3 | 1.1 | . 2 | 3.5 | 10.4 | . 7 | 8.4 |  | 141.4 | LSP1 |
| NOM. SHORTSPINE THORN | 1.5 | 4.3 | . 1 | . 4 | 18.9 | 8.9 | 3.3 |  | 135.1 | SSP1 |
| SHORTSPINE THORNYHEAD | 30.1 | 37.7 | 374.3 | 92.6 |  | 154.9 | 28.9 |  | 1,897.3 | SSPN |
| THORNYHEADS (MIXED) | 5.5 | 9.1 | 6.8 |  | 11.4 | 1.1 | 1.3 | . 0 | 89.5 | THDS |
| 4 __THORNYHEADS COMPLEX | 102.1 | 135.1 | 596.8 | 285.0 | 41.9 | 225.0 | 41.9 | . 0 | 5,075.7 | TRNY |
| 1 NOM. SHORTBELLY ROCKF |  |  |  |  |  |  |  |  | 1.1 | SBL1 |
| NOM. WIDOW ROCKFISH | 29.3 | 32.9 | 2.9 |  | 1.0 | . 3 | . 5 |  | 362.4 | WDW1 |
| NOMINAL POP |  |  |  |  |  |  |  |  | 79.0 | POP2 |
| PACIFIC OCEAN PERCH |  | . 6 |  |  |  |  |  | 2.6 | 324.9 | POP |
| SHORTBELLY ROCKFISH |  |  | . 0 |  |  |  |  |  | . 5 | SBLY |
| UNSP. POP GROUP |  |  |  |  |  |  |  |  | . 0 | UPOP |
| WIDOW ROCKFISH | 97.0 | 63.4 | 42.4 | 22.7 | . 0 | . 4 | . 0 | 23.0 | 3,062.4 | WDOW |
| AURORA ROCKFISH | . 3 | 1.0 | 2.2 | 5.4 |  |  |  |  | 16.0 | ARRA |
| BANK ROCKFISH | 3.2 | 16.6 | 13.2 | 13.3 | 1.0 | 1.5 | 4.0 |  | 63.7 | BANK |
| BLACK ROCKFISH | . 1 | 5.7 | . 3 | . 8 |  |  |  |  | 171.5 | BLCK |
| BLACK+BLUE ROCKFISH |  | . 3 |  |  |  |  |  |  | . 4 | RCK9 |
| BLACK-AND-YELLOW ROCK |  |  | 84.9 | 97.4 |  |  |  |  | 209.0 | BYEL |
| BLACKGILL ROCKFISH | 1.2 | 3.5 | 16.0 | 16.5 | 9.3 | 11.8 | 26.0 |  | 92.0 | BLGL |
| BLUE ROCKFISH | . 7 | 13.0 | 2.9 | 40.3 | 1.5 | . 1 |  |  | 80.6 | BLUR |
| BOCACCIO | 18.6 | 27.5 | 25.2 | 11.1 | 8.4 | 3.7 | 2.3 | . 3 | 180.2 | BCAC |
| BRONZESPOTTED ROCKFIS |  | 2.0 |  | . 0 | . 3 | . 8 | . 0 |  | 3.3 | BRNZ |
| BROWN ROCKFISH | 13.2 | 98.3 | 6.5 | 148.6 |  | . 0 |  |  | 268.0 | BRWN |
| CALIFORNIA SCORPIONFI |  |  | . 1 | . 0 | 93.2 | 103.4 | 7.2 |  | 203.9 | SCOR |
| CANARY ROCKFISH | 15.8 | 12.5 | 7.7 | 5.4 | . 8 | 2.0 | 1.1 | 3.6 | 575.8 | CNRY |
| CANARY+VERMILION RCKF |  | . 1 |  |  |  |  |  |  | . 1 | RCK8 |
| CHAMELEON ROCKFISH |  | . 0 |  |  |  | . 0 | . 1 |  | . 2 | CMEL |
| CHILIPEPPER | 136.4 | 248.2 | 146.0 | 35.8 | 17.8 | 1.9 | . 3 |  | 935.0 | CLPR |
| CHINA ROCKFISH | 1.2 | 5.2 | 4.2 | . 7 |  |  |  |  | 168.0 | CHNA |
| COPPER ROCKFISH | 9.9 | 15.9 | 6.2 | 9.0 | 2.0 | 1.9 | . 1 |  | 127.1 | COPP |
| COWCOD ROCKFISH | . 5 | 2.0 | 1.5 | 1.1 | 1.6 | 1.1 | . 1 |  | 9.9 | CWCD |
| DARKBLOTCHED ROCKFISH | 2.0 | 3.2 | 2.5 | . 6 |  |  |  |  | 254.7 | DBRK |

PFMC Port Group Report: Estimated Ex-vessel Revenue ( $\$ 1000$ ) of Groundfish Landed-catch for 1999 for all Areas for all Gears


PFMC Port Group Report: Estimated Ex-vessel Revenue (\$1000) of Groundfish Landed-catch for 1999 for all Areas for all Gears

| T Species or Group | Bodega Bay | $\begin{gathered} \text { San } \\ \text { Francisco } \end{gathered}$ | Monterey | Morro Bay | Santa <br> Barbara | Los Angeles | $\begin{gathered} \text { San } \\ \text { Diego } \end{gathered}$ | Unkn Cal woc at Sea | All Ports | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROUGHEYE ROCKFISH |  |  | . 6 | . 0 |  |  |  |  | 70.8 | REYE |
| SHARPCHIN ROCKFISH | . 3 | . 1 | . 1 |  |  |  |  |  | 34.8 | SHRP |
| SHORTRAKER ROCKFISH |  |  |  |  |  |  |  |  | 44.8 | SRKR |
| SILVERGREY ROCKFISH | . 2 |  |  |  |  |  |  |  | 64.7 | SLGR |
| SPECKLED ROCKFISH | . 1 | 1.2 | 1.0 | . 4 | 2.3 | . 9 | . 4 |  | 6.3 | SPKL |
| SPLITNOSE ROCKFISH | 4.9 | 27.0 | 35.4 | 12.6 | . 3 | . 6 | . 9 |  | 140.7 | SNOS |
| STARRY ROCKFISH | 1.8 | 1.5 | 3.1 | 1.4 | 1.9 | 5.4 | . 2 |  | 15.3 | Star |
| STRIPETAIL ROCKFISH | . 1 | . 1 | . 0 |  |  |  |  |  | 6.4 | STRK |
| TIGER ROCKFISH | . 0 |  |  |  |  |  |  |  | 5.6 | TIGR |
| TREEFISH |  |  |  | 7.2 | 2.2 | . 1 |  |  | 9.5 | TREE |
| UNSP. BOLINA RCKFSH | . 6 | . 9 | 1.2 | 1.7 | 4.5 |  |  |  | 9.1 | RCK2 |
| UNSP. GOPHER RCKFSH | 6.1 | 3.9 |  | . 1 | 8.3 |  |  |  | 18.4 | RCK7 |
| UNSP. REDS RCKFSH | . 0 | 1.5 | . 5 | 3.1 | 32.4 | . 5 | . 5 |  | 41.4 | RCK4 |
| UNSP. ROSEFISH RCKFSH | . 0 | . 5 | . 4 | . 0 | . 0 |  |  |  | 14.5 | RCK6 |
| UNSP. SMALL REDS RCKF | 1.4 | 9.8 | 3.0 | . 1 | . 2 | . 0 | . 2 |  | 19.3 | RCK5 |
| VERMILION ROCKFISH | 2.4 | 3.7 | 12.1 | 29.0 | 11.7 | 33.8 | 3.7 |  | 148.1 | VRML |
| YELLOWEYE ROCKFISH | 2.2 | 2.7 | 3.0 | 1.7 | . 3 | . 8 |  |  | 226.3 | YEYE |
| YELLOWMOUTH ROCKFISH |  |  |  |  |  |  |  |  | 21.3 | YMTH |
| YELLOWTAIL ROCKFISH | 26.0 | 31.0 | 9.0 | 3.0 | 2.8 | . 2 |  | 372.0 | 1,862.5 | YTRK |
| OTHER ROCKFISH |  |  |  |  |  |  |  | 14.7 | 23.6 | ORCK |
| GEN. SHELF/SLOPE RF |  |  |  |  |  |  |  |  | 32.5 | POP1 |
| UNSP. NEAR-SHORE ROCK |  | . 5 |  |  |  |  |  |  | . 5 | USHR |
| UNSP. ROCKFISH | . 2 | . 2 | 3.2 | 1.7 | 30.9 | . 5 | 1.5 |  | 569.3 | URCK |
| __ALL ROCKFISH | 534.4 | 897.2 | 1,157.4 | 1,121.0 | 407.4 | 430.0 | 104.7 | 416.2 | 17,502.7 | Rock |
| 1 CABEZON | 28.5 | . 1 | 80.4 | 471.9 |  |  |  |  | 924.8 | CBZN |
| KELP GREENLING | . 1 | . 1 | 12.7 | 19.8 |  |  |  |  | 121.0 | KLPG |
| LINGCOD | 12.7 | 42.2 | 25.8 | 38.5 | 6.9 | 1.6 | . 8 | . 0 | 627.5 | LCOD |
| NOM. CABEZON |  | 4.1 | . 1 | . 2 | 140.6 | . 5 | . 2 |  | 147.3 | CBZ1 |
| NOM. KELP GREENLING | 5.0 | . 3 | 5.1 | . 0 | . 1 | . 2 |  |  | 12.4 | KGL1 |
| PACIFIC COD |  |  |  |  |  |  |  | . 0 | 263.9 | PCOD |
| PACIFIC WHITING |  | . 0 | . 3 |  | . 0 | . 0 |  | 11,811.7 | 18,642.4 | PWHT |
| SABLEFISH | 207.3 | 274.5 | 682.0 | 129.9 | 36.7 | 246.6 | 85.0 | . 7 | 17,058.8 | SABL |
| WALLeye Pollock |  |  |  |  |  |  |  |  | . 0 | PLCK |
| 2 __ALL ROUNDFISH | 253.7 | 321.3 | 806.4 | 660.3 | 184.3 | 248.8 | 86.0 | 11,812.5 | 37,798.2 | ROND |
| 1 LEOPARD SHARK | . 1 | 6.6 | 1.1 | . 1 | 6.8 | 6.5 | 1.2 |  | 25.5 | LSRK |
| SOUPFIN SHARK | . 1 | 4.7 | 8.8 | 1.6 | 30.9 | 21.9 | 33.5 |  | 104.1 | SSRK |
| SPINY DOGFISH |  |  | 9.7 |  | . 2 | 5.2 | . 0 |  | 168.0 | DSRK |
| RATFISH | . 2 |  |  |  |  |  |  |  | . 2 | RATF |
| BIG SKATE |  | . 5 |  |  |  |  |  |  | . 5 | BSKT |
| CALIFORNIA SKATE |  | . 0 |  |  |  |  | . 0 |  | . 1 | CSKT |
| OTHER GROUNDFISH |  |  |  |  |  |  |  | 25.0 | 25.7 | OGRN |
| UNSP. GRENADIERS | 1.7 | 1.3 | 45.1 | 3.2 |  |  |  |  | 112.0 | GRDR |
| UNSPECIFIED SKATE | 2.0 | 18.3 | 19.4 | 1.7 | . 3 | 6.8 | . 3 |  | 463.7 | USKT |
| 2 __MISC. GROUNDFISH | 4.1 | 31.4 | 84.1 | 6.6 | 38.2 | 40.4 | 35.0 | 25.0 | 899.6 | MGRN |
| __ALL GROUNDFISH | 1,032.9 | 2,186.9 | 2,731.5 | 2,199.3 | 641.7 | 759.0 | 227.7 | 12,254.1 | 69,355.8 | GRND |

Report \#020W 04MAY01 16:26 PacFIN Best Available Data (Orca) Page: 4

PFMC Port Group Report: Estimated Ex-vessel Revenue ( $\$ 1000$ ) of Groundfish Landed-catch for 1999 for all Areas for all Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
T Species or Group $\quad$ Bay Francisco Monterey
 PACIFIC HALIBUT PINK SHRIMP
UNSPECIFIED OCTOPI

| 28.0 |  | 3.0 |
| ---: | ---: | ---: |
| .4 | .9 | 1.8 |
|  |  |  |
| .5 | 14.4 | 58.2 |
| 2.0 | 18.8 | 19.4 |
|  |  |  |
| 1.6 | 6.4 | .0 |
| .2 | .1 | .7 |
|  |  | .3 |


| 189.7 | 813.1 | 675.5 | 115. |
| ---: | ---: | ---: | ---: |
| 195.5 | 4.8 | .2 |  |
| .1 | .4 | 1.0 | . |
| 34.0 | 168.0 | 260.1 | 269. |
| 1.8 | 15.3 | 11.6 | . |
|  |  |  |  |
|  | .0 | 1.7 |  |
| .0 | .0 | 4.5 |  |

PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
2. Port group "WA Coast" consists of all Washington ports on the Columbia River and the Pacific Coast


PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
2. Port group "WA Coast" consists of all Washington ports on the Columbia River and the Pacific Coast


PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
2. Port group "WA Coast" consists of all Washington ports on the Columbia River and the Pacific Coast

| T Species or Group | No Puget | South Puget | WA Coast | Col R OR. | Tillamook | Newport | $\begin{gathered} \text { Coos } \\ \text { Bay } \end{gathered}$ | Brookings | Crescent City | Eureka | Fort <br> Bragg | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 REDBANDED ROCKFISH |  |  |  | 3.4 | . 0 | 2.1 | 4.4 | 1.0 | 1.7 | 2.3 | 4 | RDBD |
| REDSTRIPE ROCKFISH |  |  |  | 3.7 | . 1 | 4.4 | 11.9 | 2.3 | . 5 | . 9 | . 0 | REDS |
| ROSETHORN ROCKFISH |  |  |  | . 4 |  | . 1 | 1.2 | 1.5 | . 4 | . 7 | . 0 | RSTN |
| ROSY ROCKFISH |  |  |  |  |  |  |  |  | . 3 |  | . 0 | ROSY |
| ROUGHEYE ROCKFISH |  |  |  | 14.7 | . 0 | 9.6 | 11.0 | 6.9 |  | . 0 |  | REYE |
| SHARPCHIN ROCKFISH |  |  |  | 17.2 | . 0 | 3.4 | 4.3 | . 3 | 6.4 | 14.6 | . 1 | SHRP |
| SHORTRAKER ROCKFISH |  |  |  | 30.4 | . 0 | 4.6 | 1.9 | 1.4 |  |  |  | SRKR |
| SILVERGREY ROCKFISH |  |  |  | 26.8 | . 0 | 19.6 | 1.1 | . 2 | . 1 | . 0 | . 1 | SLGR |
| SPECKLED ROCKFISH |  |  |  |  |  |  |  |  |  | . 0 | . 0 | SPKL |
| SPLITNOSE ROCKFISH |  |  |  | 9.0 | . 3 | 12.1 | 11.3 | 2.4 | 18.9 | 7.2 | 26.0 | Snos |
| STARRY ROCKFISH |  |  |  |  |  |  |  |  |  |  | . 0 | STAR |
| STRIPETAIL ROCKFISH |  |  |  | . 0 |  |  | . 3 | 2.3 | 3.0 | 2.8 | 1.5 | STRK |
| TIGER ROCKFISH |  |  |  | . 1 |  | . 1 | . 1 | 1.1 | . 0 |  |  | TIGR |
| TREEFISH |  |  |  |  |  |  |  |  |  |  |  | TREE |
| UNSP. BOLINA RCKFSH |  |  |  |  |  |  |  |  | . 0 |  | . 0 | RCK2 |
| UNSP. GOPHER RCKFSH |  |  |  |  |  |  |  |  |  |  | . 0 | RCK7 |
| UNSP. REDS RCKFSH |  |  |  |  |  |  |  |  | . 7 | 1.2 | . 1 | RCK4 |
| UNSP. ROSEFISH RCKF |  |  |  |  |  |  |  |  |  | . 1 | 21.4 | RCK6 |
| UNSP. SMALL REDS RC |  |  |  |  |  |  |  |  | 1.9 | . 8 | . 5 | RCK5 |
| VERMILION ROCKFISH |  |  |  |  |  |  | . 0 | 7.3 | 1.8 | 1.3 | 2.2 | VRML |
| YELLOWEYE ROCKFISH |  |  |  | 1.5 | . 0 | 24.5 | 20.8 | 16.1 | 3.5 | 3.2 | 2.7 | YEYE |
| YELLOWMOUTH ROCKFIS |  |  |  | 2.8 | . 0 | 18.8 | . 1 | . 0 |  | . 1 |  | YMTH |
| YELLOWTAIL ROCKFISH |  |  |  | 632.6 | . 9 | 221.1 | 144.7 | 57.0 | 38.9 | 28.7 | 8.3 | YTRK |
| OTHER ROCKFISH |  |  |  |  |  | . 5 | . 7 | 1.7 |  |  |  | ORCK |
| GEN. SHELF/SLOPE RF |  |  |  | 9.9 | 1.2 | 25.1 | 8.0 | 7.3 |  |  |  | POP1 |
| UNSP. NEAR-SHORE RO |  |  |  |  |  |  |  |  |  |  |  | USHR |
| UNSP. ROCKFISH |  |  |  | 129.1 | . 4 | 16.5 | 24.1 | 7.2 | 3.4 | . 9 | . 4 | URCK |
| $2 \ldots$ ALL ROCKFISH | 988.8 | 2.8 | 826.4 | 3,058.5 | 44.0 | 2,171.8 | 1,318.6 | 638.5 | 546.8 | 807.2 | 912.6 | Rock |
| 1 CABEzon |  |  |  |  | . 8 | 2.3 | . 2 | 23.2 | 3.5 | 2.7 | 30.0 | CBZN |
| KELP GREENLING |  |  |  |  |  |  |  |  | 3.3 | . 5 | 6.9 | KLPG |
| LINGCOD | 27.5 | . 4 | 13.8 | 45.8 | 5.9 | 38.4 | 40.5 | 43.2 | 32.6 | 26.6 | 29.7 | LCOD |
| NOM. CABEZON |  |  |  |  |  |  |  |  | . 0 | . 0 | . 2 | CBZ1 |
| NOM. KELP GREENLING |  |  |  |  |  |  |  |  | . 5 | . 0 | . 1 | KGL1 |
| PACIFIC COD | 229.0 |  | 13.1 | 36.4 |  | . 6 | . 7 | . 0 | . 0 |  |  | PCOD |
| PACIFIC WHITING | 7.5 |  | 9,091.2 | 38,304.3 |  | 31,650.9 | 2,997.3 | 1.6 | 1,187.2 | 120.0 |  | PWHT |
| SABLEFISH | 866.2 | 124.3 | 709.5 | 943.7 | 1.7 | 888.9 | 785.0 | 352.2 | 303.9 | 518.7 | 410.9 | SABL |
| WALLEYE POLLOCK |  |  | . 2 | . 0 |  | . 0 |  |  |  |  |  | PLCK |
| 2 __all Roundfish | 1,130.1 | 124.7 | 9,827.9 | 39,330.3 | 8.4 | 32,581.0 | 3,823.7 | 420.2 | 1,531.1 | 668.6 | 477.7 | ROND |
| 1 LEOPARD SHARK |  |  |  |  |  |  |  |  |  | 1.4 |  | LSRK |
| SOUPFIN SHARK | . 2 |  | . 0 | . 2 |  | . 4 | . 1 | . 1 | . 1 | . 2 | . 5 | SSRK |
| SPINY DOGFISH | 381.4 |  | 19.7 | 75.3 | . 0 | 13.5 | . 1 |  | . 0 | . 7 |  | DSRK |
| RATFISH |  |  |  |  |  | . 0 |  |  | . 0 |  |  | RATF |
| BIG SKATE |  |  |  |  |  |  |  |  |  |  |  | BSKT |
| CALIFORNIA SKATE |  |  |  |  |  |  |  |  |  |  |  | CSKT |
| OTHER GROUNDFISH |  |  |  | . 0 |  | . 5 |  |  |  |  |  | OGRN |

## Report \#010W 04MAY01 16:26 PacFIN

Best Available Data (Orca)
Part 1 Page: 4
PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
2. Port group "WA Coast" consists of all Washington ports on the Columbia River and the Pacific Coast

| T Species or Group | No Puget | South <br> Puget | WA Coast | Col R OR. | amook | Newport | $\begin{gathered} \text { Coos } \\ \text { Bay } \end{gathered}$ | rookings | Crescent City | Eureka | Fort <br> Bragg | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 UNSP. GRENADIERS |  |  |  | 12.1 |  | 12.5 | 78.9 | 20.4 | 14.4 | 87.6 | 43.7 | GRDR |
| UNSPECIFIED SKATE | 68.5 |  | 56.6 | 130.5 | . 4 | 139.5 | 262.8 | 57.0 | 308.8 | 342.6 | 100.7 | USKT |
| 2 __MISC. GROUNDFISH | 450.1 |  | 76.4 | 218.2 | . 4 | 166.3 | 341.9 | 77.5 | 323.4 | 432.5 | 144.9 | MGRN |
| 3 __ALL GROUNDFISH | 5,881.4 | 127.5 | 11,657.1 | 46,822.8 | 96.7 | 36,089.9 | 8,032.9 | 1,638.2 | 3,317.7 | 3,448.6 | 2,456.0 | GRND |
| 1 CALIFORNIA HALIBUT |  |  |  |  |  | . 0 | . 0 |  | 2.4 | . 5 |  | CHLB |
| PACIFIC HALIBUT | 89.7 |  | 42.8 | 20.2 | 10.0 | 34.1 | 11.8 | 9.6 | . 0 | . 4 | 1.7 | PHLB |
| PINK SHRIMP | 11.4 |  | 1,192.6 | 2,626.7 | 362.0 | 2,795.3 | 2,700.3 | 792.2 | 1,186.7 | 437.9 | 144.5 | PSHP |
| UNSPECIFIED OCTOPI | . 8 |  | . 1 | . 5 |  | . 4 | . 2 | 2.6 | 1.0 | . 2 | . 1 | ОСТР |
| 4 __ALL SHARKS | 382.0 |  | 90.9 | 76.8 | . 0 | 14.2 | . 3 | . 1 | 2.2 | 2.3 | . 7 | SHRK |
| __ALL SKATES \& RAYS | 68.5 |  | 56.6 | 130.5 | . 4 | 139.5 | 262.8 | 57.0 | 308.8 | 343.6 | 100.7 | SKAT |
| 1 UNSPECIFIED SCULPIN |  |  |  |  |  | . 0 |  | . 0 |  |  | . 0 | SCLP |
| UNSPECIFIED SMELT |  |  | . 1 |  |  |  |  |  | 78.7 | 172.6 | 3.4 | SMLT |
| UNSPECIFIED SQUID | . 0 |  | . 1 | . 1 |  | . 5 | . 5 |  | . 1 |  |  | SQID |

PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears

| Species or Group | Bodega Bay | $\begin{gathered} \text { San } \\ \text { Francisco } \end{gathered}$ | Monterey | Morro Bay | Santa <br> Barbara | $\begin{array}{r} \text { Los } \\ \text { Angeles } \end{array}$ | $\begin{array}{r} \text { San } \\ \text { Diego } \end{array}$ | Unkn Cal WOC at Sea | All Ports | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARROWTOOTH FLOUNDER | . 1 | 1.0 | . 1 |  |  |  |  | 1.2 | 5,286.0 | ARTH |
| BUTTER SOLE |  | . 0 |  |  |  |  |  |  | . 5 | BSOL |
| CURLFIN SOLE |  |  |  |  |  | . 0 |  |  | 2.7 | CSOL |
| DOVER SOLE | 243.2 | 294.0 | 490.2 | 446.6 | . 1 | . 0 | . 0 |  | 9,137.2 | DOVR |
| ENGLISH SOLE | 13.4 | 93.4 | 46.4 | 8.6 | . 1 |  |  |  | 912.6 | EGLS |
| flathead sole |  |  |  |  |  |  |  |  | 3.0 | FSOL |
| PETRALE SOLE | 20.9 | 86.9 | 65.9 | 16.2 | 1.4 | . 1 | . 0 |  | 1,498.1 | PTRL |
| REX SOLE | 12.8 | 26.5 | 31.1 | 11.5 | . 0 | . 2 |  |  | 590.0 | REX |
| ROCK SOLE | . 1 | 5.7 | . 3 |  |  |  |  |  | 11.3 | RSOL |
| SAND SOLE | . 5 | 19.5 | 2.2 | . 4 |  |  | . 2 |  | 107.0 | SSOL |
| SANDDABS | . 6 | 524.3 | 203.2 | 20.6 | . 6 | 4.0 | . 4 |  | 1,201.4 | SDAB |
| STARRY FLOUNDER | 1.2 | 21.2 | 3.1 | . 6 |  |  |  |  | 56.9 | STRY |
| OTHER FLATFISH |  | . 3 |  | . 0 | . 0 |  |  | . 1 | . 4 | OFLT |
| UNSP. FLATFISH | . 2 | 12.5 | 1.9 | 1.2 | 4.1 | 10.3 | . 1 |  | 41.5 | UFLT |
| __ALL FLATFISH | 292.9 | 1,085.3 | 844.5 | 505.8 | 6.3 | 14.6 | . 6 | 1.3 | 18,848.6 | FLAT |
| LONGSPINE THORNYHEAD | 38.5 | 57.0 | 121.6 | 114.7 | . 2 | 9.9 |  |  | 1,670.6 | LSPN |
| NOM. LONGSPINE THORNY | 1.2 | . 7 | . 0 | 2.1 | 3.3 | . 3 | 1.5 |  | 84.2 | LSP1 |
| NOM. SHORTSPINE THORN | . 9 | 2.4 | . 0 | . 2 | 3.0 | 1.3 | . 4 |  | 59.0 | SSP1 |
| SHORTSPINE THORNYHEAD | 17.0 | 21.8 | 101.1 | 56.1 |  | 27.8 | 4.2 |  | 790.0 | SSPN |
| THORNYHEADS (MIXED) | 3.0 | 5.4 | 4.0 |  | 2.7 | . 2 | . 2 | . 0 | 41.5 | THDS |
| __THORNYHEADS COMPLEX | 60.5 | 87.3 | 226.7 | 173.1 | 9.2 | 39.4 | 6.3 | . 0 | 2,645.2 | TRNY |
| NOM. SHORTBELLY ROCKF |  |  |  |  |  |  |  |  | 8.0 | SBL1 |
| NOM. WIDOW ROCKFISH | 17.8 | 18.6 | 2.2 |  | . 2 | . 1 | . 3 |  | 394.7 | WDW1 |
| NOMINAL POP |  |  |  |  |  |  |  |  | 89.8 | POP2 |
| PACIFIC OCEAN PERCH |  | 1.0 |  |  |  |  |  | 3.0 | 390.0 | POP |
| SHORTBELLY ROCKFISH |  |  | . 0 |  |  |  |  |  | . 8 | SBLY |
| UNSP. POP GROUP |  |  |  |  |  |  |  |  | . 1 | UPOP |
| WIDOW ROCKFISH | 101.7 | 60.0 | 43.4 | 25.3 | . 0 | . 1 | . 0 | 32.8 | 3,589.9 | wDOW |
| AURORA ROCKFISH | . 6 | 1.6 | 3.7 | 10.2 |  |  |  |  | 25.8 | ARRA |
| BANK ROCKFISH | 3.4 | 15.6 | 10.1 | 14.4 | . 1 | . 5 | 1.6 |  | 58.4 | BANK |
| BLACK ROCKFISH | . 0 | 2.2 | . 2 | . 3 |  |  |  |  | 119.1 | BLCK |
| BLACK+BLUE ROCKFISH |  | . 2 |  |  |  |  |  |  | . 2 | RCK9 |
| BLACK-AND-YELLOW ROCK |  |  | 9.6 | 12.7 |  |  |  |  | 25.0 | BYEL |
| BLACKGILL ROCKFISH | 1.3 | 3.5 | 7.7 | 16.2 | 1.0 | 4.5 | 8.5 |  | 51.3 | BLGL |
| BLUE ROCKFISH | . 3 | 3.4 | 1.2 | 5.7 | . 1 | . 0 |  |  | 23.7 | BLUR |
| BOCACCIO | 13.2 | 21.0 | 19.6 | 6.1 | . 9 | 1.2 | . 8 | . 3 | 143.9 | BCAC |
| BRONZESPOTTED ROCKFIS |  | 1.9 |  | . 0 | . 0 | . 2 | . 0 |  | 2.4 | BRNZ |
| BROWN ROCKFISH | 2.6 | 19.9 | 1.4 | 19.4 |  | . 0 |  |  | 43.6 | BRWN |
| CALIFORNIA SCORPIONFI |  |  | . 0 | . 0 | 17.0 | 20.6 | 1.8 |  | 39.4 | SCOR |
| CANARY ROCKFISH | 7.6 | 7.2 | 4.1 | 1.6 | . 2 | . 5 | . 3 | 4.1 | 511.9 | CNRY |
| CANARY+VERMILION RCKF |  | . 1 |  |  |  |  |  |  | . 1 | RCK8 |
| CHAMELEON ROCKFISH |  | . 0 |  |  |  | . 0 | . 0 |  | . 1 | CMEL |
| CHILIPEPPER | 114.1 | 220.5 | 138.7 | 31.4 | 1.8 | . 6 | . 1 |  | 913.1 | CLPR |
| CHINA ROCKFISH | . 2 | 1.4 | . 7 | . 1 |  |  |  |  | 30.9 | CHNA |
| COPPER ROCKFISH | 2.1 | 2.8 | 1.3 | 2.2 | . 3 | . 5 | . 0 |  | 34.5 | COPP |
| COWCOD ROCKFISH | . 6 | 2.1 | 1.2 | . 3 | . 3 | . 3 | . 0 |  | 7.0 | CWCD |
| DARKBLOTCHED ROCKFISH | 1.9 | 3.1 | 2.8 | . 6 |  |  |  |  | 325.6 | DBRK |

PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears


PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears

| Species or Group | Bodega Bay | $\begin{gathered} \text { San } \\ \text { Francisco } \end{gathered}$ | Monterey | Morro Bay | Santa Barbara | $\begin{array}{r} \text { Los } \\ \text { Angeles } \end{array}$ | $\begin{array}{r} \text { San } \\ \text { Diego } \end{array}$ | Unkn Cal WOC at Sea | All Ports S | SPID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROUGHEYE ROCKFISH |  |  | . 1 | . 0 |  |  |  |  | 61.1 R | REYE |
| SHARPCHIN ROCKFISH | . 1 | . 1 | . 1 |  |  |  |  |  | 51.9 S | SHRP |
| SHORTRAKER ROCKFISH |  |  |  |  |  |  |  |  | 51.5 S | SRKR |
| SILVERGREY ROCKFISH | . 1 |  |  |  |  |  |  |  | 74.0 S | SLGR |
| SPECKLED ROCKFISH | . 0 | . 5 | . 5 | . 2 | . 2 | . 3 | . 1 |  | 1.9 S | SPKL |
| SPLITNOSE ROCKFISH | 6.8 | 44.0 | 66.0 | 23.8 | . 0 | . 2 | . 4 |  | 229.2 S | SNOS |
| STARRY ROCKFISH | . 6 | . 5 | 1.2 | . 4 | . 3 | 1.5 | . 1 |  | 4.5 S | Star |
| STRIPETAIL ROCKFISH | . 1 | . 1 | . 0 |  |  |  |  |  | 10.2 S | STRK |
| TIGER ROCKFISH | . 0 |  |  |  |  |  |  |  | 1.5 T | TIGR |
| TREEFISH |  |  |  | . 6 | . 2 | . 0 |  |  | . 8 T | TREE |
| UNSP. BOLINA RCKFSH | . 1 | . 1 | . 2 | . 3 | . 5 |  |  |  | 1.3 R | RCK2 |
| UNSP. GOPHER RCKFSH | . 7 | . 5 |  | . 0 | 1.1 |  |  |  | 2.4 R | RCK7 |
| UNSP. REDS RCKFSH | . 0 | . 6 | . 2 | 1.5 | 9.5 | . 1 | . 2 |  | 14.2 R | RCK4 |
| UNSP. ROSEFISH RCKFSH | . 0 | . 3 | . 7 | . 0 | . 0 |  |  |  | 22.6 R | RCK6 |
| UNSP. SMALL REDS RCKF | 1.9 | 9.6 | 4.7 | . 1 | . 1 | . 0 | . 1 |  | 19.7 R | RCK5 |
| VERMILION ROCKFISH | . 8 | 1.7 | 5.9 | 7.7 | 2.1 | 8.6 | 1.2 |  | 40.5 V | VRML |
| YELLOWEYE ROCKFISH | . 8 | 1.2 | 1.2 | . 5 | . 1 | . 2 |  |  | 86.3 Y | YEYE |
| YELLOWMOUTH ROCKFISH |  |  |  |  |  |  |  |  | 26.6 Y | Yмт |
| YELLOWTAIL ROCKFISH | 16.0 | 15.4 | 4.5 | 1.6 | . 3 | . 1 |  | 452.6 | 2,141.7 Y | YTRK |
| OTHER ROCKFISH |  |  |  |  |  |  |  | 12.8 | 15.7 O | ORCK |
| GEN. SHELF/SLOPE RF |  |  |  |  |  |  |  |  | 51.5 P | POP1 |
| UNSP. NEAR-SHORE ROCK |  | . 1 |  |  |  |  |  |  | . 1 U | USHR |
| UNSP. ROCKFISH | . 2 | . 1 | 2.1 | . 9 | 9.2 | . 2 | . 6 |  | 448.4 | URCK |
| __ALL ROCKFISH | 373.4 | 584.1 | 598.8 | 401.9 | 79.0 | 90.4 | 28.5 | 505.6 | 13,977.9 R | ROCK |
| CABEZON | 4.3 | . 0 | 10.3 | 53.7 |  |  |  |  | 131.0 C | CBZN |
| KELP GREENLING | . 0 | . 0 | 1.2 | 1.8 |  |  |  |  | 13.8 K | KLPG |
| LINGCOD | 6.1 | 18.8 | 12.6 | 13.1 | 2.0 | . 5 | . 3 | . 0 | 357.8 L | LCOD |
| NOM. CABEZON |  | . 8 | . 1 | . 0 | 14.2 | . 2 | . 0 |  | 15.5 C | CBZ1 |
| NOM. KELP GREENLING | . 8 | . 1 | . 8 | . 0 | . 0 | . 1 |  |  | 2.4 K | KGL1 |
| PACIFIC COD |  |  |  |  |  |  |  | . 0 | 279.8 P | PCOD |
| PACIFIC WHITING |  | . 0 | . 4 |  | . 0 | . 0 |  | 140,024.2 | 223,384.7 P | PWHT |
| SABLEFISH | 93.4 | 134.3 | 329.5 | 85.9 | 13.2 | 68.6 | 15.4 | . 7 | 6,646.0 S | SABL |
| WALLEYE POLLOCK |  |  |  |  |  |  |  |  | .3 P | PLCK |
| __ALL ROUNDFISH | 104.7 | 154.2 | 354.8 | 154.5 | 29.4 | 69.4 | 15.7 | 140,024.9 | 230,831.4 R | ROND |
| LEOPARD SHARK | . 1 | 3.0 | . 5 | . 1 | 6.1 | 4.7 | . 6 |  | 16.5 L | LSRK |
| SOUPFIN SHARK | . 0 | 2.8 | 4.1 | 2.9 | 32.2 | 19.4 | 25.8 |  | 89.0 S | SSRK |
| SPINY DOGFISH |  |  | 18.7 |  | . 3 | 4.9 | . 0 |  | 514.7 D | DSRK |
| RATFISH | . 2 |  |  |  |  |  |  |  | . 2 R | RATF |
| BIG SKATE |  | . 6 |  |  |  |  |  |  | . 6 B | BSKT |
| CALIFORNIA SKATE |  | . 0 |  |  |  |  | . 0 |  | . 1 | CSKT |
| OTHER GROUNDFISH |  |  |  |  |  |  |  | 33.4 | 33.90 | OGRN |
| UNSP. GRENADIERS | 7.0 | 5.2 | 142.3 | 13.1 |  |  |  |  | 437.3 G | GRDR |
| UNSPECIFIED SKATE | 5.9 | 24.9 | 54.6 | 3.7 | . 3 | 15.4 | . 2 |  | 1,572.5 U | USKT |
| __MISC. GROUNDFISH | 13.2 | 36.5 | 220.2 | 19.8 | 38.9 | 44.4 | 26.7 | 33.4 | 2,664.7 M | MGRN |
| __ALL GROUNDFISH | 784.2 | 1,860.1 | 2,018.3 | 1,082.0 | 153.7 | 218.8 | 71.5 | 140,565.2 | 266,322.6 G | GRND |

Report \#010W 04MAY01 16:26 PacFIN
Best Available Data (Orca)
Part 2 Page: 4
PFMC Port Group Report: Groundfish Landed-catch (Metric tons) for 1999 for All Gears
Notes: 1. Landed-catch excludes any fish discarded at sea
Species or Group Bodega Francisco Monterey Morro Banta Anges Barbara Angeles San
------- Diego Unkn Cal woC at Sea All Ports SPID
 PACIFIC HALIBUT PINK SHRIMP
UNSPECIFIED OCTOPI

|  |  |  |
| ---: | ---: | ---: |
| 25.4 |  | .5 |
| .2 | .6 | .7 |
|  |  |  |
| .2 | 8.1 | 46.5 |
| 5.9 | 25.5 | 54.6 |
| .2 |  |  |
| .1 | .7 | .0 |
|  |  | .5 |
|  |  | .1 |


| 35.7 | 143.9 | 9 |
| ---: | ---: | ---: |
| 126.1 | 2.8 |  |
| .0 | .3 |  |
| 26.3 | 131.6 | 15 |
| 3.9 | 20.6 | 2 |
|  |  |  |
|  | .0 |  |
| .0 | .0 |  |

# Morro Bay Power Plant Modernization Project 316(b) Resource Assessment 

## Appendix I

## Part 3

CDFG California Commercial Landings for 1999

$$
\begin{aligned}
& \text { stem: CFIS } \\
& \text { ble15.rdf } \\
& \text { Specles } \\
& \text { hes } \\
& \text { inchovy, northern..... }
\end{aligned}
$$

| ystem: CFIS able15.rdf <br> Species | Eureka | California Department of Fish and Game <br> Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area.-1999 |  |  |  |  |  |  | Page: <br> Date: <br> San Dlego | $\begin{gathered} 2 \\ \text { 11/08/2000 } \\ \text { Total } \\ \text { Landings } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | $\begin{gathered} \text { Los } \\ \text { Angeles } \end{gathered}$ |  |  |
| ishes |  |  |  |  |  |  |  |  |  |  |
| Dolphin (fish)...................... | 0 | 0 | 0 | 0 | 6,700 | 1,818 | 483 | 22,466 | 4,329 | 35,795 |
|  | \$0 | \$0 | \$0 | \$0 | \$5,643 | \$1,808 | \$362 | \$32,594 | \$7,388 | \$47,796 |
| Eel, California moray.............. | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 487 | 140 | 631 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$3,284 | \$1,005 | \$4,289 |
| Eel, monkeyface................... | 31 | 0 | 0 | 10 | 60 | 70 | 0 | 0 | 0 | 170 |
|  | \$54 | \$0 | \$0 | \$29 | \$218 | \$168 | \$0 | \$0 | \$0 | \$469 |
| Eel, wolf (wolf-eel)................ | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Eel..................................... | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 6 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$12 | \$0 | \$0 | \$0 | \$12 |
| Escolar................................ | 0 | 0 | 0 | 0 | 310 | 0 | 0 | 753 | 2,753 | 3,816 |
|  | \$0 | \$0 | \$0 | \$0 | \$465 | \$0 | $\$ 0$ | \$753 | \$3,236 | \$4,454 |
| Fish, unspecified................... | 98 | 0 | 18 | 37 | 18 | 147 | 834 | 8 | 47 | 1,208 |
|  | \$5 | \$0 | \$0 | \$10 | \$19 | \$163 | \$713 | \$0 | \$457 | \$1,367 |
| Flounder, arrowtooth.............. | 90,463 | 1,175 | 220 | 2,289 | 154 | 0 | 0 | 0 | 0 | 94,301 |
|  | \$9,128 | \$119 | \$22 | \$971 | \$15 | \$0 | \$0 | \$0 | \$0 | \$10,255 |
| Flounder, starry..................... | 18,970 | 59 | 2.632 | 46,683 | 8,884 | 1,234 | 0 | 0 | 0 | 76,462 |
|  | \$7,702 | \$24 | \$1,108 | \$20,952 | \$3,233 | \$2,041 | \$0 | \$0 | \$0 | \$35,059 |
| Flounder, unspecified.............. | 0 | 0 | 141 | 24,091 | 3,380 | 1,695 | 7 | 39 | 19 | 29,372 |
|  | \$0 | \$0 | \$56 | \$11,416 | \$1,899 | \$1,229 | \$6 | \$93 | \$28 | \$14,728 |
| Flyingfish............................ | 0 | 0 | 0 | 147 | 110 | 0 | 0 | 0 | 0 | 257 |
|  | \$0 | \$0 | \$0 | \$118 | \$44 | \$0 | \$0 | \$0 | \$0 | \$162 |
| Soby, yellowfin..................... | 0 | 0 | 0 | 273 | 0 | 0 | 0 | 0 | 0 | 273 |
|  | \$0 | \$0 | \$0 | \$743 | \$0 | \$0 | \$0 | \$0 | \$0 | \$743 |
| 3reenling, kelp..................... | 9,481 | 13,233 | 1,678 | 231 | 4,308 | 3,229 | 16 | 151 | 0 | 32,326 |
|  | \$31,309 | \$52,146 | \$4,852 | \$329 | \$17,717 | \$16,785 | \$79 | \$227 | $\$ 0$ | \$123,444 |
| 3renadiers........................... | 224,955 | 96,290 | 15,460 | 11,480 | 313,742 | 28.915 | 0 | 0 | 0 | 690,842 |
|  | \$23,900 | \$8,450 | \$1,729 | \$1,283 | \$44,733 | \$3,163 | \$0 | \$0 | \$0 | \$83,258 |


|  | 帯感 | N | $\begin{aligned} & N \\ & \\ & \\ & \end{aligned}$ | $\hat{N}_{6}^{\infty}$ |  | $\underset{\sim}{\underset{\sim}{\circ}} \underset{\sim}{\underset{\sim}{N}}$ |  | $\stackrel{\Gamma}{\infty}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \infty \stackrel{\infty}{\sim} \\ & \stackrel{\varphi}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$ | 舞 | 穴8 |  | $\stackrel{\sim}{ }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | － 0 | $\frac{9}{\circ} \frac{8}{6}$ | $\bigcirc$ |  | －8 | $8 \text { 응 }$ | － 8 | － 8 | 08 | $\bigcirc 0$ | 08 | $\bigcirc 0$ | 08 | $0 \%$ |


| stem: CFIS Jle15.rdf | California Department of Fish and Game Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  |  | Page: <br> Date: | $\begin{aligned} & 4 \\ & 11 / 08 / 2000 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Eureka | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | Los Angeles | San Diego | Total Landings |
| hes |  |  |  |  |  |  |  |  |  |  |
| ingcod.............................. | 130,389 | 65,387 | 12,790 | 41,481 | 27,708 | 28,499 | 4.471 | 1,038 | 684 | 312,445 |
|  | \$98,764 | \$53,962 | \$12,046 | \$42,040 | \$24,659 | \$37,933 | \$6,391 | \$1,419 | \$835 | \$278,049 |
| izardfish, California............. | 0 | 0 | 0 | 0 | 0 | 0 | 78 | 32 | 0 | 110 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$26 | \$5 | \$0. | \$31 |
| ouvar............................... | 244 | 0 | 0 | 210 | 426 | 1,642 | 642 | 1,259 | 4,086 | 8.509 |
|  | \$361 | \$0 | \$0 | \$51 | \$1,106 | \$5,619 | \$2,321 | \$4,453 | \$12,499 | \$26,409 |
| lackerel, Pacific.................. | 5,645 | 0 | 1,477 | 342 | 6,033 | 69 | 376,893 | 18,731,666 | 31,713 | 19,153,837 |
|  | \$545 | \$0 | \$368 | \$131 | \$9,960 | \$28 | \$37,091 | \$1,035,653 | \$4,564 | \$1,088,339 |
| lackerel, bullet.................... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12,473 | 0 | 12,473 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$499 | \$0 | \$499 |
| lackerel, jack....................... | 1,517 | 0 | 41 | 13 | 53,308 | 0 | 402 | 2,044,468 | 125 | 2,099,874 |
|  | \$0 | \$0 | \$24 | \$5 | \$1,747 | \$0 | \$19 | \$182,015 | \$125 | \$183,935 |
| lackerel, unspecified............ | 692 | 0 | 0 | 245 | 0 | 0 | 0 | 0 | 0 | 937 |
|  | \$0 | \$0 | \$0 | \$76 | \$0 | \$0 | \$0 | \$0 | \$0 | \$76 |
| IIdshipman, plainfin............. | 0 | 0 | 0 | 0 | 0 | 0 | 78 | 71 | 0 | 149 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$8 | \$0 | \$8 |
| ilfish.................................. | 0 | 0 | 0 | 0 | 66 | 432 | 0 | 481 | 278 | 1,257 |
|  | \$0 | \$0 | \$0 | \$0 | \$99 | \$48 | \$0 | \% 514 | \$278 | \$939 |
| pah................................... | 442 | 0 | 0 | 728 | 4,232 | 5.850 | 5,186 | 19,909 | 108,600 | 144,947 |
|  | \$153 | \$0 | \$0 | \$430 | \$1,798 | \$2.730 | \$2,729 | \$9,699 | \$48,576 | \$66,114 |
| paleye.............................. | 0 | 0 | 0 | 0 | 0 | 9 | 43 | 887 | 0 | 939 |
|  | \$0 | \$0 | \$0 | \$0 | $\$ 0$ | \$7 | \$86 | \$1,107 | \$0 | \$1,199 |
| ueenfish........................... | 0 | 0 | 0 | 0 | 338 | 0 | 0 | 61 | 0 | 399 |
|  | \$0 | \$0 | \$0 | \$0 | \$101 | \$0 | \$0 | \$18 | \$0 | \$119 |
| atfish, spotted..................... | 6 | 0 | 409 | 0 | 0 | 0 | 0 | 0 | 0 | 415 |
|  | \$12 | \$0 | \$151 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$163 |
| ay, Pacific electric............... | 0 | 0 | 0 | 0 | 0 | 10 | 822 | 0 | 0 | 832 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$2,075 | \$0 | \$0 | \$2,075 |



| Fort Bragg | Bodega Bay | San Franclsco | Monterey | Morro Bay | Santa Barbara | $\begin{gathered} \text { Los } \\ \text { Angeles } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 15 | 133 |
| \$0 | \$0 | \$0 | \$0 | \$0 | \$45 | \$1 |
| 0 | 0 | 141 | 0 | 0 | 0 | 62 |
| \$0 | \$0 | \$141 | \$0 | \$0 | \$0 | \$16 |
| 7,526 | 442 | 718 | 178 | 210 | 354 | 0 |
| \$32,738 | \$1,578 | \$2,087 | \$768 | \$582 | \$1,630 | \$0 |
| 0 | 0 | 2,140 | 0 | 0 | 0 | 0 |
| \$0 | \$0 | \$561 | \$0 | \$0 | \$0 | \$0 |
| 0 | 6 | 13,032 | 4,984 | 9,069 | 0 | 0 |
| \$0 | \$5 | \$6,327 | \$2,279 | \$4,133 | \$0 | \$0 |
| 5,367 | 263 | 92 | 13,503 | 4,338 | 0 | 0 |
| \$24,814 | \$1,156 | \$386 | \$60,030 | \$16,134 | \$0 | \$0 |
| 11,058 | 1,359 | 11,151 | 616 | 587 | 0 | 0 |
| \$9,245 | \$1,163 | \$11,706 | \$699 | \$865 | \$0 | \$0 |
| 409 | 661 | 6.830 | 12,634 | 30,021 | 21,000 | 3,559 |
| \$167 | \$284 | \$3,241 | \$14,422 | \$13,720 | \$17,656 | \$2,249 |
| 5,015 | 1,308 | 2,880 | 1.707 | 2,280 | 110 | 13 |
| \$4,769 | \$1,129 | , \$2.815 | \$1,287 | \$1,253 | \$160 | \$20 |
| 22,120 | 24,593 | 26,573 | 36,016 | 8,399 | 966 | 6,299 |
| \$7,932 | \$15,937 | \$15,709 | \$15,912 | \$3,728 | \$653 | \$7,411 |
| 268 | 85 | 10,154 | 5,685 | 4.156 | 1,660 | 0 |
| \$603 | \$155 | \$9,612 | \$3,039 | \$18,357 | \$4,339 | \$0 |
| 43,552 | 26,407 | 19,193 | 5,467 | 60 | 912 | 0 |
| \$24,326 | \$28,404 | \$21,073 | \$4,724 | \$108 | \$1,502 | \$0 |
| 799,700 | 254,873 | 472,675 | 312,753 | 73,815 | 3,283 | 19,606 |
| \$496,143 | \$136,356 | \$241,435 | \$140,563 | \$34,891 | \$6,621 | \$3,663 |
| 6,494 | 736 | 5,557 | 1,308 | 3,603 | 1,563 | 90 |
| \$11,970 | \$1,623 | \$13,742 | \$4,182 | \$5,633 | \$4,347 | \$90 |



| ystem: CFIS <br> able15.rdf |
| :---: |
| Species |
| ishes |
| Ray, bat............................ |
| Ray, unspecified.................. |
| Rockfish, China..................... |
| Rockfish, Pacific ocean perch. |
| Rockfish, bank..................... |
| Rockfish, black-and-yellow...... |
| Rockfish, black...................... |
| Rockfish, blackgill.................. |
| Rockfish, blue...................... |
| Rockfish, bocaccio............... |
| Rockfish, brown................... |
| Rockfish, canary.................. |
| Rockfish, chilipepper.............. |
| Rockfish, copper.................. |


| Eureka | Californla Department of Fish and Game <br> Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  | Page: <br> Date: <br> San <br> Dlego | 6 <br> 11/08/2000 <br> Total Landings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fort Bragg | Bodega Bay | San Franclsco | Monterey | Morro Bay | Santa Barbara | Los Angeles |  |  |
| 34 | 0 | 0 | 464 | 372 | 1,092 | 238 | 2,524 | 2,085 | 6,809 |
| \$17 | \$0 | \$0 | \$219 | \$248 | \$678 | \$239 | \$4,326 | \$2,912 | \$8,640 |
| 860 | 0 | 0 | 60 | 339 | 0 | 0 | 0 | 0 | 1,259 |
| \$46 | \$0 | \$0 | \$36 | \$339 | \$0 | \$0 | \$0 | \$0 | \$421 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
| \$0 | \$0 | \$0 | \$0 | \$5 | \$0 | \$0 | \$0 | \$0 | \$5 |
| 36 | 7,860 | 242 | 1,875 | 1,479 | 73,848 | 7,614 | 75 | 10 | 93,038 |
| \$141 | \$36,182 | \$898 | \$6,631 | \$5,213 | \$250,228 | \$28,140 | \$156 | \$15 | \$327,604 |
| 659 | 7,379 | 3,484 | 106 | 6,418 | 32,222 | 8,988 | 0 | 0 | 59,256 |
| \$2,967 | \$35,629 | \$13,706 | \$507 | \$30,233 | \$165,623 | \$49,261 | \$0 | \$0 | \$297,925 |
| 263 | 111 | 0 | 5,112 | 5,166 | 498 | 186 | 2,188 | 0 | 13,523 |
| \$106 | \$54 | \$0 | \$5,241 | \$4,770 | \$424 | \$277 | \$3,113 | \$0 | \$13,984 |
| 101 | 0 | 0 | 1,164 | 356 | 0 | 9 | 150 | 0 | 1,781 |
| \$44 | \$0 | \$0 | \$905 | \$98 | \$0 | \$0 | \$75 | \$0 | \$1,123 |
| 120 | 0 | 0 | 367 | 0 | 0 | 0 | 0 | 0 | 487 |
| \$105 | \$0 | \$0 | \$344 | \$0 | \$0 | $\$ 0$ | \$0 | \$0 | \$449 |
| 25 | 17 | 6,662 | 54,386 | 3.789 | 42,807 | 1.192 | 0 | 0 | 108,878 |
| \$74 | \$38 | \$16,611 | \$129,976 | \$10.038 | \$144,969 | \$4.495 | \$0 | \$0 | \$306,200 |
| 0 | 0 | 0 | 164 | 0 | 0 | 0 | 0 | 0 | 164 |
| \$0 | \$0 | \$0 | \$148 | \$0 | \$0 | \$0 | $\$ 0$ | \$0 | \$148 |
| 0 | 806. | 1,571 | 1,046 | 21,141 | 1,298 | 2,512 | 0 | 0 | 28,375 |
| \$0 | \$3,333 | \$5,941 | \$3,829 | \$67,641 | \$4.162 | \$8,257 | \$0 | \$0 | \$93,163 |
| 0 | 0 | 0 | 129 | 0 | 0 | 0 | 0 | 0 | 129 |
| \$0 | \$0 | \$0 | \$468 | \$0 | \$0 | \$0 | \$0 | \$0 | \$468 |
| 32,736 | 23,837 | 20,737 | 34,764 | 34,070 | 31,685 | 28,411 | 27,958 | 8,642 | 242,840 |
| \$14,039 | \$9,790 | \$22,833 | \$26,306 | \$29,089 | \$47,484 | \$47,569 | \$49,071 | \$12,570 | \$258,750 |
| 165 | 47,253 | 10,905 | 103,775 | 164,750 | 82,971 | 20 | 0 | 0 | 409,839 |
| \$338 | \$12,742 | \$2,869 | \$161,745 | \$38,193 | \$19,821 | \$8 | \$0 | \$0 | \$235,715 |


| Species |
| :---: |
| ishes |
| Rockfish, cowcod... |
| Rockfish, darkblotched........... |
| Rockfish, flag...................... |
| Rockfish, gopher.................. |
| Rockfish, grass................... |
| Rockfish, greenspotted.......... |
| Rockiish, greenstriped........... |
| Rockfish, group black/blue...... |
| Rockfish. group bolina........... |
| Rockfish, group canary/vermili |
| Rockfish, group gopher.......... |
| Rockfish, group nearshore...... |
| Rockfish, group red............... |
| Rockfish, group rosefish........ |


| Eureka | California Department of Fish and Game <br> Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  | Page: <br> Date: <br> San <br> Diego | 7 <br> 11/08/2000 <br> Total Landings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fort Bragg | Bodega Bay | San Francisco | Monteray | Morro Bay | Santa Barbara | $\begin{gathered} \text { Los } \\ \text { Angeles } \end{gathered}$ |  |  |
| 239,786 | 7,905 | 4,231 | 21,220 | 13,488 | 1,053 | 187 | 26 |  |  |
| \$67,008 | \$3,540 | \$1,381 | \$9,762 | \$4,421 | \$698 | \$250 | \$48 | \$170 | 288,096 $\mathbf{\$ 8 7 , 2 7 8}$ |
| 0 | 18 | 9 | 21 | 2,127 | 537 | 264 | 0 |  |  |
| \$0 | \$81 | \$27 | \$21 | \$6,726 | \$1,779 | \$1,249 | \$0 | \$0 | 2,976 $\mathbf{\$ 9 , 8 8 3}$ |
| 623 | 0 | 0 | 0 | 23 | 8 | 215 | 349 | 0 |  |
| \$690 | \$0 | \$0 | \$0 | \$24 | \$3 | \$752 | \$524 | \$0 | 1,218 $\$ 1,993$ |
| 10,562 | 600 | 296 | 6,380 | 3 | 0 | 0 | 0 | 0 |  |
| \$26,830 | \$2,081 | \$1,014 | \$33,930 | \$4 | \$0 | \$0 | \$0 | \$0 | 17,840 $\mathbf{\$ 6 3 , 8 6 0}$ |
| 251 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| \$218. | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$2518 |
| 286 | 94 | 0 | 617 | 40 | 8 | 60 | 0 |  |  |
| \$433 | \$87 | \$0 | \$198 | \$12 | \$12 | \$60 | \$0 | \$0 | 1,106 $\$ 801$ |
| 0 | 0 | 0 | 500 | 2 | 0 | 90 | 0 |  |  |
| \$0 | \$0 | \$0 | \$172 | \$1 | \$0 | \$32 | \$0 | \$0 | 591 $\$ 206$ |
| 17,634 | 0 | 0 | 0 | 0 | 0 | - 0 | 0 | 0 |  |
| \$962 | \$0 | $\$ 0$ | \$0 | \$0 | \$0 | $\$ 0$ | \$0 | \$0 | 17,634 $\$ 962$ |
| 0 | 0 | 1,482 | 54 | 0 | 0 | 0 | 3,439 | 0 |  |
| \$0 | \$0 | \$1,171 | \$32 | $\$ 0$ | \$0 | $\$ 0$ | \$5,499 | \$0 | \$6,702 |
| 20,793 | 44,448 | 2,847 | 4,761 | 0 | 0 | 26 | 1,183 |  |  |
| \$4,736 | \$11,608 | \$749 | \$1,283 | \$0 | \$0 | \$15 | \$2,442 | \$0 | 74,063 $\mathbf{\$ 2 0 , 8 3 3}$ |
| 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 |  |  |
| \$0 | \$0 | \$0 | \$0 | \$23 | \$0 | \$0 | \$0 | \$0 | 23 $\$ 23$ |
| 0 | 0 | 0 | 0 | 4 | 0 | 2,150 | 58 |  |  |
| \$0 | \$0 | \$0 | \$0 | \$7 | \$0 | \$2,903 | \$106 | \$55 | 2,274 $\$ 3,070$ |
| 0 | 0 | 0 | 0 | 295 | 0 | 0 | 0 | 0 |  |
| \$0 | \$0 | \$0 | \$0 | \$7 | \$0 | \$0 | \$0 | \$0 | 295 $\$ 7$ |
| 0 | 0 | 0 | 0 | 19 | 1,363 | 573 | 1 |  |  |
| \$0 | \$0 | \$0 | \$0 | \$90 | \$6,924 | \$2,932 | \$1 | \$19 | 1,960 $\$ 9,966$ |


| iystem: CFIS able15.rdf | California Department of Fish and GameTable 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area-1999 |  |  |  |  |  |  |  | $\begin{array}{cl} \text { Page: } & 8 \\ \text { Date: } & 11 / 08 / 2000 \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Eureka | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | Los Angeles | San Diego | Total Landings |
| ishes |  |  |  |  |  |  |  |  |  |  |
| Rockfish, unspecified............. | 307,887 | 81,483 | 26,930 | 84,285 | 57,544 | 15,019 | 31,520 | 15,404 | 19,547 | 639,619 |
|  | \$129,434 | \$32,790 | \$17,274 | \$50,778 | \$39,258 | \$16,203 | \$81,249 | \$16,031 | \$27,304 | \$410,322 |
| Rockfish, vermilion................ | 7,027 | 6,837 | 573 | 4,286 | 2,053 | 424 | 814 | 4 | 1,270 | 23,287 |
|  | \$9,919 | \$8,845 | \$767 | \$8,554 | \$2,777 | \$1,244 | \$1,290 | \$6 | \$1,796 | \$35,199 |
| Rockish, widow.................... | 501,812 | 288,306 | 259,619 | 164,944 | 101,053 | 73,057 | 373 | 151 | 336 | 1,389,652 |
|  | \$193,213 | \$110,954 | \$123,770 | \$92,250 | \$42,834 | \$29,075 | \$1,007 | \$297 | \$269 | \$593,670 |
| Rockfish, yelloweye............... | 12,612 | 5,071 | 222 | 1,471 | 1,289 | 0 | 0 | 0 | 0 | 20,666 |
|  | \$22,427 | \$8,074 | \$277 | \$3,658 | \$1,566 | \$0 | \$0 | \$0 | \$0 | \$36,001 |
| Rockfish, yellowtail............... | 134,234 | 10,968 | 33,747 | 34,008 | 7,715 | 437 | 315 | 347 | 163 | 221,933 |
|  | \$58,890 | \$3,435 | \$23,570 | \$27,845 | \$4,591 | \$268 | \$566 | \$268 | \$236 | \$119,670 |
| Sablefish............................. | 1,813,892 | 896,817 | 206,018 | 296,075 | 726,326 | 189,201 | 29,108 | 150,858 | 33,791 | 4,342,086 |
|  | \$1,649,297 | \$792,482 | \$206,311 | \$274,434 | \$673,935 | \$129,057 | \$34,585 | \$179,504 | \$83,669 | \$4,023,274 |
| Salmon, Roe (Chinook and Co | 0 | 0 | 55 | 272 | 0 | 0 | 0 | 0 | 0 | 327 |
|  | \$0 | \$0 | \$55 | \$511 | \$0 | \$0 | \$0 | \$0 | \$0 | \$566 |
| Salmon, chinook................... | 36,069 | 83,668 | 626,548 | 1,992,234 | 1,073,318 | 26,665 | 2.728 | 87 | 0 | 3,841,318 |
|  | \$82,021 | \$183,390 | \$1,212,492 | \$3,953,433 | \$1,834,353 | \$71,702 | \$7,196 | \$151 | \$0 | \$7,344,738 |
| Salmon, coho........................ | 34 | 0 | 327 | 0 | 0 | - | 0 | 0 | 0 | 361 |
|  | \$85 | $\$ 0$ | \$546 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$631 |
| Salmon............................... | 0 | 0 | 284 | 168 | 8,896 | 0 | 0 | 0 | 0 | 9,348 |
|  | \$0 | $\$ 0$ | $\$ 528$ | \$600 | \$23,278 | \$0 | \$0 | \$0 | \$0 | \$24,406 |
| Sanddab, Pacific................... | 0 | 0 | 0 | 0 | 1,155 | 23,244 | 0 | 0 | 0 | 24,399 |
|  | \$0 | \$0 | $\$ 0$ | \$0 | \$289 | \$6,023 | \$0 | \$0 | \$0 | \$6,312 |
| Sanddab, longfin.................... | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| anddab.............................. |  | 6,377 | 1,241 | 1,155,838 | 470,636 | 22,250 | 1,375 | 8,862 | 905 | 2,044,787 |
|  | $\$ 119,903$ | \$1,998 | \$404 | \$379,998 | \$125,891 | \$5,563 | \$1,159 | \$25,600 | \$1,553 | \$662,068 |
| Sardine, Pacific..................... | 0 | 0 | 20 | 2,092,092 | 35,929,390 | 0 | 5,606,553 | 85,816,454 | 1,209,193 | 130,653,702 |
|  | \$0 | \$0 | \$4 | \$81,370 | \$966,959 | \$0 | \$246,438 | \$3,613,082 | \$59,547 | \$4,967,400 |

$$
\begin{aligned}
& \text { stem: CFIS } \\
& \text { ible15.rdf }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Species } \\
& \text { shes } \\
& \text { Shark, pelagic thresher........... } \\
& \text { Shark, salmon....................... } \\
& \text { Shark, sevengill.................... } \\
& \text { Shark, shorting mako............... } \\
& \text { shark, sixgill........................ } \\
& \text { shark, soupfin......................... } \\
& \text { shark, spiny dogfish................ } \\
& \text { shark, swell.......................... } \\
& \text { hark, thresher...................... } \\
& \text { hark, unspecified.................. } \\
& \text { iheephead, California............. } \\
& \text { sate, big............................. }
\end{aligned}
$$

| 3ystem: CFIS rable15.rdf | California Department of Fish and Game <br> Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  |  | Page: 11 <br> Date: $11 / 08 / 2000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eureka | Fort Bragg | $\begin{gathered} \text { Bodega } \\ \text { Bay } \end{gathered}$ | San Franclsco | Monterey | Morro Bay | Santa Barbara | $\begin{gathered} \text { Los } \\ \text { Angeles } \end{gathered}$ | San. Diego | Total Landings |
| Ishes 0 |  |  |  |  |  |  |  |  |  |  |
| Skate, thornback................... | 0 | 0 | 0 | 0 | 24 | 0 | 0 | 0 | 0 | 24 |
|  | \$0 | \$0 | \$0 | \$0 | \$2 | \$0 | \$0 | \$0 | \$0 | \$2 |
| Skate, unspecified................. | 1,431,122 | 222,020 | 12.939 | 54,719 | 117,670 | 8,141 | 487 | 23,019 | 538 | 1,870,654 |
|  | \$206,731 | \$63,075 | \$2,016 | \$18,053 | \$19,000 | \$1,717 | \$269 | \$6,421 | \$269 | \$317,552 |
| Smell, night........................... | 540,931 | 7,308 | 43 | 0 | 39 | 0 | 0 | 0 | 0 | 548,321 |
|  | \$162,330 | \$2,196 | \$151 | \$0 | \$29 | \$0 | \$0 | \$0 | \$0 | \$164,706 |
| Smelt, surf............................ | 11,580 | 119 | 0 | 28 | 7 | 0 | 2 | 0 | 0 | 11,736 |
|  | \$3,536 | \$54 | \$0 | \$21 | \$3 | \$0 | \$1 | \$0 | \$0 | \$3,614 |
| Smell, whitebait.................... |  | 0 | 0 | 0 | 148 | 0 | 0 | 0 | 0 | 1,519 |
|  | \$192 | \$0 | \$0 | \$0 | \$96 | \$0 | \$0 | \$0 | \$0 | \$288 |
| Smelts, true......................... | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 1,789 | 0 | 1,794 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$1 | \$716 | \$0 | \$717 |
| Sole, Dover.......................... | 3,603,476 | 1,563,704 | 536,214 | 648,072 | 1,081,154 | 984,563 | 197 | 107 | 11 | 8,417,498 |
|  | \$1,322,468 | \$782,921 | \$161,454 | \$187,534 | \$311,836 | \$329,140 | \$164 | \$177 | \$12 | \$3,095,706 |
| Sole, English........................ | 348,670 | 144,296 | 29,475 | 205,819 | 102,305 | 18,995 | 275 | 0 | 0 | 849,836 |
|  | \$122,034 | \$121,649 | \$10,659 | \$80,349 | \$34,643 | \$7,105 | \$110 | \$0 | \$0 | \$376,549 |
| Sole, butter.......................... | 49 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 55 |
|  | \$7 | \$0 | \$0 | \$7 | \$0 | \$0 | \$0 | \$0 | \$0 | \$13 |
| Sole, fantail.......................... |  | 0 | 0 | 629 | 0 | 55 | 0 | 0 | 0 | 684 |
|  | \$0 | \$0 | \$0 | \$404 | \$0 | \$52 | \$0 | $\$ 0$ | \$0 | \$456 |
| Sole, petrale......................... | 671,920 | 155,719 | 46,129 | 191,614 | 145,69 | 35,715 | 3,024 | 113 | 2 | 1,249,926 |
|  | $\$ 588,385$ | \$161,856 | \$46,927 | \$205.223 | \$141,773 | \$40,328 | \$2,998 | \$65 | \$2 | \$1,187,558 |
| Sole, rex.............................. |  | 157.596 | 28,198 | 58,406 | 68,653 | 25,266 | 39 | 343 | 0 | 629,453 |
|  | $\$ 112,279$ | \$68,187 | \$10,970 | \$22,780 | \$25,010 | \$9,957 | \$6 | \$166 | \$0 | \$249,356 |
| Sole, rock............................. |  | 906 | 268 | 12,577 | 757 | 0 | 0 | 0 | 0 | 14,508 |
|  |  | \$343 | \$139 | \$5,530 | \$356 | \$0 | \$0 | \$0 | \$0 | \$6,369 |
| Sole, sand............................. | 10.129 | 0 | 1,015 | 43,021 | 4,789 | 956 | 0 | 0 | 225 | 60,134 |
|  |  | \$0 | \$704 | \$36,512 | \$1,599 | \$782 | \$0 | \$0 | \$0 | \$47,089 |


| System: CFIS rable15.rdf |  | ble 15 - Pou | e And Va | fornia Depa Of Landing | ent of Fis Of Comme | d Game <br> Fish Into | fornia By | a-1999 | Page: <br> Date: | $\begin{aligned} & 12 \\ & 11 / 08 / 2000 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | Eureka | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | Los Angeles | San Dlego | $\begin{gathered} \text { Total } \\ \text { Landings } \end{gathered}$ |
| Fishes |  |  |  |  |  |  |  |  |  |  |
| Sole, tongue........................ | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 0 | 0 | 21 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Sole, unspecified................... | 0 | 2 | 25 | 342 | 39 | 890 | 8,835 | 22,508 | 99 | 32,740 |
|  | \$0 | \$2 | \$20 | \$192 | \$39 | \$1,207 | \$6,878 | \$12,906 | \$137 | \$21,382 |
| Stickleback, threespine.......... | 0 | 0 | 0 | 254 | 0 | 0 | 0 | 0 | 0 | 254 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 |
| Stingray............................ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,383 | 0 | 1,383 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$345 | \$0 | \$345 |
| Surfperch, barred.................. | 139 | 0 | 2,009 | 0 | 0 | 7.414 | 0 | 0 | 0 | 9,562 |
|  | \$160 | \$0 | \$1,899 | \$0 | \$0 | \$12,679 | \$0 | \$0 | \$0 | \$14,738 |
| Surferch, black................... | 0 | 0 | 0 | 0 | 0 | 1 | 27 | 4 | 10 | 42 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$14 | \$4 | \$50 | \$69 |
| Surfperch, pile...................... | 499 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 505 |
| . | \$568 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$10 | \$0 | \$578 |
| Surferch, rainbow................ | 0 | 43 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 44 |
|  | \$0 | \$174 | \$0 | \$0 | \$0 | \$0 | \$0 | $\$ 0$ | \$0 | \$174 |
| Surferch, redtail.................. | 29,671 | 118 | 0 | 0 | 8 | 1 | 0 | 0 | 0 | 29,798 |
|  | \$33,283 | \$129 | \$0 | \$0 | \$6 | \$1 | \$0 | \$0 | \$0 | \$3,420 |
| Surferch, rubberlip.............. | 0 | 0 | 0 | 18 | 0 | 0 | 35 | 281 | 0 | 314 |
|  | \$0 | \$0 | \$0 | \$27 | \$0 | \$0 | \$23 | \$313 | \$0 | \$362 |
| Surferch, unspecified........... | 584 | 58 | 613 | 2,408 | 36 | 1,712 | 742 | 188 | 252 |  |
|  | \$800 | \$82 | \$737 | \$5,267 | \$45 | \$3,062 | \$515 | \$276 | \$233 | \$11,018 |
| Surferch, white................... | 153 | 0 | 0 | 2,385 | 0 | 0 | 0 | 0 | 0 | 2,538 |
|  | \$191 | $\$ 0$ | \$0 | \$7,287 | \$0 | \$0 | \$0 | \$0 | \$0 | \$7,479 |
| Swordfish............................. | $26,317$ | 0 | 2,297 | 58,763 | 236,171 | 203,852 | 64,193 | 1,846,875 | 614,443 | 3,052,910 |
|  | $\$ 74,136$ | \$0 | \$7,851 | \$116,240 | \$564,682 | \$604,489 | \$195.588 | \$4,639,141 | \$2,005,515 | \$8,207,641 |
| Thornyhead, longspine........... | 1,034,726 | 413,050 | 92,956 | 134,912 | 379,851 | 291,697 | 7,695 | 22,028 | 3,284 | 2,380,198 |
|  | \$803,791 | \$311,950 | \$67,070 | \$88,771 | \$434,545 | \$216,708 | \$11,224 | \$28,348 | \$8,468 | \$1,970,876 |


| System: CFIS Table15.rdf <br> Species | California Department of Fish and Game <br> Table 15 - Poundage And Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  |  | Page: <br> Date: <br> San Diego | 13 <br> 11/08/2000 <br> Total Landings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eureka | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | $\xrightarrow[\text { Angeles }]{\text { Los }}$ |  |  |
| Fishes |  |  |  |  |  |  |  |  |  |  |
| Thornyhead, shortspine.......... | 328,973 | 133,001 | 34,007 | 42,103 | 112,293 | 88,299 | 6,558 | 26,412 | 10,258 | 781,904 |
|  | \$355,291 | \$133,961 | \$26,618 | \$35,210 | \$141,828 | \$67,109 | \$18,845 | \$48,530 | \$31,915 | \$859,307 |
| Thornyheads....................... | 24,493 | 32,757 | 6,510 | 14,033 | 8,782 | 0 | 5,998 | 38,507 | 406 | 131,487 |
|  | \$22,956 | \$31,046 | \$5,541 | \$10,704 | \$6,336 | \$0 | \$10,712 | \$91,418 | \$1,291 | \$180,004 |
| Tomcod, Pacific.................... | 2,045 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2,045 |
|  | \$205 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$205 |
| Triggerfish........................... | 0 | 0 | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 48 |
|  | \$0 | \$0 | \$133 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$133 |
| Tuna, albacore...................... | 603,348 | 64,761 | 62,096 | 178,054 | 1,139,895 | 319,493 | 42,318 | 7,597,019 | 2,286,133 | 12,293,117 |
|  | \$532,447 | \$61,026 | \$71,432 | \$146,745 | \$772,862 | \$197,946 | \$58,681 | \$6,616,353 | \$1,687,911 | \$10,145,403 |
| Tuna, bigeye........................ | 0 | 11 | 0 | 7.737 | 10,481 | 5,842 | 0 | 165,240 | 22,907 | 212,218 |
|  | \$0 | \$44 | \$0 | \$23,211 | \$36,225 | \$18,737 | \$0 | \$464,183 | \$88,083 | \$630,484 |
| Tuna, bluefin......................... | 2,118 | 0 | 270 | 3,188 | 236,733 | 11,670 | 3,596 | 32,440 | 74,493 | 364,508 |
|  | \$5,380 | \$0 | \$1,057 | \$6,887 | \$441,561 | \$31,182 | \$7,636 | \$179,850 | \$382,897 | \$1,056,450 |
| Tuna, skipjack, black............. | 0 | 0 | 0 | 2,171 | 0 | 0 | 15 | 194,249 | 873 | 197,308 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$23 | \$56,585 | \$2,054 | \$58,662 |
| Tuna, skipjack....................... | 0 | 0 | 0 | 80 | 0 | 0 | 809 | 8,284,563 | 586 | 8,286,038 |
|  | \$0 | \$0 | \$0 | \$103 | \$0 | \$0 | \$1.171 | \$2,746,425 | \$478 | \$2,748,176 |
| Tuna, unspecified................... | 1,107 | 7 | 0 | 0 | 4,211 | 0 | 32 | 17.516 | 1,789 | 24,662 |
|  | \$1,360 | \$27 | \$0 | \$0 | \$9,707 | \$0 | \$37 | \$47,564 | \$956 | \$59,652 |
| Tuna, yellowfin...................... | 216 | 0 | 0 | 45 | 524 | 1,775 | 32 | 2,977,459 | 1,128 | 2,981,179 |
|  | \$238 | \$0 | \$0 | \$81 | \$464 | \$1,143 | \$120 | \$1,425,477 | \$2,011 | \$1,429,533 |
| Turbot, curlfin....................... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 90 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$68 | \$0 | \$68 |
| Turbot................................. | 4,161 | 49 | 201 | 3,101 | 401 | 101 | 0 | 0 | 6 | 8,020 |
|  | \$1,440 | \$20 | \$71 | \$1,134 | \$259 | \$31 | \$0 | \$0 | \$7 | \$2,962 |
| Wahoo................................ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3,690 | 471 | 4,161 |
|  | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$2,833 | \$1,270 | \$4,102 |

$$
\begin{aligned}
& \text { California Department of Fish and Game } \\
& \text { Valine of }
\end{aligned}
$$

| Eureka | California Department of Fish and Game Value Of Landings Of Commercial Fish Into California By Area - 1999 |  |  |  |  |  |  | Page: 15 <br> Date: $11 / 08 / 2000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fort Bragg | Bodega Bay | San Francisco | Monterey | Morro Bay | Santa Barbara | Los Angeles | San Diego | $\begin{gathered} \text { Total } \\ \text { Landings } \end{gathered}$ |
| 0 | 0 | 0 | 256 | 0 | 6 | 0 | 0 | 0 | 262 |
| \$0 | \$0 | \$0 | \$896 | \$0 | \$13 | \$0 | \$0 | \$0 | \$909 |
| 0 | 0 | 0 | 0 | 0 | 0 | 297 | 5 | 0 | 302 |
| \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$448 | \$0 | \$0 | \$448 |
| 0 | 0 | 88,903 | 0 | 0 | 0 | 0 | 184 | 19 | 89,106 |
| \$0 | \$0 | \$100,163 | \$0 | \$0 | \$0 | \$0 | \$92 | \$37 | \$100,292 |
| 0 | 0 | 0 | 0 | 34 | 904 | 0 | 0 | 0 | 938 |
| \$0 | \$0 | \$0 | \$0 | \$34 | \$265 | \$0 | \$0 | \$0 | \$299 |
| 0 | 0 | 0 | 0 | 0 | 198 | 184,018 | 170,231 | 138,896 | 493,343 |
| \$0 | \$0 | \$0 | \$0 | \$0 | \$1,683 | \$1,430,629 | \$1,198,341 | \$1,062,119 | \$3,692,772 |
| 0 | 0 | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 25 |
| \$0 | \$0 | \$0 | \$0 | \$194 | \$0 | \$0 | \$0 | \$0 | \$194 |
| 0 | 0 | 0 | 600 | 264 | 2,314 | 1,385,858 | 3,151 | 184 | 1,392,370 |
| \$0 | \$0 | \$0 | \$420 | \$792 | \$3,840 | \$1,689,287 | \$3,127 | \$752 | \$1,698,218 |
| 1,255 | 6,327 | 17,023 | 75,867 | 52,980 | 126,000 | 204,302 | 92,750 | 36,625 | 613,129 |
| \$7,983 | \$43,268 | \$121,853 | \$501,926 | \$374,011 | \$882,126 | \$1,338,209 | \$715,549 | \$268,686 | \$4,253,611 |
| 3,581,747 | 318,623 | 56,062 | 96 | 1.016 | 278,024 | 6,176 | 0 | 0 | 4,241,744 |
| \$1,655,845 | \$122,344 | \$28,031 | \$27 | \$3,025 | \$195,521 | \$4,804 | $\$ 0$ | \$0 | \$2,009,598 |
| 0 | 0 | 0 | 98.086 | 0 | 0 | 0 | 0 | 0 | 98,086 |
| \$0 | $\$ 0$ | \$0 | \$337,839 | \$0 | $\$ 0$ | $\$ 0$ | \$0 | \$0 | \$337,839 |
| 0 | 0 | 0 | 1,391,470 | 0 | 0 | 0 | 0 | 0 | 1,391,470 |
| \$0 | \$0 | \$0 | \$4,550 | \$0 | \$0 | \$0 | \$0 | \$0 | \$4,550 |
| 75,540 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75,540 |
| \$312,906 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$312,906 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 421 | 421 |
| \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$6,372 | \$6,372 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 308 | 0 | 308 |
| \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$0 | \$6,350 | \$0 | \$6,350 |


○O ○O OO ○O 여 品

$$
\begin{aligned}
& \text { istem: CFIS } \\
& \text { ible15.rdf }
\end{aligned}
$$

\[

\]




Jllusks
Clam, California jackknife........
Clam, northern quahog..........




Vussel................................
Jctopus, unspecified.............

System: CFIS
Table15.rdf
Specles

Mollusks
Sea hare.................................
Sea slug................................
Snail, freshwater..................






 Wheik, Kel


[^19]

$$
\text { Table } 15 \text { - Poundage An }
$$
\[

$$
\begin{aligned}
& \text { Bodega } \\
& \text { Bay }
\end{aligned}
$$
\]




[^0]:    ${ }^{1}$ These preliminary results are based on weekly samples that were collected on the following dates: June 21 through August 9, 1999; December 14, 1999 through January 17, 2000; February 28, 2000; and March 27, 2000. See Section 2 for an explanation of sample collection dates.
    ${ }^{2}$ These preliminary results were based on monthly samples that were collected on the following dates: June and July 1999; and December 1999 through February 2000.
    ${ }^{3}$ These preliminary results were based on monthly samples that were collected on the following dates: June and July 1999; and December 1999 through February 2000.

[^1]:    ${ }^{1}$ The tidal excursion is the distance that a parcel of water travels on a flood or ebb.

[^2]:    ${ }^{1}$ Technical terms are defined in a Glossary at the end of the report.

[^3]:    ${ }^{2}$ Technical terms are defined in a Glossary, at the end of the report.

[^4]:    ${ }^{3}$ One of the three diurnal and one of the four semidiurnal constituents resolved in the analyses of the one-month records for stations PSL, MBN and MBS required use of a technique called "inference". Inference employs a longer analysis (the one-year record for PSL, in the present case) to increase the resolution of the one-month analyses. Minor differences between the one-year analysis and one-month analysis for PSL arise from the difference in record length, but these are unimportant in the present context.

[^5]:    § 1998 hourly data provided by the National Ocean Survey

[^6]:    ${ }^{\text {§ }}$ Current direction is the direction toward which the current is flowing (oceanographic convention).
    Tidal amplitude represents the strength of horizontal tidal currents.

    * Current phase is the timing of peak current, relative to the moon's passage over the Longitude of Morro Bay.
    ${ }^{\dagger}$ Because current is a vector, it has an amplitude in a major axis direction and in a minor axis direction, which is normal to the major axis. In the present case, the major axis is aligned along compass direction $166-346 \sim$ True, the orientation of the channel thalweg.

[^7]:    ${ }^{4}$ Because wavelet analysis uses digital filters to resolve the signals at the various analysis frequencies, the output record is shorter than the input record by half a filter length at the beginning and at the end of the record. Longer filters are required for lower frequencies, thus, the lower the frequency, the more the record is truncated. Phase scaleograms were also calculated and show similar results.

[^8]:    ${ }^{5}$ Impedance amplitudes and phase differences are plotted against the square root of MBPP intake or river flow because, if there is a response of the tides to mean flow, tidal theory suggests that impacts will vary with the square root of the mean flow.

[^9]:    ${ }^{6}$ The local phase differences have not been included, because they did not provide any additional information.

[^10]:    * Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24 -hour period.

[^11]:    * Samples were collected during daytime high and low tides in June, July, and December 1999 and January 2000. In February 2000 sampling was increased to 4-hour intervals over a continuous 24 -hour period.

[^12]:    * Weight unobtainable.

[^13]:    * Weight unobtainable.

[^14]:    * Weight unobtainable.

[^15]:    * Weight unobtainable.

[^16]:    * Weight unobtainable.

[^17]:    * Weight unobtainable.

[^18]:    * Weight unobtainable.

[^19]:    Worms
    Invertebrates, colonial.............

