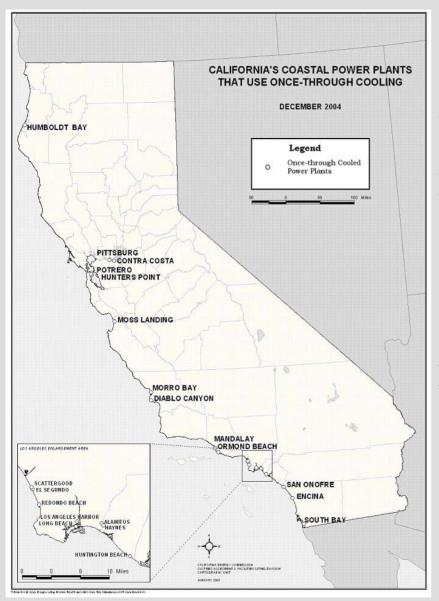

ISSUES AND ENVIRONMENTAL IMPACTS ASSOCIATED WITH ONCE-THROUGH COOLING AT CALIFORNIA'S COASTAL POWER PLANTS



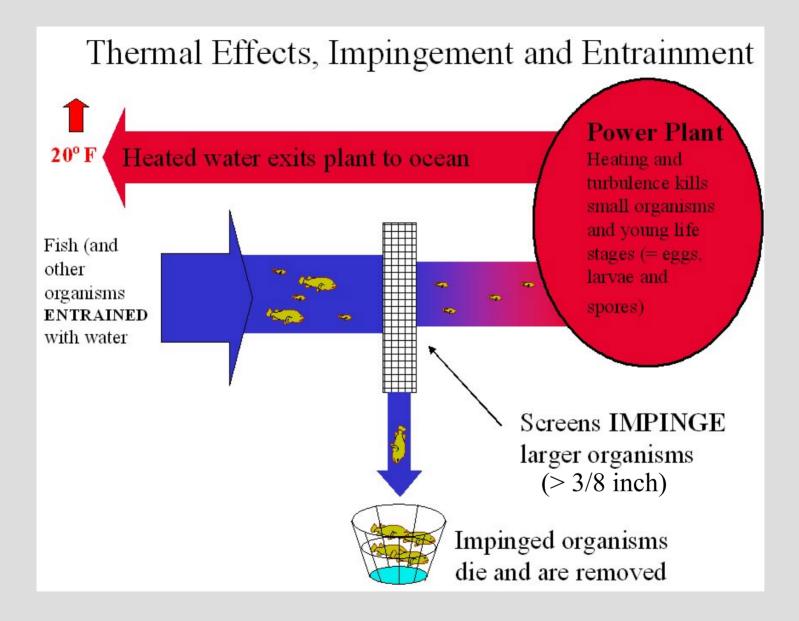
Michael S. Foster Moss Landing Marine Laboratories

review supported by the California Energy Commission

MAJOR MARINE IMPACTS

- -pollution (nutrients, toxins, sediment)-over fishing & by catch-habitat destruction
- -invasive species
- -ocean warming & sea level rise
- -once-through cooling?

21 Power Plants


Permitted To Use ~ 17 Billion Gallons Per Day

Coast Sand/Rock (2)5.12 BGDCoast Sand/Harbor (6)3.43 BGDBay/Estuary (13)8.39 BGD

DISCHARGE -- Thermal

-

- INTAKE - Impingement - Entrainment

(modified from Raimondi)

Lion Rock

Diablo Rock

Temperatures °C above Ambient Intake Temperatures

	9-10
	8-9
	7-8
	6-7
	5-6
	4-5
	3-4
	2-3
	1-2
	0-1

Field's Cove

> Diablo Canyon Power Plant

Intake Cove

South Control

Test TV-9 Date: June 12, 1986 Time: 08:24 (daylight savings)

	Unit	Discharge Temp [°] C	Cooling Water Flow (cfs)	Reactor Power (%)
	1	22.3	2000	100
Temp °C: 11.3	2	20.1	2000	71

Intake Temp °C: 11.3 Tide: (-.42)-.73 ft (MLLW) Wind: 7.5 mph from 205 °(true) Offshore Currents: 47.9 ft/min, 118° true Waves: (H13) .74 cm 9 sec from 274° true Air Temperature: 13.0 °C

Thermal Impacts – *very site specific but can be large* - rock bottoms and enclosed waters

Before Discharge

After Discharge

Impingement - very site specific but can be large = 8-30% of Sport Fishing Catch in Southern California (> 90% of this impingement by San Onofre)

ENTRAINMENT - THE OCEAN IS NOT LIMITLESS COASTAL AND ESTUARINE WATERS ARE DISTINCT HABITATS AND COMMUNITIES WITH LIMITED EXTENT

SEAWATER IS A COMMUNITY, NOT JUST SALTY WATER

PLANKTON DIVERSITY (SPP, # species) & ABUNDANCE (#, # /1000 m3) IN CALIFORNIA COASTAL WATERS

Phytoplankton	10 ² SPP	10 ⁹ #		
50×				
D MARK				
Zooplankton				
A 6 2	Ł	Adults	SPP	_#
42) F	THE P	1 Copepods and related animals Larvae	10 ²	106
	ator 21	2 Crabs	8	3x103
Y The Ball	F	3 Clams & mussels	> 5	1.8x10 ⁶
A TAN	14	4 Sea urchins	2	6x10 ²
1 1 B 2 2	1º	5 Fish	44-200	400 - 600
4 1032	E			
CON	0			
	5			

Data from: phytoplankton, Petipa et al 1970; copepods, Hopcroft et al 2002; all other, Table 1.

~ 50 Million Marine & Estuarine Fish Entrained Per Day in CA

 $1000 \text{ m}^3 \text{ x } 100,000 \approx 17 \text{ Billion Gallons}$

ENTRAINMENT IMPACT ASSESSMENT

Traditional: Sample at Intake

AEL & FH

Use # of Larvae Entrained to Estimate # of Adult Equivalents Killed & compare to fishery catch.

BUT how about impacts to other species?

Modern: Also Sample Source Water

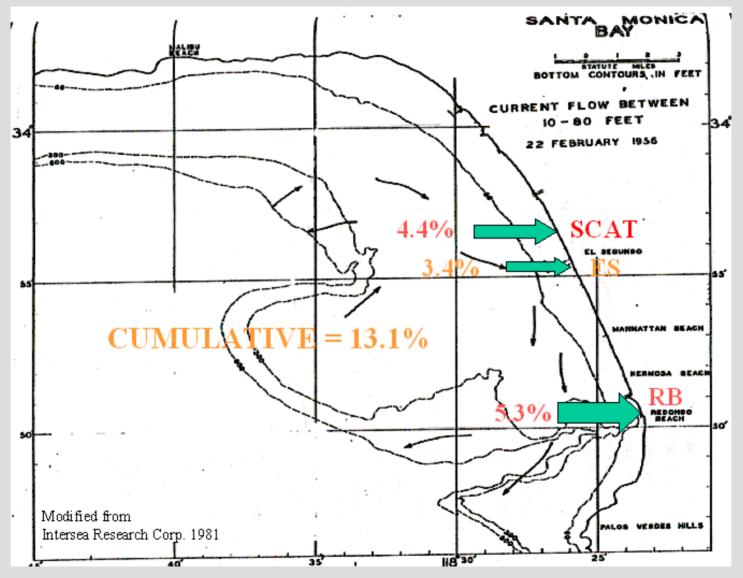
- Use Empirical Transport Model (ETM) to determine Proportional Mortality (PM) = proportion of larvae killed from entrainment that could be entrained (larvae in source population)
- 2. Determine area of source population
- **3.** Determine average of 1.& 2. for species assessed ("target species")
- 4. Average PM x Average Area = area equivalent to 100% loss =
 - HABITAT PRODUCTION FOREGONE (HPF) Representative of all species lost to entrainment

More direct determination of community impacts? large areas + many species + natural variation + multiple impacts = presently impossible

Habitat Production Foregone

Hypothetical Example of a Power Plant in an Estuary Assume Entrainment Study Found:

1. Average Proportional Mortality of Estuarine Species = 17%

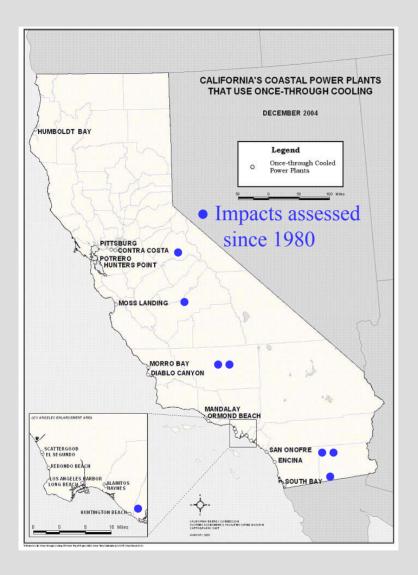

2. Area of Estuary = 2000 Acres (= source water; same for all species)

THEN: The Habitat Required to Compensate for Larval Losses (= New Estuarine Habitat Needed to Produce The Number of Larvae Equivalent to Entrainment Losses)

= (2000 x 0.17) = 340 Acres

POTENTIAL CUMULATIVE IMPACTS SANTA MONICA BAY (% / 6 weeks)

ENTRAINMENT IMPACTS FOUND IN RECENT STUDIES


Original Study
(1979-80)Moss Landingno adverseMorro Bayno adverseHuntingtonno adverseDiablo Canyonnot reliableSouth Bayno adversePotrerono adverse

Recent Study – Habitat Loss (1999-2005) 1100 acres - estuary 230-760 acres - estuary 370-780 acres - sandy coast 300-600 acres - rocky reef 1000 acres - estuary 370-780 acres - estuary

Projected Total Bay/Estuarine Habitat Production Foregone from Power Plants :

13 power plants, 8.39 BGD - 1.2 acres/MGD - \$114,000/acre

~10,000 ACRES LOST ~ \$1.1 BILLION TO RESTORE

13 Coastal Power Plants Lack Recent Entrainment Impact Assessments

- Accuracy of Original Assessments Unknown
- Only Considered Impact on Fished Species
- No Cumulative Impact Assessments
- 25 Years Old = Out of Date NEED:
- -TO KNOW THESE IMPACTS, INDIVIDUAL & CUMULATIVE
- -CONSISTENT APPROACHES & INTERPRETATIONS
- REVIEW BY UNBIASED EXPERTS

ASSESSMENT IS A SCIENCE ISSUE

