
Use of Satellites to Examine Cyanobacteria in California's Large Waterbodies

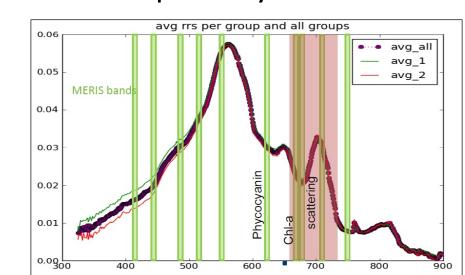
> Randy Turner San Francisco Estuary Institute

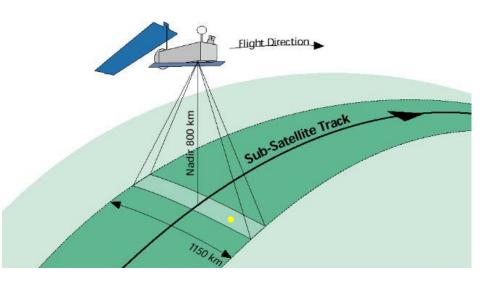


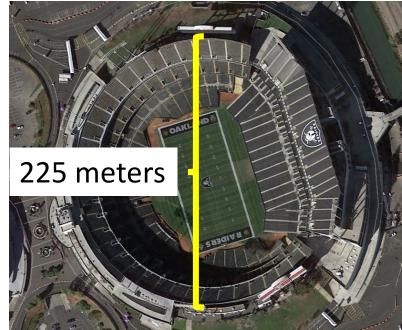
\bigcirc

Background

- Cyanobacteria can grow in a diverse range of environments
- Given adequate light and nutrients, cyanobacterial Harmful Algal Blooms (cyanoHABs) can negatively affect aquatic life.
- Some species produce toxins
- SWAMP contracted with SFEI to: Process, analyze and report on satellite imagery provided by NOAA to better understand risks to public health from cyanoHABs

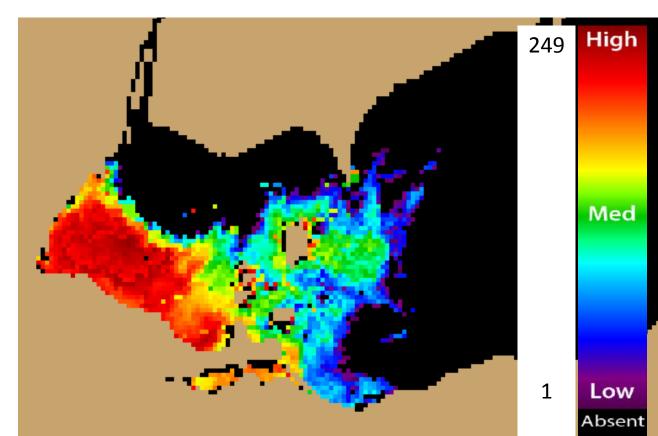

Contract with SWAMP

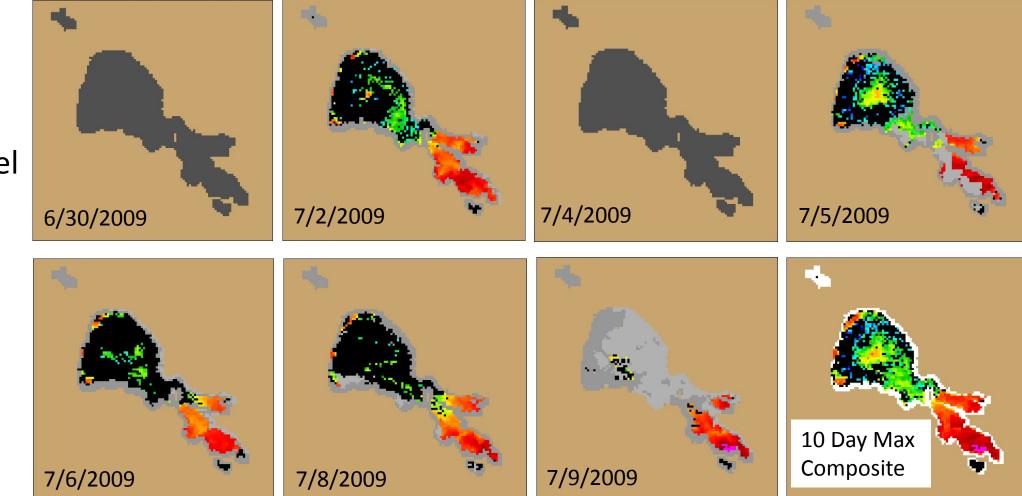

- Develop infrastructure for processing satellite imagery
- Historic Data
 - Analyze MERIS satellite data for 255 waterbodies (2002-2012)
 - Status and Trends report
- Future Data
 - Analyze data from OLCI on Sentinel-3 satellite (launched Feb. 2016)
- Reporting
 - Create web portal for viewing imagery and related data
 - Inform waterbody managers when bloom conditions occur
 - Issue regular bulletins and newsletters to public



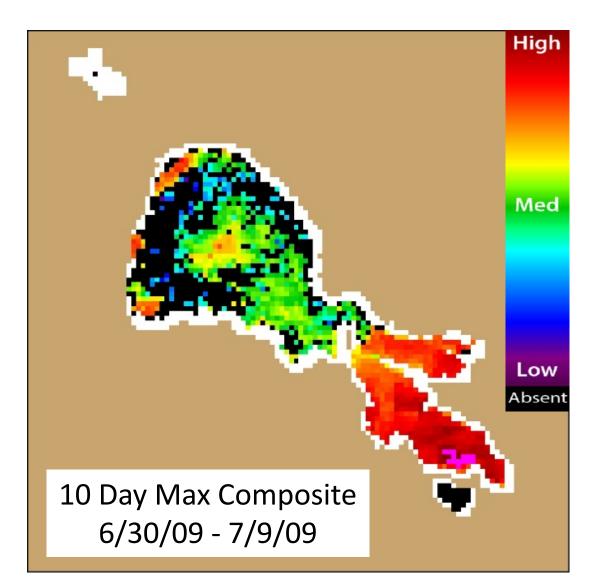
Satellite Basics

- Flyover every few days
 - Swath 1,150 km wide
- Spatial resolution is 300m x 300m (per pixel)
- Satellite analyzes light absorption signature in each pixel at key spectral bands
- Can estimate concentrations separately for:
 - Total algal biomass
 - Cyanobacteria
 - Non-cyanobacteria
- All cyanobacteria
- Not toxins



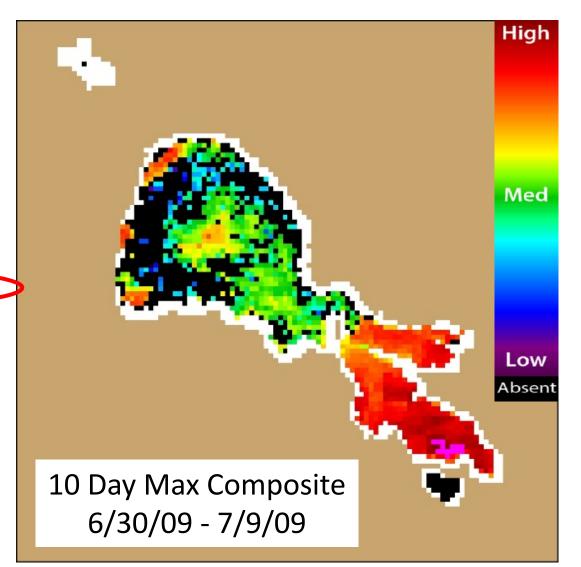

Satellite Basics

- Each pixel assigned a value of N (1-249)
- Wind, clouds, etc. impact blooms
- Generate 10 day max composite
 - testing monthly composites also...


Data Processing

- Review all scenes for previous 10 days
- For each pixel location, determine maximum value
- Generate running 10 day max composites

Generate Statistics


- Valid composites need >17 pixels
 - NOAA recommended
- Estimate concentration in:
 - Cyanobacterial Index (CI)
 - Chlorophyll-a (ug/L)
 - Microcystis sp. (cells/mL)
- From each 10 day max composite, generate waterbody-wide estimates for:
 - Mean
 - Median
 - 90th percentile of max

Generate Statistics

			Cyano	Cyano	Cyano
			Mean	Mean Median 90th %	
			>17	>17	>17
start_date	end_date	Pixels	MC (cells/mL)	MC (cells/mL)	MC (cells/mL)
6/22/2009	7/1/2009	1757	109,648	131,826	1,995,262
6/23/2009	7/2/2009	1779	123,027	154,882	1,949,845
6/24/2009	7/3/2009	1739	109,648	134,896	1,949,845
6/25/2009	7/4/2009	1739	109,648	134,896	1,949,845
6/26/2009	7/5/2009	1721	134,896	181,970	1,778,279
6/27/2009	7/6/2009	1709	125,893	186,209	1,548,817
6/28/2009	7/7/2009	1709	125,893	186,209	1,548,817
6/29/2009	7/8/2009	1733	134,896	194,984	1,584,893
6/30/2009	7/9/2009	1721	125,893	186,209	1,621,810

- Mean and Median can underestimate public health risk
- 90th percentile value is region of high public health risk
 - Similar to event response grab samples

	Cyano 90th %	Cyano Median	Cyano Mean			
Pri	>17	>17	>17			
	MC (cells/mL)	MC (cells/mL)	MC (cells/mL)	Pixels	end_date	start_date
Tot	1,995,262	131,826	109,648	1757	7/1/2009	6/22/2009
Ana	1,949,845	154,882	123,027	1779	7/2/2009	6/23/2009
Cyl	1,949,845	134,896	109,648	1739	7/3/2009	6/24/2009
Sec	1,949,845	134,896	109,648	1739	7/4/2009	6/25/2009
	1,778,279	181,970	134,896	1721	7/5/2009	6/26/2009
Cel	1,548,81	186,209	125,893	1709	7/6/2009	6/27/2009
Site	1,548,817	186,209	125,893	1709	7/7/2009	6/28/2009
	1,584,893	194,984	134,896	1733	7/8/2009	6/29/2009
	1,621,810	186,209	125,893	1721	7/9/2009	6/30/2009

	Action Trigger	Warning TIER 1	Danger TIER 2
Primary Thresholds ^a			
Total Microcystins ^b	0.8 μg/L	6 μg/L	20 μg/L
Anatoxin-a	Detection ^c	20 μg/L	90 μg/L
Cylindrospermopsin	1 μg/L	4 μg/L	12 μg/L
Secondary Thresholds			
Cell Density (Toxin producing cells)	4,000 cells/mL		
Site Specific Indicators of Cyanobacteria	Blooms, scums, mats		

Level	Value (cells/mL)
CA Action Trigger	4,000
Satellite 'background' level	~10,000

	Cyano	Cyano	Cyano			
	90th %	Median	Mean			
Pri	>17	>17	>17			
	MC (cells/mL)	MC (cells/mL)	MC (cells/mL)	Pixels	end_date	start_date
Tot	1,995,262	131,826	109,648	1757	7/1/2009	6/22/2009
An	1,949,845	154,882	123,027	1779	7/2/2009	6/23/2009
Cyl	1,949,845	134,896	109,648	1739	7/3/2009	6/24/2009
Sec	1,949,845	134,896	109,648	1739	7/4/2009	6/25/2009
	1,778,279	181,970	134,896	1721	7/5/2009	6/26/2009
Cel	1,548,81	186,209	125,893	1709	7/6/2009	6/27/2009
Site	1,548,817	186,209	125,893	1709	7/7/2009	6/28/2009
	1,584,893	194,984	134,896	1733	7/8/2009	6/29/2009
>	1,621,810	186,209	125,893	1721	7/9/2009	6/30/2009

	Action Trigger	Warning TIER 1	Danger TIER 2
Primary Thresholds ^a			
Total Microcystins ^b	0.8 μg/L	6 μg/L	20 μg/L
Anatoxin-a	Detection ^c	20 μg/L	90 μg/L
Cylindrospermopsin	1 μg/L	4 μg/L	12 μg/L
Secondary Thresholds			
Cell Density (Toxin producing cells)	4,000 cells/mL		
Site Specific Indicators of Cyanobacteria	Blooms, scums, mats		

Level	Value (cells/mL)
CA Action Trigger	4,000
Satellite 'background' level	~10,000
WHO Low Risk	<20,000
WHO Moderate Risk	20,000-100,000
WHO High Risk	>100,000

	Cyano	Cyano	Cyano			
	90th %	Median	Mean			
Prir	>17	>17	>17			
	MC (cells/mL)	MC (cells/mL)	MC (cells/mL)	Pixels	end_date	start_date
Tot	1,995,262	131,826	109,648	1757	7/1/2009	6/22/2009
Ana	1,949,845	154,882	123,027	1779	7/2/2009	6/23/2009
Cyli	1,949,845	134,896	109,648	1739	7/3/2009	6/24/2009
-	1,949,845	134,896	109,648	1739	7/4/2009	6/25/2009
Sec	1,778,279	181,970	134,896	1721	7/5/2009	6/26/2009
Cel	1,548,81	186,209	125,893	1709	7/6/2009	6/27/2009
Site	1,548,817	186,209	125,893	1709	7/7/2009	6/28/2009
	1,584,893	194,984	134,896	1733	7/8/2009	6/29/2009
	1,621,810	186,209	125,893	1721	7/9/2009	6/30/2009

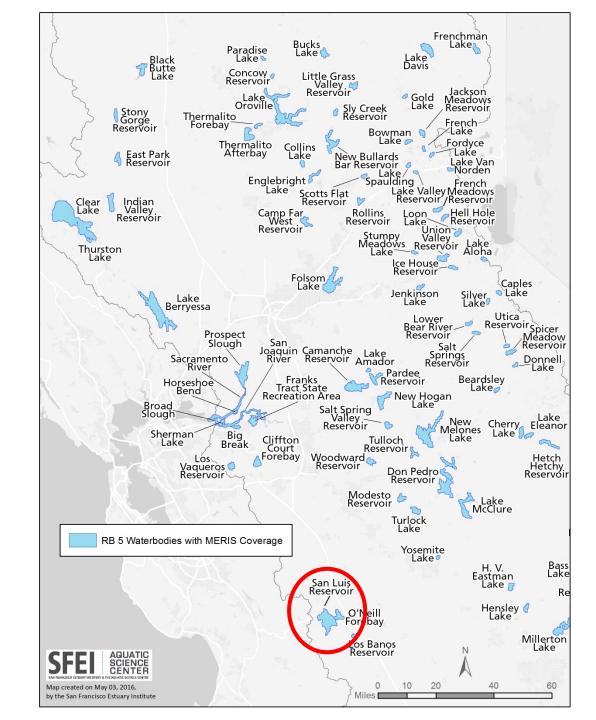
-		Action Trigger	Warning TIER 1	Danger TIER 2
	Primary Thresholds ^a			
-	Total Microcystins ^b	0.8 μg/L	6 μg/L	20 μg/L
	Anatoxin-a	Detection ^c	20 μg/L	90 μg/L
	Cylindrospermopsin	1 μg/L	4 μg/L	12 μg/L
-	Secondary Thresholds			
	Cell Density (Toxin producing cells)	4,000 cells/mL		
	Site Specific Indicators of Cyanobacteria	Blooms, scums, mats		

Level	Value (cells/mL)
CA Action Trigger	4,000
Satellite 'background' level	~10,000
WHO Low Risk	<20,000
WHO Moderate Risk	20,000-100,000
WHO High Risk	>100,000
'Very High Risk'	>1,000,000

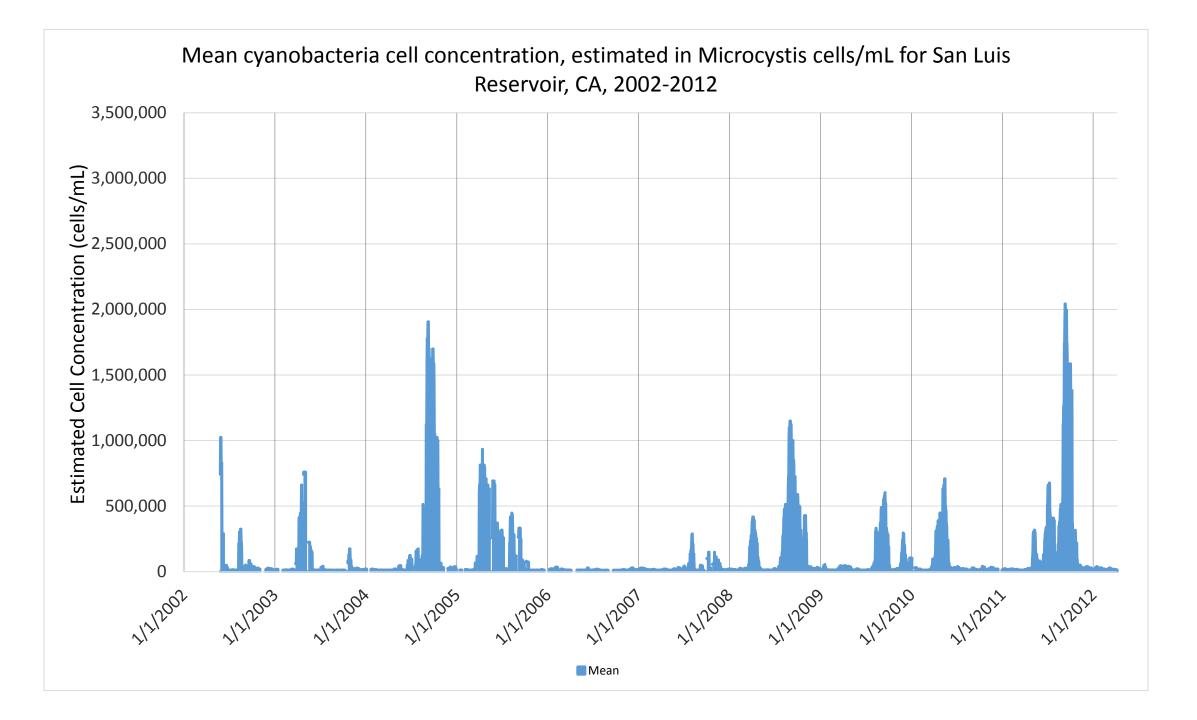
	Cyano 90th %	Cyano Median	Cyano			
	>17	>17	Mean >17			
Pri	MC (cells/mL)		MC (cells/mL)	Pixels	end_date	start_date
To	1,995,262	131,826	109,648	1757	7/1/2009	6/22/2009
An	1,949,845	154,882	123,027	1779	7/2/2009	6/23/2009
Cyl	1,949,845	134,896	109,648	1739	7/3/2009	6/24/2009
Se	1,949,845	134,896	109,648	1739	7/4/2009	6/25/2009
	1,778,279	181,970	134,896	1721	7/5/2009	6/26/2009
Ce	1,548,81	186,209	125,893	1709	7/6/2009	6/27/2009
Sit	1,548,817	186,209	125,893	1709	7/7/2009	6/28/2009
	1,584,893	194,984	134,896	1733	7/8/2009	6/29/2009
>	1,621,810	186,209	125,893	1721	7/9/2009	6/30/2009

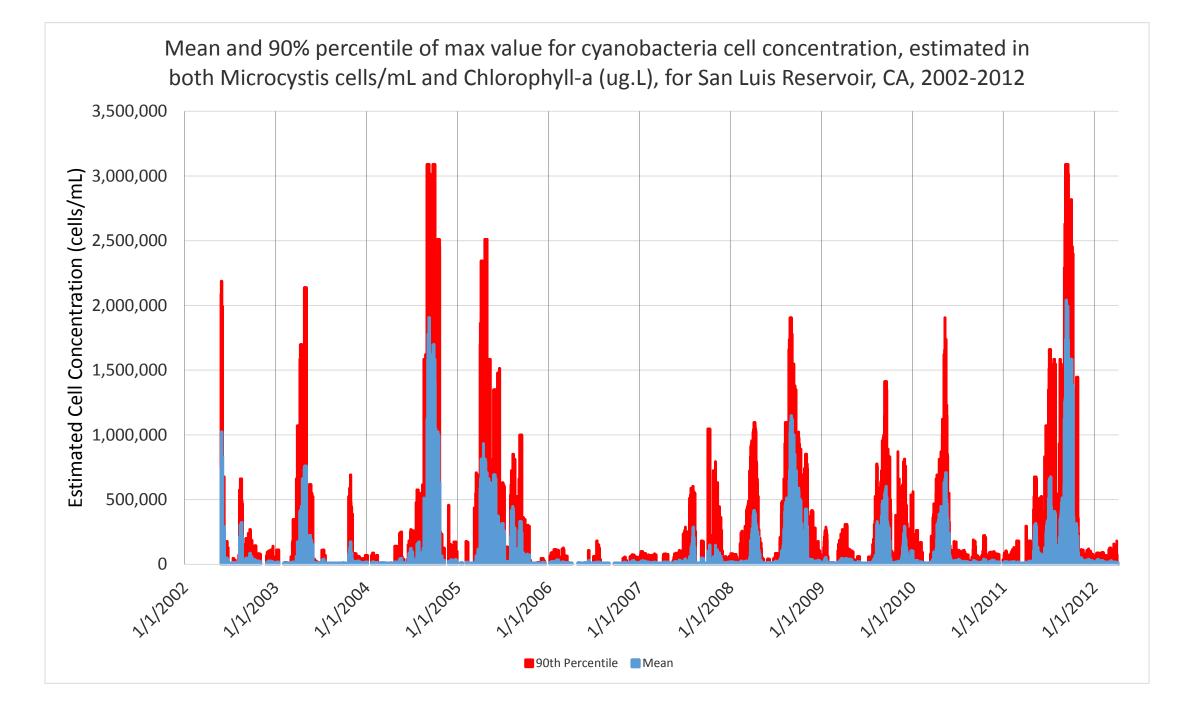
	Action Trigger	Warning TIER 1	Danger TIER 2
Primary Thresholds ^a			
Total Microcystins ^b	0.8 μg/L	6 μg/L	20 μg/L
Anatoxin-a	Detection ^c	20 μg/L	90 μg/L
Cylindrospermopsin	1 μg/L	4 μg/L	12 μg/L
Secondary Thresholds			
Cell Density (Toxin producing cells)	4,000 cells/mL		
Site Specific Indicators of Cyanobacteria	Blooms, scums, mats		

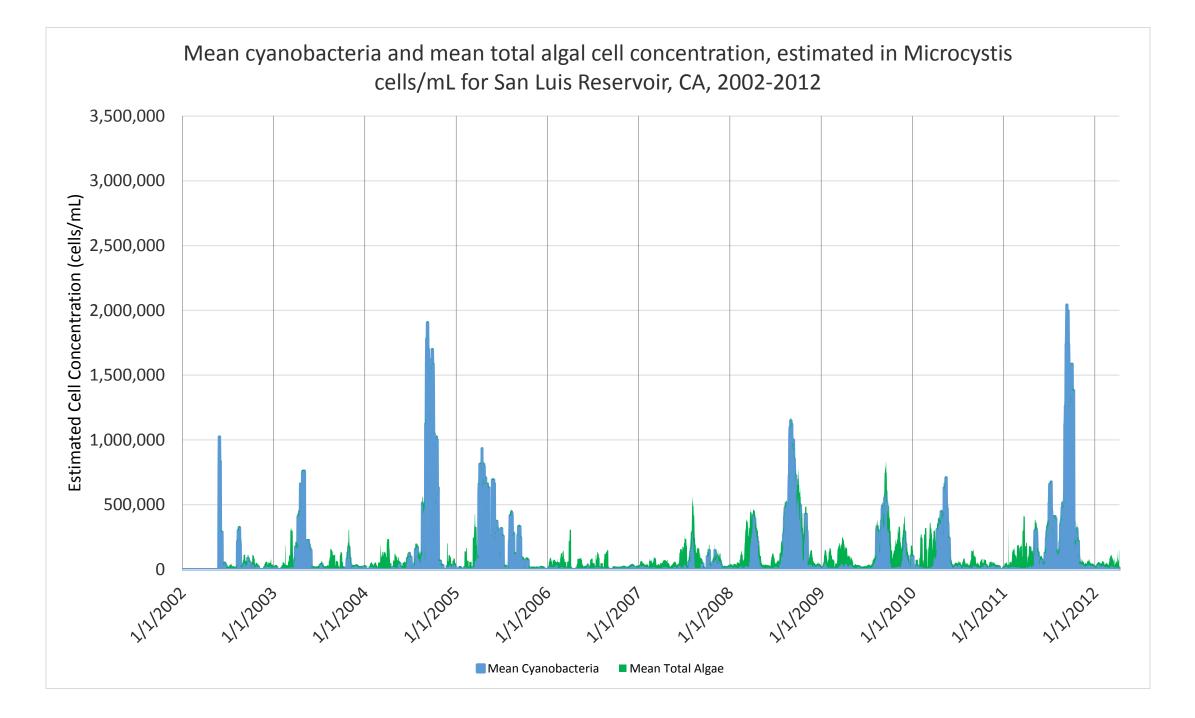
Understand Exceedance of 'thresholds'

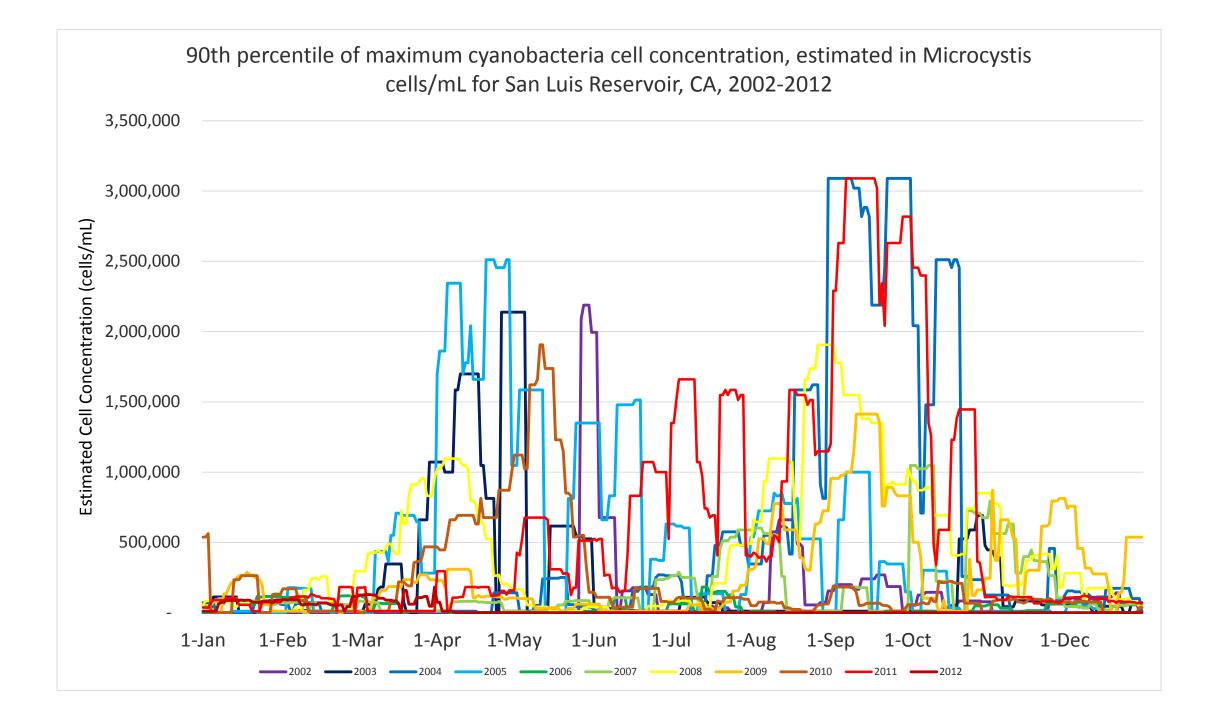

- How often?
- How long?
- How many waterbodies?

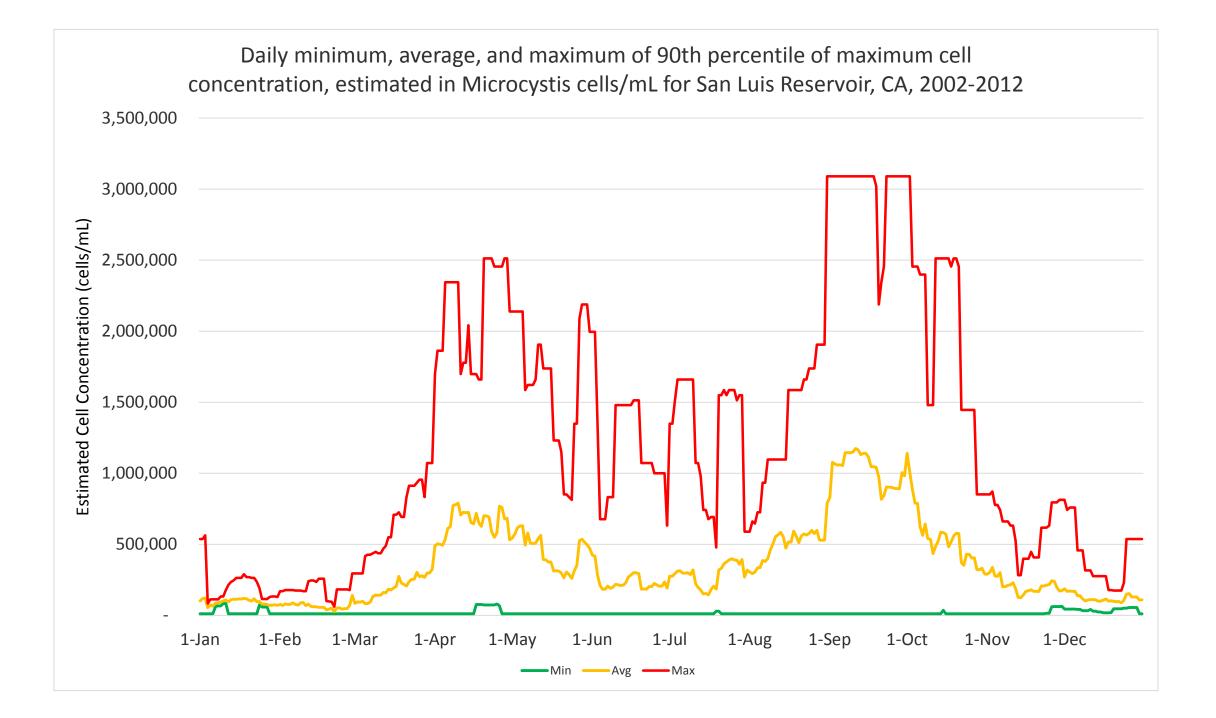
Level	Value (cells/mL)
No Data	N/A
Low Risk	10,232- 20,000
Moderate Risk	20,000-100,000
High Risk	100,000-1,000,000
Very High Risk	>1,000,000

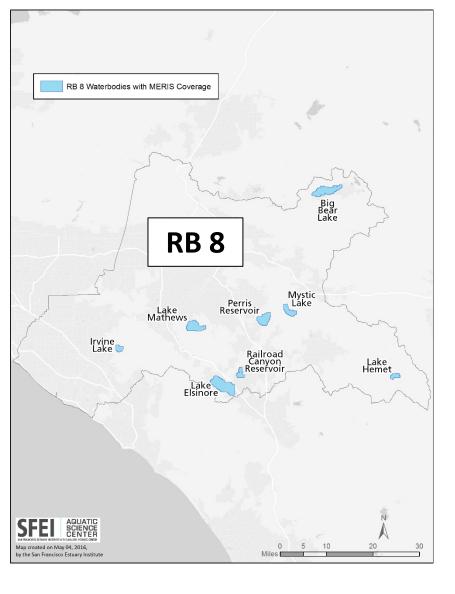

Historic Satellite Data for San Luis Reservoir

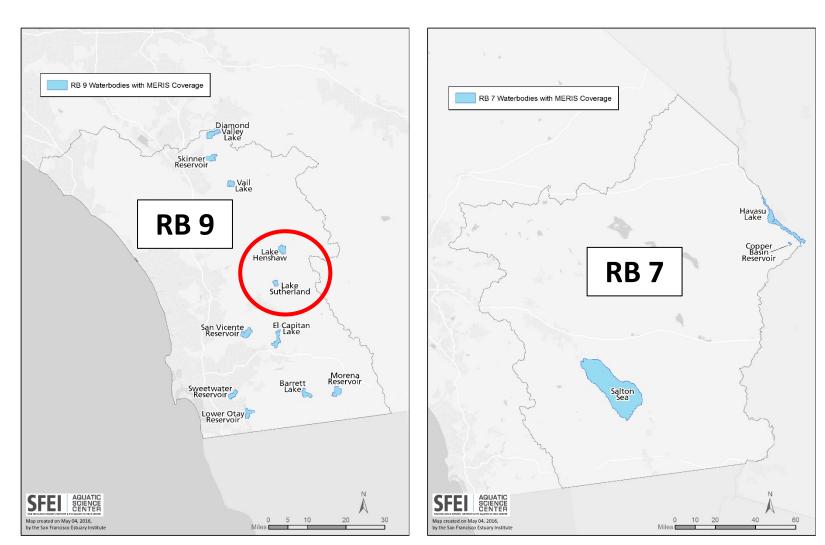

All data is preliminary Please do not cite

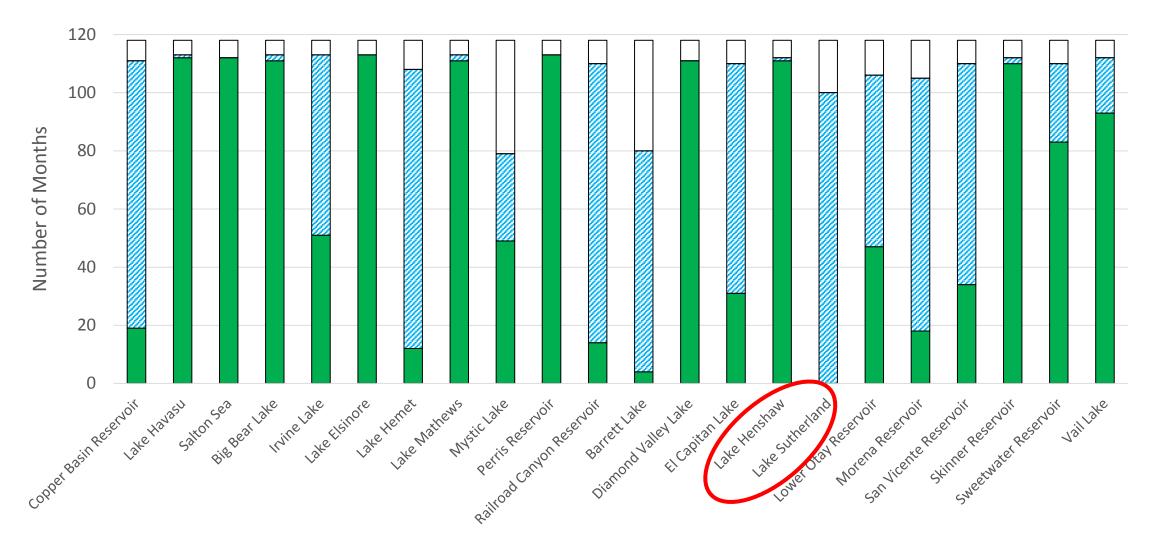

Consider ± 15% uncertainty

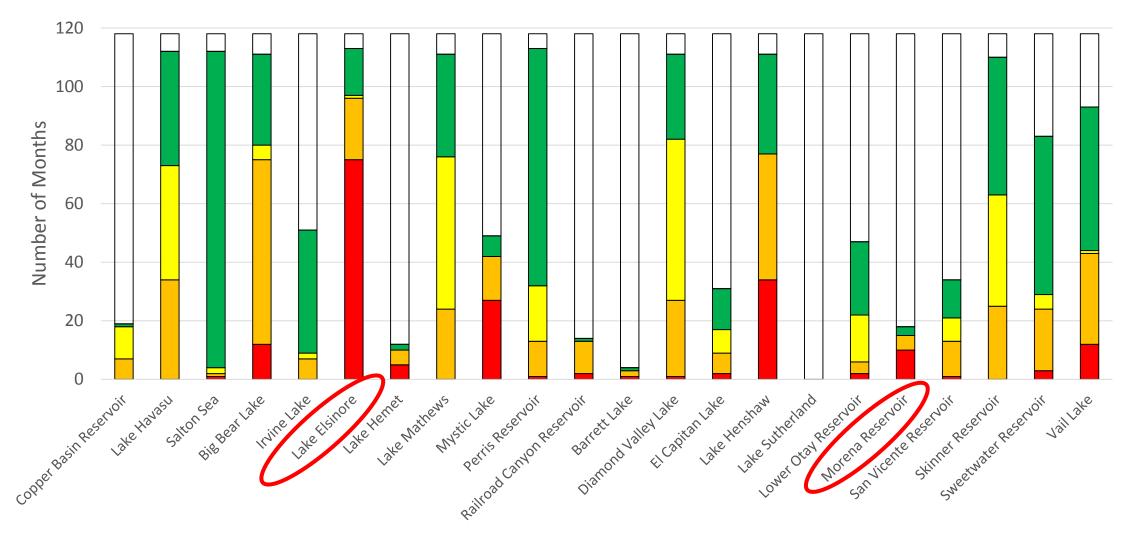






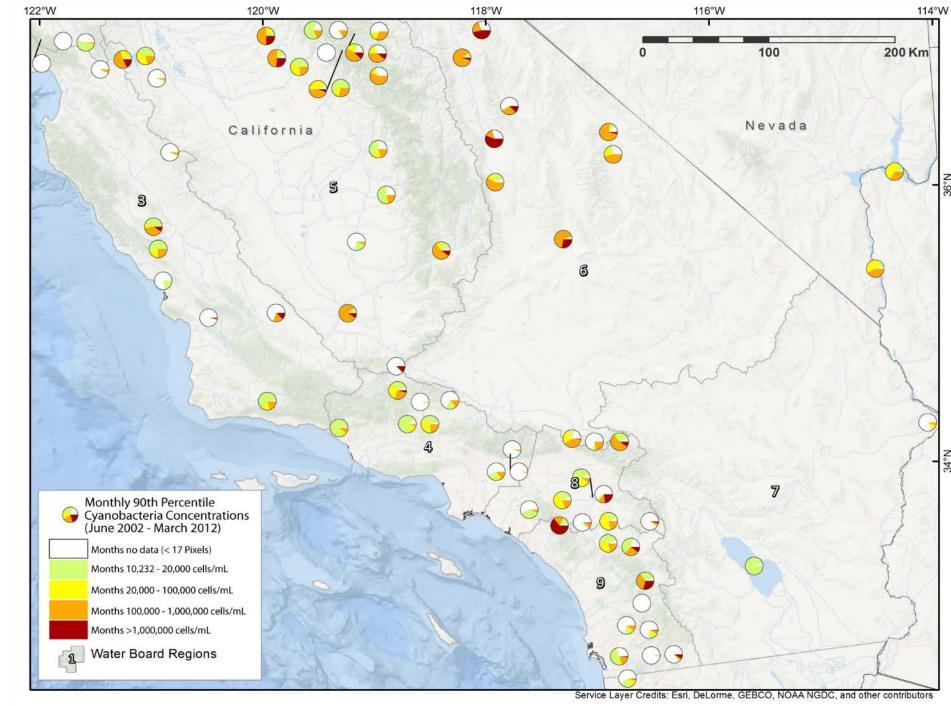




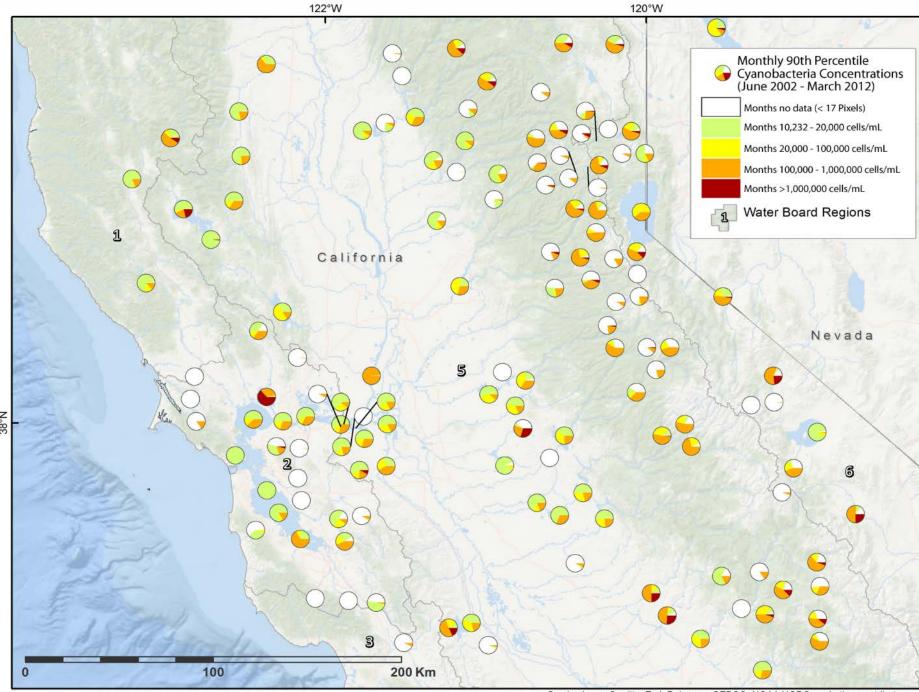

Region 7,8, and 9 Summary Monthly composites (not 10 day)

Number of months where composites meet >17 pixels threshold for waterbodies within Regions 7, 8, and 9 for June, 2002- March 2012

Number of months where 90th percentile concentration estimates of Microcystis exceed given cells/mL thresholds within monthly composites for waterbodies within Regions 7, 8, and 9 for June, 2002- March 2012



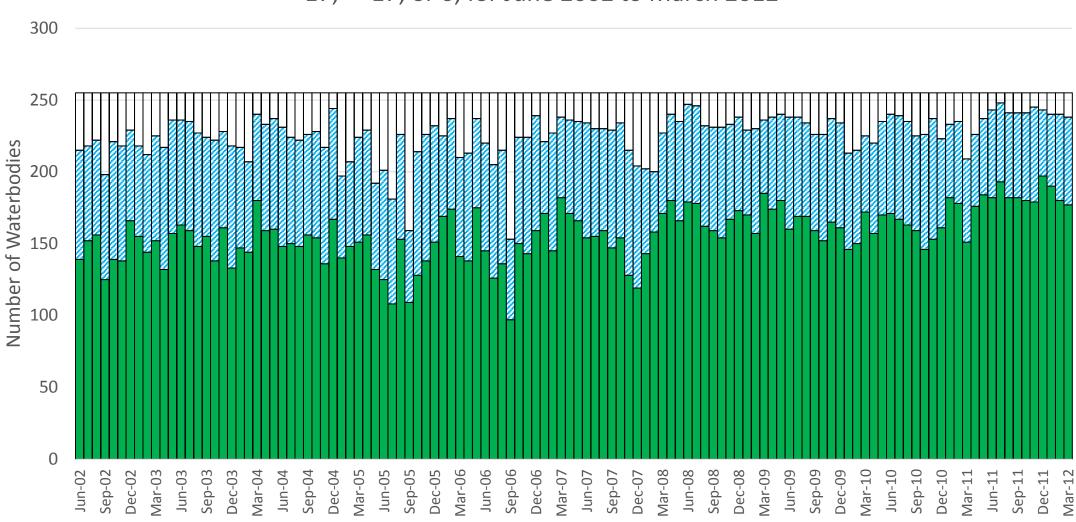
Statewide Summary


- 255 waterbodies
- Monthly composites (not 10 day)

Monthly Exceedances Southern California



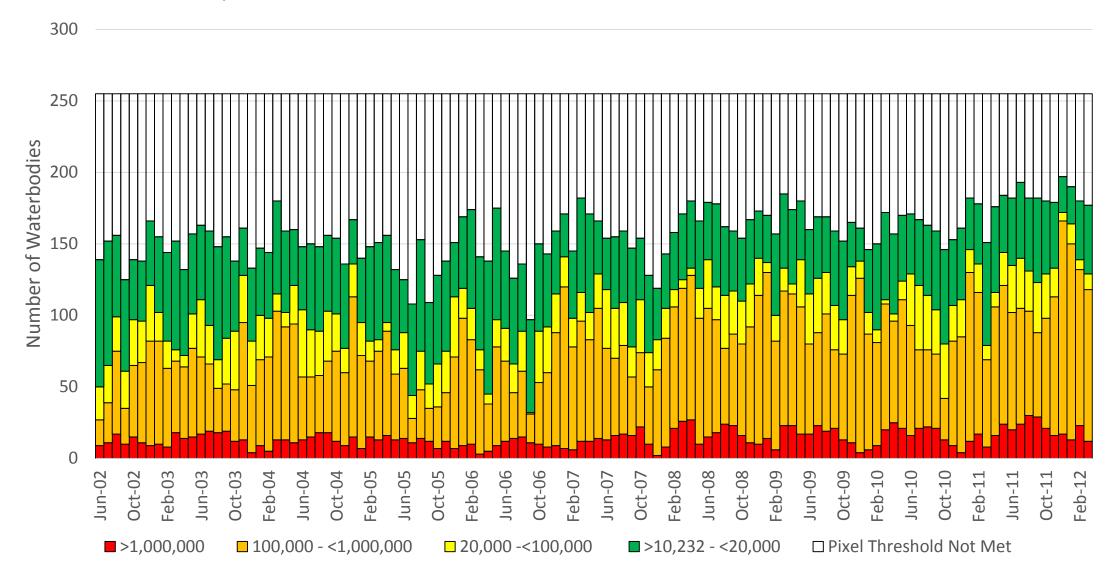
Monthly Exceedances Central California



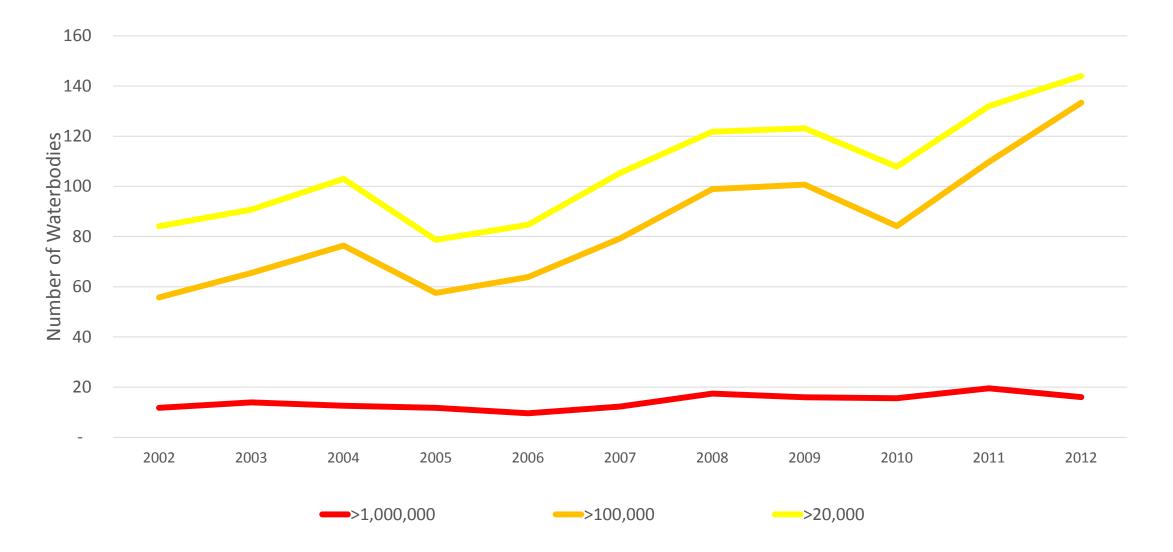
Service Layer Credits: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors

Monthly Exceedances Northern California

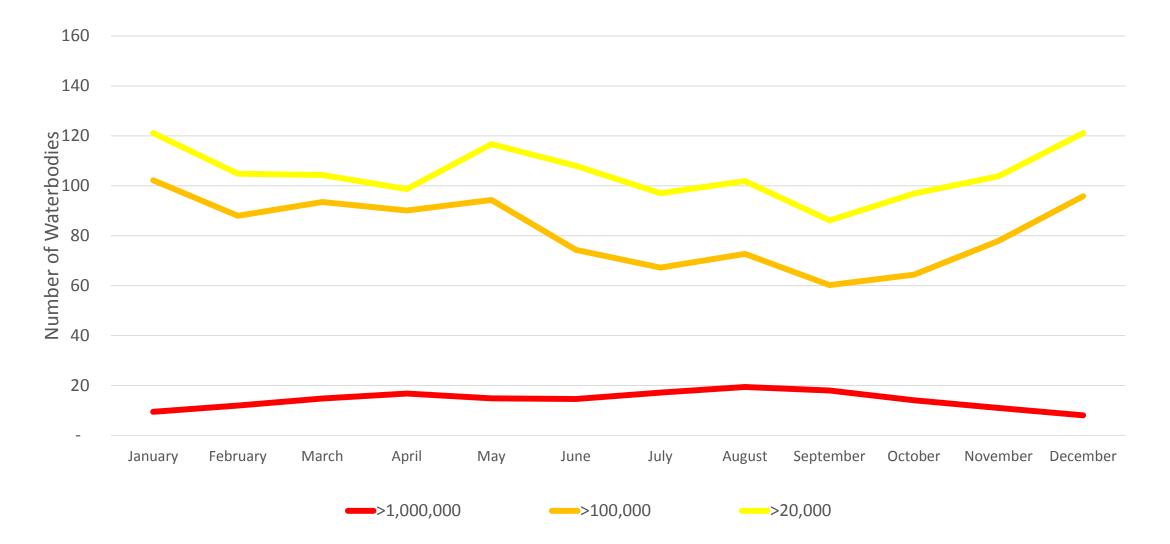
Service Layer Credits: Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors



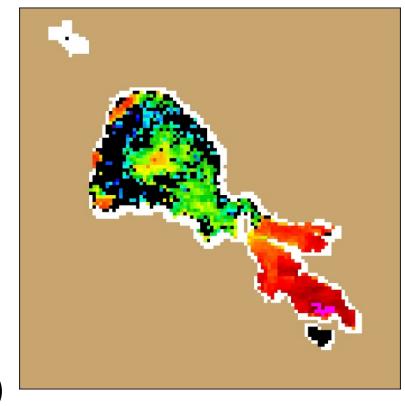
Number of 255 selected waterbodies where monthly composite pixel counts are >17; <=17; or 0, for June 2002 to March 2012


■ Number of waterbodies where Pixel Count >17 Z Number of waterbodies where Pixel Count <=17

□ Number of waterbodies where Pixel Count =0

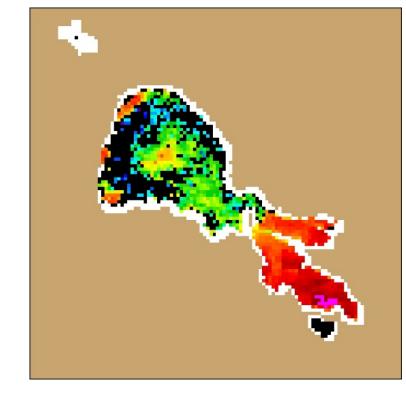

Number of 255 selected waterbodies where 90th percentile values within monthly composites exceed defined cells/mL thresholds, for June 2002 to March 2012

Average number of 255 selected waterbodies in California where 90th percentile values for monthly composites exceed thresholds of 20,000; 100,000; or 1,000,000 cells/mL, for 2002 to 2012

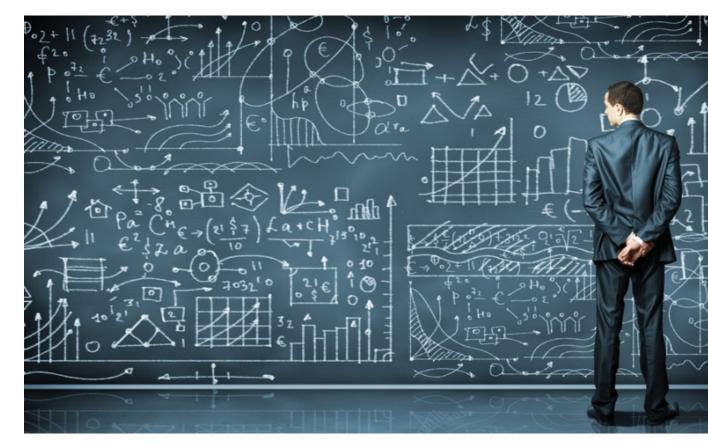


Monthly average number of 255 selected waterbodies in California where 90th percentile concentration estimates of Microcystis concentrations exceed thresholds of 20,000; 100,000; or 1,000,000 cells/mL, for 2002 to 2012

Satellites- What They Can't Do


- Cyanobacteria blooms can be detected but...
 - Clouds block images
 - Screening tool
 - No direct comparisons to HAB thresholds
 - Values are estimates (NOAA recommends +-15% uncertainty)
 - Estimates all cyanobacteria (including non-toxin producers)
 - Doesn't measure toxin levels
 - Less confidence with data for lowest algal densities
 - False positives can occur
 - Limited to large lakes (currently)

Satellites- What They Can Do

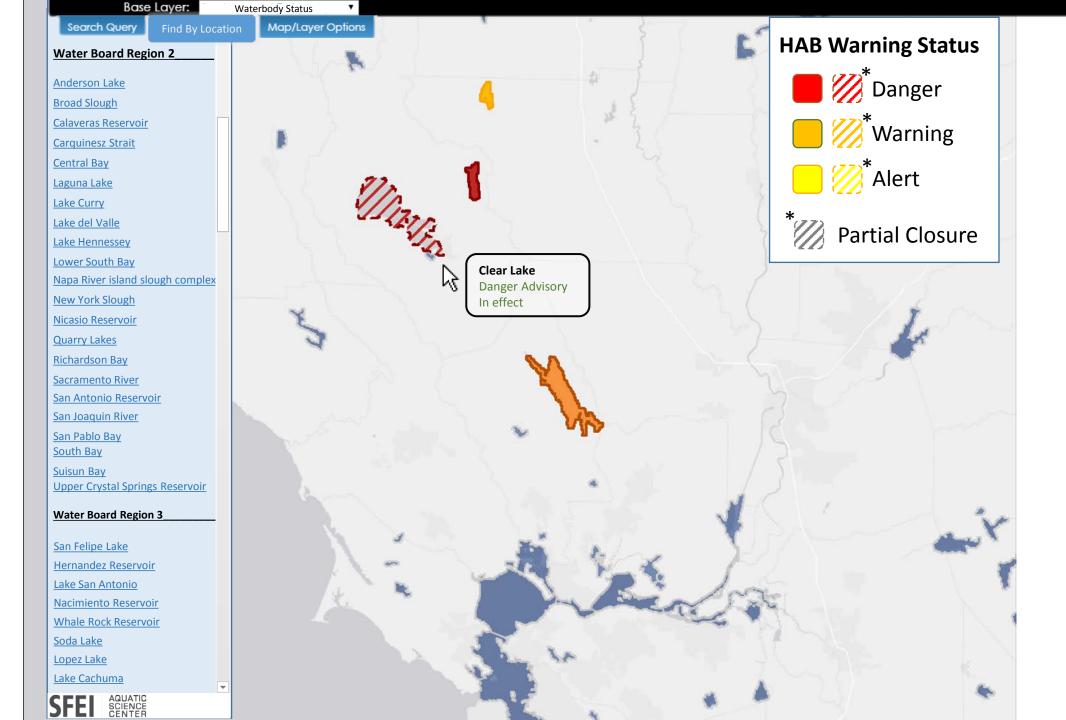

- Cyanobacteria blooms can be detected and...
 - Provide understanding of bloom conditions from 2002-2012
 - Identify trends and severity of blooms
 - Data can help understand bloom drivers, management
 - Monitor ~150 waterbodies in CA at once
 - Inform public about changing bloom status and location
 - Communicate data to help guide event response monitoring by:
 - Waterbody managers
 - County public health officials
 - Regional Board/SWAMP

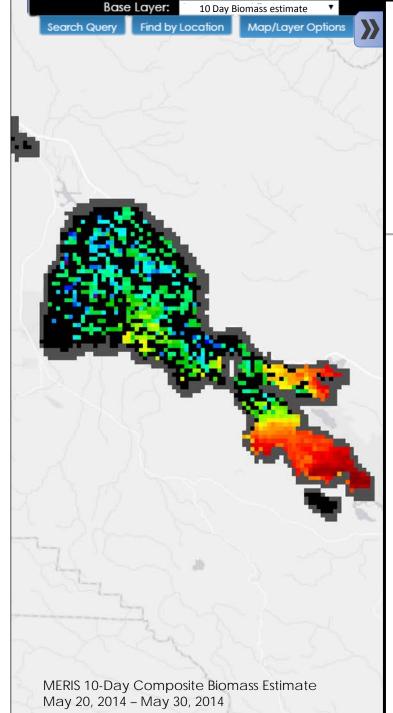
Bev needs YOUR contact information!

Further Research Needed

- Continue testing satellite data for interference/accuracy
 - Alkali lakes?
 - Halobacteria? (Owens Lake)
 - High elevation/clear water? (Lake Tahoe)
- Satellite raster data is available through SFEI. Compare against:
 - Water quality/cyanoHAB data
 - Weather
 - Inflow/lake levels
 - Geology
 - 303 (d) listings
 - Etc.

Questions?

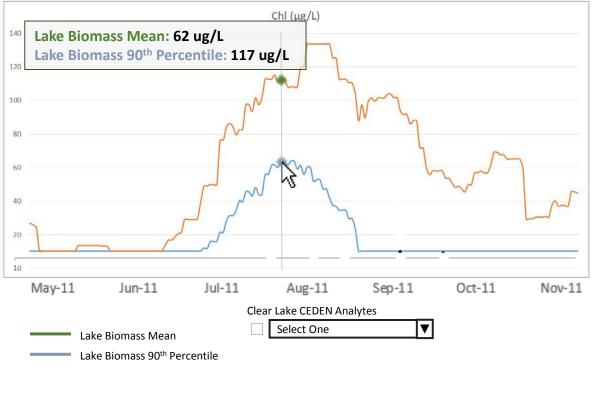


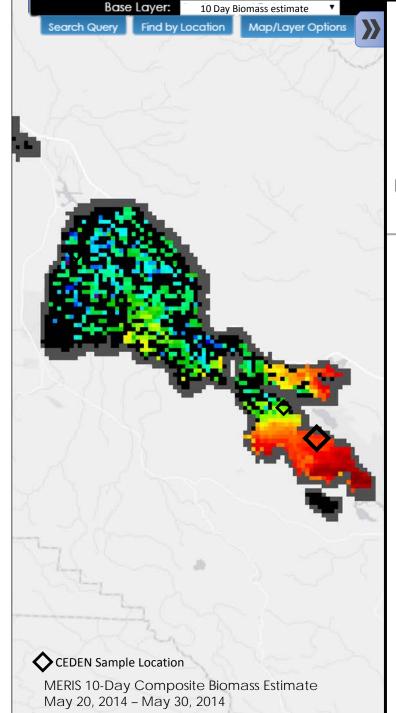


Interactive Maps for MyWaterQuality Portal

- <u>DRAFT</u> mock-ups of what interactive maps may look like
- Posted Waterbody map
- Satellite Data map

Clear Lake, Lake County, CA


Current Advisory: State and county agencies are urging swimmers, boaters and recreational users to avoid contact with blue-green algae now blooming in Clear Lake located in Lake County, CA. The lake has been posted with advisories warning of any contact with the water because of possible toxins associated with the algae. (Read More)


2013 2014 2015

Display Last **10 ▼** Days

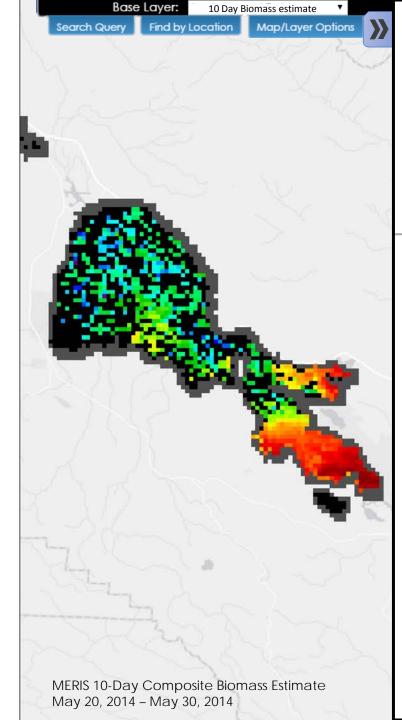
Trends Water Quality Data Table

Cyanobacteria Estimated Biomass & Toxicity

Clear Lake, Lake County, CA

Current Advisory: State and county agencies are urging swimmers, boaters and recreational users to avoid contact with blue-green algae now blooming in Clear Lake located in Lake County, CA. The lake has been posted with advisories warning of any contact with the water because of possible toxins associated with the algae. (Read More)


2015


2014

Cyanobacteria Estimated Biomass & Toxicity

2013

Clear Lake, Lake County, CA

Current Advisory: State and county agencies are urging swimmers, boaters and recreational users to avoid contact with blue-green algae now blooming in Clear Lake located in Lake County, CA. The lake has been posted with advisories warning of any contact with the water because of possible toxins associated with the algae. (Read More)

		I	201	3				2	014	1	-			20	15			1
	Trend	s \	Wate	r Qu	ality	Da	ata	Table										
9	Select I	Data fo	r Wat	dy		From Jan 8, 2016 To Feb 8, 2016 Download Table												
	CEDEN	Data				٩					K			N		2		
_		Data						H ixel Values	Ι	J	K	L	М	N	O ug/L	Р	Q	R
ſ	VERIS	Analysi	s Dat	a '	√उे⊤				ean	perc90	var	min	max	stdev	-	mean	perc90	var
1		, anary si	Jul	u			5	1	1	24	1		33.02	10.44	10.41	10.41	10.70	10.41
ļ		-, -,			-		5	1	1	24	1		33.02	10.44	10.41	10.41	10.70	10.41
5	12/25/2010	1/3/2011	1638	1638	1	176	5	1	1	24	1	10.41	33.02	10.44	10.41	10.41	10.70	10.41
5	12/26/2010	1/4/2011	1638	1638	1	176	5	1	1	24	1		33.02	10.44	10.41	10.41	10.70	10.41
7	12/27/2010	1/5/2011	1638	1638	1	176	5	1	1	24	1	10.41	33.02	10.44	10.41	10.41	10.70	10.41
B	12/28/2010	1/6/2011	1638	1638	1	176	5	1	1	24	1	10.41	33.02	10.44	10.41	10.41	10.70	10.41
9	12/29/2010	1/7/2011	1708	1708	1	176	6	1	1	31	1		33.02	10.45	10.41	10.41	10.80	10.41
10	12/30/2010	1/8/2011	1708	1708	1	176	6	1	1	31	1		33.02	10.45	10.41	10.41	10.80	10.41
1	12/31/2010	1/9/2011	1674	1674	1	108	5	1	1	30	1		14.81	10.45	10.41	10.41	10.80	10.41
12	1/1/2011	1/10/2011	1675	1675	1	123	7	1	1	46	1		16.79	10.46	10.41	10.41	11.13	10.41
13		1/11/2011	1675	1675	1	123	7	1	1	46	1		16.79	10.46	10.41	10.41	11.13	10.41
L4 L5	1/2/2011	1/12/2011	1675	1675	1	123 123	7	1	1	46 46	1		16.79	10.46 10.46	10.41 10.41	10.41 10.41	11.13	10.41
15 16		1/13/2011 1/14/2011	1675 1675	1675 1675	1	123	7	1	1	46	1		16.79 16.79	10.46	10.41	10.41	11.13 11.13	10.41 10.41
10		1/14/2011	1075	1075	1	123	15	1	1	211	3		19.38	10.40	10.41	10.41	61.53	10.41
18		1/15/2011	1727	1727	1	137	15	1	1	211 211	3		19.38	10.55	10.41	10.41	61.55	10.43
19		1/17/2011	1727	1727	1	137	15	1	1		3		19.38	10.55	10.41	10.41	61.53	10.43
20		1/18/2011	1713	1713	1	147	19	1	1	374	5		21.80	10.62	10.41	10.41	133.61	10.45
21		1/19/2011	1713	1713	1	147	19	1	1	374	5		21.80	10.62	10.41	10.41	133.61	10.44
2	1/10/2011		1698	1698	1	147	19	1	1	368	5		21.80	10.62	10.41	10.41	133.61	10.44
23	1/11/2011	1/21/2011	1742	1742	1	147	20	1	1	411	6	10.41	21.80	10.63	10.41	10.41	133.61	10.45
24	1/12/2011	1/22/2011	1742	1742	1	147	20	1	1	411	6	10.41	21.80	10.63	10.41	10.41	133.61	10.45
25	1/13/2011		1746	1746	1	147	21	1	1	431	6	10.41	21.80	10.63	10.41	10.41	133.61	10.45
6		1/24/2011	1746	1746	1	147	21	1	1	431	6		21.80	10.63	10.41	10.41	133.61	10.45
7	1/15/2011		1722	1722	1	147	17	1	1		4		21.80	10.58	10.41	10.41	133.61	10.44
8	1/16/2011		1731	1731	1	147	24	1	1	562	8		21.80	10.68	10.41	10.41	133.61	10.47
9			1731	1731	1	147	24	1	1	562	8		21.80	10.68	10.41	10.41	133.61	10.47
30		1/28/2011	1715	1715	1	146	20	1	1	418	6		21.54	10.63	10.41	10.41	133.61	10.46
31	1/19/2011		1715	1715	1	146	20	1	1	418	6		21.54	10.63	10.41	10.41	133.61	10.46
32 33	1/20/2011		1660	1660	1	146	20	1	1	417	6		21.54	10.63	10.41	10.41	133.61	10.46
3	1/21/2011	1/ 31/ 2011	1576	1576	1	146	20	1	1	417	0	10.41	21.54	10.63	10.41	10.41	133.61	10.45