ATTACHEMENT 2 (CHEMICAL ANALYSES RESULTS SUMMARIZED)

Summary of Chemical Analyses Results for Soil Samples Collected in Area of Underground Storage Tank Farm

t TADCO. 363 West 133rd Street, Los Angeles, CA

	Xylenes	88888888%	
	Toluene	£££££££22	
A	Vinyl Acetate	₽₽₽₽₽₽₽₽	
os Angeles, C	2-Hexanone	₽₽₽₽≈₽₽₽	
srd Street, L	E. Benzene — 8240	₽₽₽₽₽₽₽₽	kilogram (mg/k
CO, 363 West 13.	Carbon Disulfide	258883 <u>-188</u> 8	m) or milligrams per s) or milligrams per
at TAD	Benzene	888%+888	million (pr
	Acetone	ND 70 7,670 3,400 3,400	(below det
	Sample Depth	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	s reported it Analyzed
	Sample ID	SS NW TIE T2E T2E T2E T3E T3W	All value ND = Nc NA = Nc

B0641

ATTACHEMENT 3 (CAL-EPA CERTIFIED LABORATORY RESULTS AND CHAIN-OF-CUSTODY)

July 11, 1996

ELAP No.: 1838

Aqua Science Engineers, Inc. 17895 Sky Park Circle, Suite E Irvine, CA 92714

ATTN: Mr. Scott Rowlands

Client's Project #: TADCO-Lab No.: 12033-00

TADCO-363 W. 133rd, 2992 12033-001/008

Gentlemen:

Enclosed are the results for sample(s) received by Advanced Technology Laboratories on and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (310) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

Edgar P. Caballero Laboratory Director EPC\ms

Enclosures

This cover letter is an integral part of this analytical report.

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advectising or publicity purposes without authorization is prohibited.

B0643

Mailing Address: P.O. Box 9108 Newport Beach, CA 92658 1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040 Client: Aqua Science Engineers, Inc. Attn: Mr. Scott Rowlands

Client's Project: TADCO-363 W. 133rd, 2992 Date Received: 07/03/96 Matrix Soil Units: ug/kg

· · · · · · · · · · · · · · · · · · ·	
the second second second devices a device second	

Lah	No.:	Metho	d Blank	12033-	001	12033	-002	12033	003	12033-	-004	12033-	005	12033	-006	12033-	007
Client Sample	LD.:			SS 1	., =	TIE-I	3'	NW-4	1	T1W-)	13'	T2E-1	3'	T2W-1	13'	T3E-1.	3'
Date Sam	pled:		_	07/02/	96	07/02/	96	07/02/	96	07/02/	96	07/02/	96	07/02/	96	07/02/9	6
OC Bat	tch #:	96VO	CS2154	96VO	CS2154	96VO	CS2154	96VO	CS2154	96VO	CS2154	96VO	CS2154	96VO	CS2154	96VO	CS2154
Date Analy	yzed:	07/09/	96	07/09/	96	07/09/	96	07/09/	96	07/09/	96	07/09/	96	07/09/	96	07/09/9	96
Analyst Ini	ítials:	RR	_	RR		RR		RR		RR		RR		RR		RR	
Dilution Fa	ctor:	1		1		1		1		1		1		1		1	
ANALY'TE	MDL	DLR	Results	DLR	Results	DLR	Results	DLR	Results	DLR	Results	DLR	Results	DLR	Results	DLR	Results
Chloromethane	5	5	ND	5	NĐ	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Vinyl Chloride	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Bromomethane	5	5	ND	5	ND	···· 5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Chloroethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Trichlorofluoromethane	5	5	ND	5	NĐ	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Acetone	50	50	ND	50	ND	50	380	50	70	50	220	2500	7670*	50	200	250	1030**
1,1-Dichloroethene	5	5	ND	5	ND	5	ND	5	ND	5	_ND	5	ND	5	ND	5	ND
Carbon Disulflde	5	5	ND	5	ND	5	7.1	5	ND	5	ND	5	ND	5	ND	5	6.8
Methylene Chloride	5	5	ND	5	ND	5		5	ND	5	ND	5	ND	5	ND	5	<u>ND</u>
trans-1,2-Dichloroethene	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
1,1-Dichloroethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Chloroform	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
1,2-Dichloroethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Vinyl Acetate	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	7.3	5	ND	5	ND
2-Butanone	50	50	ND	50	ND	50	ND	50	ND	50	ND	50	50	50	_ND	50	ND
1,1,1-Trichloroethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Carbon Tetrachloride	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Benzene	5	5	ND	5	ND	5	ND	5	ND	5	9.6	5	ND	5	14	5	ND
1,2-Dichloropropane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
Trichloroethene	5	5	ND	5	ND	5	NE	5	ND	5	NĐ	5	ND	5	ND	5	ND
Bromodichloromethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	_5		5	ND	5	ND
2-Chloroethyl Vinyl Ethe	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND
cis-1,3-Dichloropropene	5	5	ND	5	ND	5	NE	5 5	ND	5	ND	5	ND	5	ND	5	ND
trans-1,3-Dichloropropen	5	5	ND	5	ND	5	NI	5	ND	5	ND	5		5		5	ND
1,1,2.Trichloroethane	5	5	ND	5	ND	5	ND	5	ND	5	ND	5	ND	5		5	ND
Dibromochloromethane	5	5	ND	5	ND	5	ND	5	ND	5	מא	5	ND	5		5	ND
Bromoform	5	5	ND	5	ND	_5	NI	5	ND	5	ND	_5	ND	5		5	ND
4-Methyl-2.Pentanone	50	50	ND	50	ND	50	NI	50	ND	50	ND	50	NĐ	50		50	ND
Toluene	5	5	ND	5	ND	5	NI	5		5	ND	5	ND	5	ND	5	ND
2-Hexanone	50	50	ND	50	ND	50	NI	50	NE	50	ND	50	55	50	ND	50	ND
Tetrachloroethene	5	5	ND	5	ND	5	NI	5		5	ND	5	ND	5	ND	5	ND
Chlorobenzene	5	5	ND	5	ND	5		x 5	ND ND	5	ND	5	ND	5	ND	5	
Ethylbenzene	5	5	ND	5	ND	5	NI	5	NE	5	ND	5	NE	5	ND	5	
Xylene (Total)	5	5	ND	5	ND	5	NI	5	NI	5	ND	5		5		5	
Styrene	5	5 5	ND	5	ND	5	N	5	NI	5		5	NE NE	5			
1,1,2,2-Tetrachloroethane	5	5	ND	5	∣ ND	5	NI) 5	N	5	ND	5	NC.	5		5	
1,3-Dichlorobenzene	5	5 5	ND	5	ND	5	NI	5	NI	5	ND	5	ND	5		5	
1,4-Dichlorobenzene	5	5 5		5	NE	5	NI	5	NE	5	NE NE	5	NE	5		5	ND
1,2-Dichlorobenzene	5	5	NE	5	NE	5	NI	5	NI	<u>× 5</u>		5	NE	<u> </u>		5	<u>ND</u>

Additional 8240 Analytes NA 2500 ND* 50 NA 50 50 Propylene Oxide 50 NA 50 NA 50 50 ND 50 NĽ

MDL = Method Detection Limit

ND = Not Detected (Below DLR).

DLR = MDL X Dilution Factor

NA = Not Analyzed = Dilution Factor is 50.

** = Dilution Factor is 5.

Reviewed/Approved By:

Yun Pan Department Supervisor

7/12/96 Date:

NA

The cover letter is an integral part of this analytical report.

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Client: Aqua Science Engineers, Inc. Attn: Mr. Scott Rowlands

Client's Project: TADCO-363 W. 133rd, 2992 Date Received: 07/03/96 Matrix: Soll Units: ug/kg

								1	EPA Metl	hod 824	6 0						
Lab	No ·	12033	.008														
Client Somnle	10.	T3W.1	111														
Date Sam	nled:	07/02/	96					-						•			
OC Bat	ch #	96V0	CS2154														
Date Analy	zed:	07/09/	96						_			-					
Analyst Ini	tials:	RR						-									
Dilution Fac	rtor:	1															
ANALVTE	MDL	DLR	Results														
Chloromethane	5	5	ND														
Vinyl Chloride	5	5	ND														
Bromomethane	5	. 5	ND					1									
Chloroethane	5	5	ND							["		[
Trichlorofluoromethane	5	5	ND			[
Acetone	50	1250	3400*			1.15											· · · · ·
1,1-Dichloroethene	5	5	ND													ļ,	
Carbon Disulfide	5	5	22							•							
Methylene Chloride	5	5	ND														
trans-1,2-Dichloroethene	5	5	ND														
1,1-Dichloroethane	5	5	ND										<u> </u>				
Chloroform	5	5	ND							I							L
1,2-Dichloroethane	5	5	ND								_						
Vinyl Acetate	5	5	13														ļ
2-Butanone	50	50	ND										_				
1,1,1-Trichloroethane	5	5	ND														
Carbon Tetrachloride	5	5	ND								L						
Benzene	5	5	ND								L	<u> </u>					
1,2-Dichloropropane	5	5	_ND								I	_					<u> </u>
Trichloroethene	5	5	ND					ļ				<u>-</u> _					
Bromodichloromethane	5	5	ND				L			_							—
2-Chloroethyl Vinyl Ether	5	5	ND							ļ							
cis-1,3-Dichloropropene	5	5	ND					ļ		I			<u> </u>				
trans-1,3-Dichloropropene	5	5	ND			L		L		I	<u> </u>				L		└── ┃
1,1,2-Trichloroethane	5	5	ND				L								_	<u> </u>	
Dibromochloromethane	5	5	ND				└──			<u> </u>		I					
Bromoform	5	5	ND					I		<u> </u>	1						├ ───┨
4-Methyl-2-Pentanone	50	50	ND				L	L		ļ							
Toluene	5	5	10				ļ		ļ		ļ			<u> </u>			
2-Hexanone	50	50	ND	L			ļ	<u> </u>		<u> </u>	<u> </u>	ļ		-			
Tetrachloroethene	5	5	ND								I						
Chlorobenzene	5	5	ND			ļ	<u> </u>			<u> </u>			ļ			╞	├ ──
Ethylbenzene	5	5	16			<u> </u>	<u> </u>	 		₋		–		⊢		—	<u>├</u>
Xylene (Total)	5	5	58			<u> </u>			L	<u> </u>	<u> </u>	 					├
Styrene	5	5	ND					₊					├───	├			├
1,1,2,2-Tetrachloroethane	5	5	ND							+		─	<u>├</u> ────	 			<u> </u>]
1,3-Dichlorobenzene	5	5	ND				·	 	 	┣		<u> </u>	<u> </u>				├─── ┨
1,4-Dichlorobenzene	5	5	ND	<u> </u>		<u> </u>	↓	 	<u> </u>		<u> </u>				-	<u> </u>	<u>├───</u> ┨
1.2-Dichlorobenzene	5	5	ND				1	1		I		<u> </u>			L		

Additional 8240 Analytes 50 1250 ND* Propylene Oxide

MDL = Method Detection Limit ND = Not Detected (Below DLR).

DLR = MDL X Dilution Factor

NA = Not Analyzed * = Dilution Factor is 25.

Reviewed/Approved By:

Yun Pan

Department Supervisor

7/12/96 Date:

The cover letter is an integral part of this analytical report.

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

Science Engineers, inc.	ott Rowlands
Aqua	Mr. Sc
Client:	Attn:

t: TADCO-363 W. 133rd, 2992

.

Client's Project: Date Received: Matrix: Unit:

07/03/96 Soil mg/kg

	Method Blank	12033-001	12033-002			
		551	T1E-13'			
Citetit Satupic t.D.: Data Samulad:		07/02/96	07/02/96			
OC Batch #:	968015AS048	968015AS048	968015AS048			
Date Extracted:	07/10/96	07/10/96	07/10/96			
Date Analyzed:	07/10/96	07/10/96	07/10/96			
Analyst Initials:	F	HZ	HZ			
Dilution Factor:	1	-	1			an a
Analyte MDI	L DLR Results	DLR Results	DLR Results			
Ethylene Diamine 50	0 50 NE	02 C	D 50 NI	Δ		
						-
: ; ; ; ; ; ; ; ; ; ; ; ; ;						
MDL= Method Detection Limit ND == Not Detected. (Below DLR	()					
DLR = MDL X Dilution Factor NA = Not Analyzed						
		c				
		<u>ر</u>				
		Ð			Date: 7/13/96	
Keviewea/Approved by.		Yun Pan	Sec.			
		Department S	upervisor			
		•				
The cover letter is an int	tegral part of this	s analytical repo				
B0646						

Advanced Technology I aboratories

Spike	e Recovery and RPD Summary Report - SOIL (MG/KG)
Method : C Title : Last Update : We Response via : In	\HPCHEM\5\METHODS\DIAMINE.M ed Jul 10 17:02:49 1996 hitial Calibration
Non-Spiked Sample	e: D7776.D
Spike Sample	Spike Duplicate Sample
File ID : DS777 Sample : 12033 Acq Time: 10 Ju	B.D -1 MSD SOIL E7-10-96 L 96 05:46 PM DS7777.D 12033-1 MS SOIL E7-10-96 10 Jul 96 05:37 PM
Compound	Sample Spike Spike Dup Spike Dup RPD QC Limits Conc Added Res Res %Rec %Rec RPD % Rec
Ethylenediamine	0.0 200 152 123 76 62 21 50 50-150
QC Batch #: 9680	L5AS048

7/12/96 Date: Reviewed/Approved By:

Yun Pan Organics Supervisor

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

B0647

	Spike Rec	covery	and RF	ary Re	eport -	SOIL	(ug/k	:g)			
Method Title Last Update Response via	: C:\HPC : Volati : Tue Ju a : Contin	CHEM\1\ le Org 1 09 1 nuing (METHOD Janic C 1:27:C Calibra	OS\VOC3 Compoun 02 1996 ation	5.M Ids						
Non-Spiked S	Sample: V	78214.I)	•							
5	Spike Sample					Spike Dupli	cate s	Sample	e 		
File ID : V Sample : I Acq Time:	VS8215.D 12033-003 9 Jul 96	50 pr 3:37	ob MS N 7 pm	/OC SOI	L	VS821 12033 9 Ju	6.D 3-003 11 96	50 pp 4:11	b MSI pm	VOC SOI	L
Compound		Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD;	QC RPD	Limits % Rec	
1,1-dichlord benzene trichloroet toluene chlorobenzen	bethene hene ne	0.0 ND ND ND ND	50 50 50 50 50 50	61 54 51 52 52	60 52 49 50 49	123 108 103 104 104	119 103 97 99 97	3 5 6 5 7	23 21 23 21 19	37-166 68-133 65-129 74-136 83-122	- 20 a. a. a. a. a. a.
OC batch #:	96VOCS215	54									

7/12/96 Date: Reviewed and Approved by: Yun Pan Organics Supervisor

1510 E. 33rd Street Signal Hill, CA 90807 Tel: 310 989-4045 Fax: 310 989-4040

		_	CHAIN C	DF CUSTO	DY RECO	RD			r, ₆ d	• • •
					FOR LABORAT(ORY USE OF	NLY:			
Advancea	i Technology				Method of Tra	ansport		Sample Condi	tion Upon Receipt 5 SEAI FD	
Labo	ratories	Batch #:	D.O.#		Courier		CHILLED	AN NO	6. # OF SPLS MATCH CI	
1510 E. 33rd Street		P.O.#:			UPS FED FXP	 	HEADSPACE (VO		7. PRESERVED	
(310) 989-4045 • FAX	(310) 989-4040	Logged By:	Date:	Time:	ATL	••]	CONTAINER INTA	ACT YN ND	8. CONTR. LOT #	
Client: Agree Scie	we Engline	2-5126.	Address	15 56821 =	Ky Park	Circle,	, Suite E	<u> </u>	EL:(714) 833	3-3667
Attn: Scott	Row and S		City	エンショ	St	ite CA	Zip Code	92614 F	AX:(714) 83	3-2468
Project Name: ADCO	1-363 W	133 20 Project #:	2992	Sample	Printed Name)	64 40	AChing 7	(Signature)	all Ch	
Relinquished by: (signature and Prin	ted Name) And	CIL	Received	by: (Signature and Printed Nam	Lune	LUNN	JA/ML	late: 11	96 Time: 1211	7
Relinquished by: (signature and Prin	nted Name)		Received	DY. (Signature and Printed Nam DV. (Signature and Printed Nam	¢	vise jaar Tari ees		Jate:	Time:	
neinquisited by. (Signade and Fill				Sand Banort To:		Snecial In	structions/Comme	ents:		
Unless otherwise Pro	areby authorize ATL to p oject Mgr /Submitt	berform the work indicated belo ter:) (Attn:			\$ 600. C	DO Paulo	5	
requested, all samples will be <u>disposed 60 davs</u>):11:am C	Lochung Bate	7,3,46	Co:			···· <u>·</u> ·······························			
after receipt.	Hudit &	N N		Audi ess	State Zio					
CHIP TO I AR	SHIP TO LAB:	Signature SHIP TO L	AB:	Circle or Add / /	<u> </u>		1 3 1	CIRCLE A	PPROPRIATE	QA/QC
(SUB CONTRACT)	(SUB CONTRACT)	(SUB CONTRA: TEST:	cJ	Analysis(es)		2////	- / - / - / - / - / - / - / - / - / - /	1W 10/01	ATRIX Z	
ATL #:	ATL #	ATL #:		101 39 101 C	30 60 00 00 00 00	6 /00	195/ / 50/	3/10/ 0/2/0/	ITA	
DATE:	DATE:	DATE:		1 59 X 192	CON CONTROLOGY	10 / 23/ 33	13/3/ /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Alignment of the second seco	NAV V
I LAB USE ONLY:		Sample Description		103280 00 100 100 100 100 100 100 100 100 10	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A A		28 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Container(s) 00	OTHER
E Lab No.	Ű	ample I.D.	Date Time	60 60 60 65 65 65 65 65 65 65 65 65 65 65 65 65	SIEIS W 18108	1/27/24	00 00 × 00	E 2 2 2 2	TAT # Type 0	REMARKS
S S		151	7 takio:2		×	X X		R R	(cyler	-
	 -	·IE-13'	01:12 2/2/1-		×	×				Dic ID on Jan
		W2-4	nak 4:12		X			· · · · · · · · · · · · · · · · · · ·		
		-1W-13'	7/2/8 4:15		X				EF S	W-15 W-15
		-2E-13°	12/24/24/24		X	×		-	Sort	T2E-15'
 		-2W-13'	7/2/2 4:36		×				2 5 	TEW-ISI
649		r3 E- 13´	7/2/2/ 4:30		X				Juos	12 10 on Jar
		r3W-13'	Halk 4:34		×	×		·····		T3W-15
Sample Archive/Disposal: Laboratory Standard	TAT:	A = Overnight B = Eπ Ne. Ne.	nergency xt workday C=	Critical 2 Workdays D=	Urgent 3 Workdays	= Routine 7 Workday	 TAT starts B following day /S received after 	a.m. Pres rif samples H=h	servatives: Hcl N=HNO ₃ S=H	1₂SO• C=4°C
C Return To:	Cont	ainer Types: T=Tube	V=VOA L=L	iter P=Pint J≕J	lar B=Tedlar	G=Glass P	=Plastic M=I	Metal Z=Z	Zn(AC) ² O=NaOH	H T=Na2S203

ſ,

ATTACHEMENT 4 (PHOTOGRAPHIC DOCUMENTATION OF TANK REMOVAL)

B0651

PHOTOGRAPHIC PLATE II

Note Volatilization of Ethylene Diamene from Northernmost Tank

B0652

PHOTOGRAPHIC PLATE III

Showing Final Tank Check for Remnant Vapors Prior to Removal

B0653

Note Cut "Windows" in Each Tank for Visual Inspection

EXHIBIT 7

June 5, 1998

DRAFT

Ms. Wendy Liu Regional Water Quality Control Board Los Angeles Region (4) Site Cleanup Unit 101 Centre Plaza Drive Monterey Park, CA 91754-2156

RE: Summary Report of Environmental Site Assessment Data

SITES: Former T.A. Davies, Inc. (TADCO) 363 West 133rd Street Los Angeles, California

> Standard Metals Recycling Corporation 378 West 133rd Street Los Angeles. California

Dear Ms. Liu:

The owner of the property located at 363 West 133rd Street, Los Angeles, has requested that Aqua Science Engineers. Inc., (ASE) submit a summary report of findings of environmental site assessments conducted by ASE to date at the above referenced properties. The information is being submitted to you so that the Regional Water Quality Control Board may evaluate the significance of the contamination discovered by the assessments and determine an appropriate course of action.

Volatile organic compounds (VOCs) and other organic contaminants have been detected in soil and groundwater at both sites. Groundwater is located between 40 and 45 feet below the ground surface. Soil and groundwater contamination assessments have been conducted by Frey Environmental, Inc., on behalf of the owners of the Standard Metals property. The investigations included the installation of four groundwater monitoring wells. One well was installed on the Standard Metals site, two wells were installed on West 133rd Street, and one well was installed on the former TADCO site. The investigations conducted by Frey also included a soil gas survey conducted at the former TADCO site and apparently at the Standard metals site. Reports regarding the results of the soil or groundwater investigations conducted by Frey Environmental for Standard Metals have not been made available by Standard Metals.

Information contained in this summary was collected from the following reports prepared by Aqua Science Engineers. Inc:

- September 1, 1995, Soil Contamination Assessment Report for B.I.G./ TADCO Site, 363 West 133rd Street, Los Angeles CA.
- May 6, 1996, Subsurface Environmental Investigation of Soil at 13255 South Broadway, Los Angeles, CA.
- June 13, 1996, Subsurface Environmental Investigation of Soil at 363 West 133rd Street, Los Angeles, CA.

- July 31 1996, Environmental Assessment of Soil Surrounding the Removed Underground Chemical Storage Tanks at the Former TADCO Facility, 363 West 133rd Street, Los Angeles, CA.
- November 6, 1996, Demolition of the Septic System at the Former TADCO Site, 363 West 133rd Street, Los Angeles, CA.
- May 14, 1997, Subsurface Environmental Investigation of Soil at 363 West 133rd Street, Los Angeles, CA.
- September 19, 1997, Subsurface Environmental Investigation of Soil at Standard Metals, 378 West 133rd Street, Los Angeles, CA.
- January 1998, Summary Tables of Chemical Analysis Data for Soil and Groundwater Samples Collected from Well MW-4 and Soil Borings FB-1 and FB-2 Installed by Frey Environmental for Standard Metals at 363 West 133rd Street, Los Angles, CA.
- May 8, 1998, Groundwater Elevation Survey and Sample Analysis at 363 and 378 West 133rd Street, Los Angles CA.

Report Summary Data

Multiple subsurface environmental investigations have been conducted by ASE in relation to contamination discovered at the TADCO site. A relatively wide variety of chemical contaminants were discovered in soil beneath the TADCO site and the Standard Metals site by these investigations including petroleum hydrocarbons, volatile organic compounds (halogenated and non-halogenated), and PCBs. Subsurface environmental investigations have also been conducted by Frey Environmental on behalf of Standard Metals. The "Attachments" outlined below are site maps showing the locations of soil borings and wells installed for the investigations and tables summarizing chemical analysis data collected by Aqua Science Engineers. Inc. Reports documenting the investigations conducted on the behalf of Standard Metals have not been made available and are not included in the summary data.

<u>Attachment 1</u>

Attachment 1 is a site map showing the locations of soil borings drilled by Environmental Resolutions. ASE and Frey Environmental. The site map incorporates soil boring location information for reports prepared by ASE up to January 1988. All structures shown on the map for the former TADCO site have been removed. The site is now paved with concrete and has been incorporated into the parking area for the building located east of the former TADCO site.

- Borings B-1 through B-12 at the TADCO site were drilled by Environmental Resolutions Inc., for TADCO.
- Borings B-13 through B-29, and HA-1 through HA-9, at the TADCO site were drilled by ASE for Business Industrial Group.
- Borings FB-1 and FB-2 at the TADCO site were drilled by Frey Environmental for Standard Metals.
- Borings B-1 thorough B-5A at the Standard Metals site were drilled by ASE for Business Industrial Group.

• Groundwater monitoring wells MW-1 through MW-4 were installed by Frey Environmental for Standard Metals.

Attachment 2

Attachment 2 provides summary tables of chemical analysis data for the soil borings identified in Attachment 1 as follows:

Tables 1 and 2: Summary of volatile organic compounds (EPA 8240 and 8260) chemical analysis data for soil samples collected from borings B-13 through B-29 drilled by ASE at the former Tadeo site

Table 3: Summary of TPH-gasoline, TRPH and EPA 8260 chemical analysis data for soil borings B-1 through B-5A drilled by ASE at the Standard Metals site.

Table 4: Summary of EPA method 8240, TPH-diesel, TRPH and EPA 8270 chemical analysis data for hand auger borings HA-1 through HA-9 drilled by ASE in the area of the former above-ground tank farm at the TADCO site

Table 5: Summary of TPH-gasoline (EPA 8015M) and PCB (EPA 8080) chemical analysis data for soil samples collected from borings B-14 and B-15 drilled by ASE at the former TADCO site.

Table 6: Summary of EPA 8260 chemical analysis data for split soil samples collected from borings FB-1, FB-2 and MW-4 drilled by Frey Environmental at the former TADCO site.

Attachment 3

Attachment 3 provides a site plan showing the locations of grab soil samples collected by ASE during the removal of underground chemical storage tanks on July 2, 1996 at the former TADCO site, and a summary table of EPA 8240 chemical analysis data for the soil samples. The USTs were removed by Smith Environmental under a contract with TADCO.

<u>Attachment 4</u>

Attachment 4 provides a site plan showing the locations of grab soil samples collected by ASE during the removal of a septic tank on September 27, 1997 at the former TADCO site, and a summary table of EPA 8260 chemical analysis data for the soil samples and liquid/sludge samples collected from the septic tank.

Attachment 5

Attachment 5 provides site maps showing the groundwater elevation and flow characteristics determined by ASE during April 1998, and selected VOC chemical analysis data for groundwater samples collected by ASE from wells MW-1 through MW-4.

Attachment 6

Attachment 6 is a summary table and Cal-EPA certified laboratory report of EPA 8260 and 8015 chemical analysis data for groundwater samples collected from wells MW-1 through MW-4 by ASE on April 28, 1998.

Complete reports documenting the assessments summarized in this letter are on-file at ASE's Irvine, California office. Please contact Mr. Patrick Rendon, Esq., of Calvillo and Rendon at (562) 983-6624 if you have any questions regarding this letter, or if you require copies of any of the reports listed above.

Sincerely.

Aqua Science Engineers, Inc.

Michael Marello, R.G., R.E.A. Vice President Principal Geologist

ee: Mr. Patrick Rendon, Esq. Mr. Jess Herbst, Business Industrial Group -1

Attachment 1

Site map showing the locations of soil borings drilled by Environmental Resolutions. ASE and Frey Environmental.

.

Attachment 2

Tables 1 and 2: Summary of volatile organic compounds (EPA 8240 and 8260) chemical analysis data for soil samples collected from borings B-13 through B-29 drilled by ASE at the former Tadeo site

Table 3: Summary of TPH-gasoline, TRPH and EPA 8260 chemical analysis data for soil borings B-1 through B-5A drilled by ASE at the Standard Metals site.

Table 4: Summary of EPA method 8240, TPH-diesel. TRPH and EPA 8270 chemical analysis data for hand auger borings HA-1 through HA-9 drilled by ASE in the area of the former above-ground tank farm at the TADCO site

Table 5: Summary of TPH-gasoline (EPA 8015M) and PCB (EPA 8080) chemical analysis data for soil samples collected from borings B-14 and B-15 drilled by ASE at the former TADCO site.

Table 6: Summary of EPA 8260 chemical analysis data for split soil samples collected from borings FB-1, FB-2 and MW-4 drilled by Frey Environmental at the former TADCO site.

													Para I	Tetal	<u> </u>
	Sample	1	Carbon	Vinyl	Methylene	Trans-1,2					4-Melhyl-		Einyi-	TOTAL	1
Boring	Collection	Acetone	Disulfide	Chloride	Chloride	DCE	1,1-DCA	2-Butanone	Benzene	TCE	2-Pentanone	Toluene	Benzene	Ayienes	l Cr
Number	Depth (ft)	(ug/kg)	(µg/kg)	(ug/kg)	(ug/kg)	(ug/kg)	_(µg/kg)_	(ug/kg)	(ug/kg)	(µg/kg)	(µg/kg)	(ug/kg)	(ug/kg)	(µg/kg)	-
	1 - 1														1
B-13	10	400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	40	ND	ND	70	ND	ND	ND	ND	ND	48	ND	ND	ND	ND	1
B-14	51	640	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,100	4,200	1
0-14		75 000	ND	ND	ND	ND	ND	260	ND	ND	56	ND	ND	ND	
	15	11,700	ND		ND	ND	ND	57	ND	ND	ND	ND	ND	ND	
	25	104 000	110		ND	ND	ND	180	ND	ND	78	10	ND	ND	
	45	1.300	6	30	ND	ND	ND	ND	ND	ND	ND	18	ND	ND	
												М	ND	NTD	
B-15	10	ND	ND	ND	ND	ND	ND					ND	ND		
	30	92	ND	ND	ND	ND	ND	ND	ND						
	35	28,700	ND	ND	ND	ND	ND	83	ND	ND	ND				1
	40	1,270,000	ND	45	ND	6	ND	700	ND	ND	200	49		120	
	45	732,000	ND	320	31	46	18	ND		7.6	150	490	34	350	
B-16	15	1,600	ND	16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	20	ND	ND	32	ND	ND	ND	ND	ND	21	ND	ND	ND	ND	
	30	ND	ND	7.3	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	
	35	ND	ND	71	ND	27	ND	ND	ND	190	ND	ND	ND	ND	
B.17	10	150	ND		ND	ND	ND	ND	ND	ND	ND	98	ND	ND	
D-17	101	ND	ND	ND	ND	290	ND	ND	280	270	ND	430	900	1,050	
	301		ND			1 400	ND	ND	ND	ND	ND	160	360	ND	i i
	30.		IND			1,700		ND	ND	4 400	ND	97	160	ND	
	40'	ND	ND	ND	ND	510		ND		4,400		, , ,	100	1.2	
B-18	12	ND	ND	14	ND	ND	ND	ND	ND	15	ND	23	ND	ND	
	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	UN	
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	ND	ND	
	40	ND	ND	19	ND	ND	ND	ND	ND	9.8	ND	63	ND	ND	
B 10		ND		ND	ND	ND		ND	ND	ND	ND	32	ND	ND	
D-17	10	ND			ND	ND	ND	ND	ND	ND	ND	14	ND	ND	
	20				ND		ND	ND	ND	ND	ND	24	ND	ND	
	30						ND	ND	ND	24	ND	43	ND	ND	
	40		ND							24					
Method	Detection	50	5	5	5	5	5	50	5	5	50	5	5	5	
Level (M	(DL)			ـــــــ	<u> </u>	<u> </u>	<u> </u>	I	<u> </u>						+
EPA Reg	gion IX PRG	8.4 x 10 ⁶	52,000	11	25,000	600,000	3.0 x 106	3.4 x 10 ⁷	3,200	17,000	NA NA	2.8 x 10°	690,000	990,000	1
Industria	Property	(ca)	(nc)	(ca)	(ca)	(nc)	(nc)	(nc)_	(ca)	<u>(ça)</u>		(sai)	(sat)	L(sat)	+

 TABLE 1

 Summary of Chemical Analysis Data for Soil Samples Collected from Borings B-13 through B-27 for EPA 8240 Compour Borings B-13 through B-16 and B-22 through B-27 Drilled at Tadco, 363 West 133rd St., Los Angeles County Boring B-21 Drilled on the South Edge of 133rd Street, Adjacent to General Welding Site Borings B-17 through B-20 Drilled at 13255 South Broadway, Los Angeles County

 EPA Region IX PRG 8.4 x 10⁻¹
 52,000
 11
 25,000
 600,000
 3.0 x 10⁻¹
 3,2 x 10

•

 TABLE 1 CONTINUED

 Summary of Chemical Analysis Data for Soil Samples Collected from Borings B-13 through B-27 for EPA 8240 Compour Borings B-13 through B-16 and B-22 through B-27 Drilled at Tadeo, 363 West 133rd St., Los Angeles County Boring B-21 Drilled on the South Side of 133rd Street, Adjacent to General Welding Site Borings B-17 through B-20 Drilled at 13255 South Broadway, Los Angeles County

Boring Number_	Sample Collection Depth (ft)	Acetone (ug/kg)	Carbon Disulfide (µg/kg)	Vinyl Chtoride (µg/kg)	Methylene Chloride (µg/kg)	Trans-1,2 DCE (µg/kg)	I,I-DCA (µg/kg)	2-Butanone (µg/kg)	Benzene (µg/kg)	TCE (µg/kg)	4-Methyl- 2-Pentanone (µg/kg)	Toluene (µg/kg)	Ethyl- Benzene (µg/kg)	Total Xylenes (µg/kg)	СІ
D 20				NTD.	ND	ND	ND	ND	ND	ND	ND	16	ND	ND	
B-20	10						ND	ND	ND	ND	ND	22	ND	ND	
	20				ND	ND	ND	ND	ND	ND	ND	24	ND	ND	
	1 10		ND	20	ND	ND	ND	ND	ND	330	ND	31	ND	ND	
	40		nD	20			1.12							1	
B 11	1 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
0-21	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	451	ND	ND	ND	ND	ND	ND	ND	ND	930	ND	ND	ND	ND	
											NTD.	ND	ND	NTD	
B-22	5	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND			
	10	ND	ND	ND	ND	ND	ND	ND	ND		ND ND		ND		
	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		
	30	ND	ND	ND	ND	ND ND	ND	ND			ND		ND	ND	
	40	ND	ND	87	ND	56	ND	ND	ND	330	ND (00	ND (20	110	400	
	45	ND	ND	280	ND	ND	ND	2,200	ND	ND ND	600.	680	- 07	400	
	1.								NTD.			190	23.000	115.000	
B-23	51	ND	ND	ND	ND	UN IN	ND		ND			8 400	8 300	55,900	
	10	ND	ND	ND	ND	ND	ND		ND	1 000		22,000	17 000	119.000	
	202	262,000	ND	ND	ND	ND	ND	ND	ND	1,000		22,000	1 200	9.460	
	302	64,200	ND	ND	ND	ND	ND	ND	ND			30	00	24	
	40	ND	ND	29	ND	ND	ND	ND			ND	820	440	2 670	
	451	7,350	ND	550	ND	ND	ND	ND			ND	010	440	_,0/0	
D 14		ND.	ND	NTD	ND	ND	ND	ND	ND	16	ND	11	ND	ND	
13-24	103	ND	ND	ND		ND	ND	ND	ND	300	ND	ND	ND	ND	
	20	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	
	30	ND	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	
	1 40	ND	ND	ND	ND	ND	ND	ND	ND	7.9	ND	ND	ND	ND	
	45	ND	ND	6.3	ND	ND	ND	ND	ND	65	ND	ND	ND	ND	
			L		<u> </u>	<u> </u>					50	5	5	5	\uparrow
Method	Detection	50	5	5	5	1 3	'	00	1, 2,	1	1 30			L	
LEVCI	ata- IV DDC	0 4 - 106	\$2.000	11	25.000	600.000	30 106	34 × 107	3,200	17.000	NA	2.8 x 10 ⁶	690,000	990,000	
Industria	BION IA FRU	(ca)	(nc)	(ca)	(ca)	(nc)	(nc)	(nc)	(ca)	(ca)	L	(531)	(sat)	_(sat)_	┺

Dilution Factor (DF) for sample is 10. Reporting Limit for sample is DF x Method Detection Level ² Dilution Factor for sample is 100. ³ Dilution Factor for sample is 5

.

.

٠

TABLE 1 CONTINUED

Summary of Chemical Analysis Data for Soil Samples Collected from Borings B-13 through B-27 for EPA 8240 Compos Borings B-13 through B-16 and B-22 through B-27 Drilled at Tadco, 363 West 133rd St., Los Angeles County Boring B-21 Drilled on the South Edge of 133rd Street, Adjacent to General Welding Site Borings B-17 through B-20 Drilled at 13255 South Broadway, Los Angeles County

Boring	Sample Collection	Acetone	Carbon Disulfide	Viny) Chloride	Methylene Chloride	Trans-1,2 DCE	1,1-DCA	2-Butanone	Benzene	TCE	4-Methyl- 2-Pentanone	Toluene	Ethyl- Benzene	Total Xylenes	•
Number	Depth (ft)	(µg/kg)	(µg/kg)	(µg/kg)	(Ug/kg)	(ug/kg)	ILIQ/Kg1_	(ug/kg)	INE/KE/	THE/KE)		- UNECKEL			t
B-25	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	
	10	73	ND	ND	ND	13	ND	ND	ND	ND			ND	ND	L
	20	57	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	1
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND		L
	40	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND	I
	45	ND	ND	ND	ND	ND	ND	ND	ND	8.0	ND	ND	UN		I
B.26	5	160	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	l
0 10	1 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ł
	201	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	70	280	2890	
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	I
	40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	I
	45	ND	ND	ND	ND	ND	ND	ND	ND	57	ND	ND	ND	ND	
B-27	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	1 10	51	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
	40	ND	ND	ND	ND	ND	ND	ND	ND	15	ND	ND	ND	ND	1
	45	ND	ND	ND	ND	ND	ND	ND	ND	150	ND	ND	ND	ND	l
Method I	Detection	50	5	5	5	5	5	50	5	5	50	5	5	5	
EPA Reg	ion IX PRG	8.4 x 10 ⁶	52,000	. 11	25,000	600,000	3.0 x 10 ⁶	3.4 x 10 ⁷	3,200	17.000	NA	2.8 x 10 ⁶	690,000	990,000	
Industria	Property	(ca)	(nc)	(ca)	(ca)	l (nc)	(nc)	I (nc)	(ca)	(ca)		(sau		1.19901	-

Dilution Factor (DF) for sample is 10. Reporting Limit for sample is DF x Method Detection Level

ND = not detected

EXPLANATION FOR TABLE 1 Trans-1,2- DCE = Trans-1,2-Dichloroethene TCE = Trichloroethene 1.3 DCB = 1.3-Dichlorobenzene

1.1-DCA = 1.1-Dichloroethane 1.2 DCB = 1.2-Dichlorobenzene 1.4 DCB = 1.4-Dichlorobenzene µg/kg = micrograms per kilogram or parts per billion (ppb)

EPA Region IX PRG = US Environmental Protection Agency Region IX Preliminary Remediation Goals for Industrial Properties, September 1995 Industrial Property

ca = PRG concentration based on cancer risk

nc = PRG concentration based on noncarcinogenic health threats

sat = PRG concentration based on soil saturation equation

EPA 8240 compounds not listed in Table 1 were not detected in any of the analyzed samples from boring B-13 through B-27

Boring	Sample		n-Butyl-	sec-Butyl-	tert-Butyl-	cis-1,2	trans-1,2	Ethyl-	Isopropyl-	p-Isoproyl-	Newbalance	n-Propyl	Toluena	TTE	1.2.4-Trimethy
Number	Depth (ft)	Benzene	benzene	benzene	benzene	DCE	DCE	benzene.	benzene	loluene	Napinalene	penzene	IT officile		- Ochecile
B-28	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74	ND	ND
	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	188	ND	ND
	15	1,000	3,040	5,000	200	ND	ND	11,600	7,540	4,800	11,800	14,100	233	200	12,000
	20	60	46	ND	ND	53	32	150	76	55	100	120	83	62	476
	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND
	30	ND	ND	ND	ND	162	18	ND	ND	ND	ND	ND	8	27	ND
	35	ND	26	104	ND	83	636	8.5	25	28	18	20	970	1,560	ND
	40	ND	ND	ND	ND	8.4	ND	ND	ND	ND	ND	ND	224	ND	ND
	45	ND	ND	ND	ND	118	8.5	ND	ND	ND	ND	ND	ND	187	ND
B-29	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND
	10	ND	ND	ND	ND	20	ND	ND	ND	ND	66	ND	170	ND	ND
	15	ND	ND	ND	ND	41	ND	ND	ND	ND	17	ND	7.4	ND	ND
	20	ND	ND	ND	ND	47	ND	ND	ND	ND	ND	ND	35	ND	ND
	25	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	25	ND	ND
	30	ND	ND	ND	ND	103	ND	ND	ND	ND	ND	ND	16	7.8	ND
	35	ND	ND	ND	ND	192	ND	ND	ND	ND	ND	ND	18	32	ND
	40	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND	49	ND	ND
	45	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	6.1	150	ND
Method	Detection	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Level (N	<u>/DL)</u>	L	ļ	l	.l	↓	4	1	ł		ł		+	+	

Summary of Chemical Analysis Data For Soil Samples Collected from Borings B-28 and B-29 at the Former TADCO Site, 363 West 1 EPA Method 8260 Compounds and Additional GC/MS Compounds - Concentrations in µg/kg (Parts Per I

EXPLANATION FOR TABLE 1 DCE = Dichloroethene TCE = Trichloroethene ND = not detected at MDL

Summay of Chemical Analysis Data for Soil Samples Collected From Borings B-1 thro at the Standard Metals Site on August 29, and September 2, 1997

Boring Number	Sample Depth (ft)	TPH-g (mg/kg)	TRPH (mg/kg)	Arochlor-1254 (µg/kg)	Benzene (µg/kg)	cis-1,2-DCE (µg/kg)	trans-1,2-DCE (µg/kg)	Eth.benz (µg/kg
B-1	5	ND	ND	ND	ND	ND	ND	NI
	10	ND	ND	ND	ND	80	ND	NI
	15	NA	NA	ND	NA	NA	NA	N/
	20	ND	ND	NA	ND	36	ND	NI
	30	ND	ND	NA	ND	170	ND	NI
	40	2.7	ND	NA	6.7	3,600	6.6	NI NI
B-2	5	ND	ND	ND	ND	12	ND	NI
17 -	10	ND	ND	ND	ND	39	ND	NI
	15	ND	ND	ND	6.4	8,100	11	NI
	20	ND	144	NA	ND	66	ND	NI
	25	ND	ND	NA	ND	270	ND	NI
	30	ND	ND	NA	ND	57	ND	NI
	35	ND	ND	NA	ND	170	ND	NI
	40	ND	ND	NA	ND	1,800	ND	NI
B- 3	5	ND	175	ND	ND	440	19	NI
1,5-1,5	10	ND	ND	ND	ND	30	ND	
	15	NA	NA	ND	NA	NA	NA	N/
	20	ND	ND	NA	ND	5	ND	NI
	30	ND	ND	NA	ND	50	ND	
	4()	1.2	ND	NA	ND	66	ND	NI
B-4	5	ND	ND	ND	ND	ND	ND	NI
D-4	in	ND	ND	ND	ND	ND	ND	NI
	15	ND	ND	ND	ND	ND	ND	NI
	20	ND	ND	NA	ND	ND	ND	NI
	25	ND	ND	NA	ND	26	ND	NI
	30	ND	ND	NA	ND	360	ND	NI
	35	ND	ND	NA	ND	42	ND	NI
	40	ND	ND	NA	ND	450	ND	9.0
MDL		1.0	10	50	5	5	5	

September 1997

.

TABLE 3 Continued

Summay of Chemical Analysis Data for Soil Samples Collected From Borings B-1 throu at the Standard Metals Site on August 29, and September 2, 1997

Boring Number	Sample Depth (ft)	TPH-g (mg/kg)	TRPH (mg/kg)	Arochlor-1254 (µg/kg)	Benzene (µg/kg)	cis-1,2-DCE (µg/kg)	trans-1,2-DCE (µg/kg)	Eth.benzer (µg/kg)
B-5	5 10	ND ND	220 62	ND ND	ND ND	150 26	ND ND	ND ND
B-5A	15 20 30 40 45	NA ND ND ND NA	NA ND ND ND NA	I20 NA NA NA NA	NA ND ND ND NA	NA 71 290 940 530	NA ND ND ND ND	NA ND ND ND
MDL		1.0	10	50	5	5	5	15

EXPLANATION FOR TABLE 1

(ft) = feet below surface

TPH-g = total volatile petroleum hydrocarbons as gasoline by EPA 8015M

TRPH = total recoverable petroleum hydrocarbons by EPA 418.1

Arochlor-1254 is a PCB detected by EPA method 8080

cis-1,2-DCE = cis-1,2-dichloroethene

trans-1,2-DCE = trans-1,2-dichlorethene

Eth.benzene = ethylbenzene

TCE = trichloroethene

(mg/kg) = milligrams per kilogram or parts per million (ppm)

 $(\mu g/kg) = micrograms per kilogram pr parts per billion (ppb)$

ND = not detected at specified reporting limit (MDL x dilution factor)

NA = not analyzed

MDL = method detection level

.

September 1997

Summary of Chemical Analyses Results for Soil Samples Collected in Area of Above Ground Tank Farm at TADCO, 363 West 133rd Street, Los Angeles, CA

Sample ID	Sample Depth	Diesel Fuel (8015M)	TRPH (418.1)	Toluene	Ethylbenzene (8240/8020)	Xylenes E	Bis(2-Ethylhexyl)phthalat (8270)		
HA-1-1 HA-2-1 HA-3-1 HA-4-1 HA-5-1 HA-6-1 HA-7-1 HA-8-1 HA-9-1 HA-10-1 B-27-5 B-27-10 B-27-20 B-27-20 B-27-30	1 ft. 1 ft. 2 ft. 20 ft. 30 ft.	43 81 150 120 2,000 ND 100 ND ND ND ND ND ND ND ND ND ND ND ND	NA NA NA NA NA 320 390 NA NA NA NA	NA ND NA ND ND NA NA ND ND ND ND ND ND ND ND	NA ND NA ND 0.27 NA NA NA ND ND ND ND ND ND ND ND	NA ND NA ND 1.80 NA NA NA ND ND ND ND ND	NA NA 2.85 ND NA NA NA NA NA NA NA NA NA NA NA NA NA		
*-***	MDL	1 10	r 10	0.005	0.005	0.015	0.33		

All values reported in parts per million (ppm) or milligrams per kilogram (mg/kg) ND = Not Detected (below detection limits) NA = Not Analyzed EPA 8240, 8020, and 8270 compounds not listed in Table 4 were not detected

.

Summary of EPA Method 8015M (TPH-Gasoline) and EPA Method 8080 (PCBs) Chemical Analysis Data for Soil Borings B-14 and B-15 Drileld by ASE at the TADCO Site on August 3, 1995

Soil Boring	Sample Depth (ft)	TPH-Gasoline (mg/.kg)	Aroclor-1242 (µg/kg)	Aroclor-1260 (µg/kg)
B-14	5 15 25 35 45	870 4.9 1.2 8.5 4.6	3,050 NA NA ND NA	108 NA NA ND NA
B-15	10 30 35 40 45	ND ND 2.7 20 54	NA NA ND NA	NA NA ND NA
MDL	+	1.0	33	33

ft. = feet below surface

.

mg/kg = miligrams per kilogram or parts per million $\mu g/kg = micorgrams$ per kilogram or parts per billion ND = not detected at method detection level NA = not analyzed MDL method detection level

.

Boring	Sample	Acetone	Viny	Methylene	trans-1.2-	cis-1,2-	Benzene	TCE	Ethyl-	n\+p	o-Xylene	n-Propyl-	1,3,5-TMB	1,2,4-TMB	Sec-Butyl-	P
Number	Depth (II)		Chloride	Chloride	DCE	_DCE			benzene_	<u>Aylenes</u>					1021122110	F
FB-1	5	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	15	ND	260	ND	ND	ND	90	ND	300	1,400	150	300	1,100	2,200	100	Ĺ
	20	420	110	ND	280	2.20	55	140	1,100	430	30	840	41	890	190	
	25	570	20	ND	210	170	450	150	1,000	69	ND	560	18	80	120	
	30	92	1.3*	ND	10	12	ND	26	38	32	ND	24	ND			Ļ
	3.5	72	ND	ND	7.4	5.7	ND	ND	24	42	ND	15	5	3 ND		1
	05	ND	ND	ND	ND	ND-	ND	ND	ND	ND	ND	ND	ND		ND	L
	-<5	39	24	ND	21	71	ND	150	ND	ND	ND	ND	ND	NU	ND	
FR.2	5	ND	ND	ND	ND	7.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	
10.2	in	ND	ND	ND	ND ND	10	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ł.
	15	ND	ND	ND	ND	18	ND	5	ND	ND	ND	ND	ND	ND	ND	1
	20	ND	ND	ND	ND	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	25	ND	ND	ND	ND	52	13	ND	ND	ND	ND	ND	ND	ND	ND	
	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	35	ND	ND	ND	ND	6.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	L
	30	ND	ND	ND	ND	130	ND	ND	ND	ND	ND	ND	ND	ND	ND	L
	-15	ND	53	9.3	15	460	ND	ND	ND	ND	ND	ND	ND	ND	ND	ł
x 1337 - 1	5	1 100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
N 1 YV	15	350	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	Ł
	30	110		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	20	30	ND	ND	ND	ND	ND	ND -	ND	• ND	ND	ND	ND	ND	ND	
	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	15	ND	ND	ND	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
		1 31		ND	ND	19	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	45	46	58	ND	55	180	ND	ND	ND	ND_	ND	ND	ND	<u>ND</u>	ND	╀
MDL	+ <u> </u>	20	5	5	5	5	5	5	5	5	5	5	5	5	5	
								4 · · · · · · · · · · · · · · · · · · ·	·	F					-	

Summary of EPA method 8260 Chemical Analysis Data for Soil Samples Collected on December 23, 1997 form Drilled by Frey Environmental at the Former TADCO Site, 363 West 133rd Street, Los Angeles Californic Concentrations in Parts Per Billion (µg/kg)

* = concentration reported below MDL trans-1,2-DCE = trans-1,2-Dichlorethene cis-1,2-DCE = cis-1,2-Dichloroethene TCE = Trichloroethene 1,3-5-TMB = 1,3,5-Trimethylbenzene 1,2,4-TMB = 1,2,4-Trimethylbenzene MDI, = method detection level ND = not detected

Attachment 3

Site map showing the locations of grab soil samples collected by ASE during the removal of underground chemical storage tanks on July 2, 1996 at the former TADCO site, and a summary table of EPA 8240 chemical analysis data for the soil samples.

Aqua Science Engineers, Inc.

TABLE 1

Summary of Chemical Analyses Results for Soil Samples Collected in Area of Underground Storage Tank Farm at TADCO, 363 West 133rd Street, Los Angeles, CA

Sample ID	Sample Depth	Acetone	Benzene	Carbon Disulfide	E. Benzene — 8240 -	2-Hexanone	Vinyl Acetate
SS NW TIE TIW T2E T2W T3E T3W	 4 13 13 13 13 13 13 13	ND 70 380 220 7,670 200 1,030 3,400	ND ND 9.6 14 ND ND ND	ND ND 7.1 ND ND 6.8 22	ND ND ND ND ND ND ND 16	ND ND ND 55 ND ND ND	ND ND ND 7.3 ND ND 13

ND = Not Detected (below detection limits) NA = Not Analyzed

Concentrations reported in micrograms per kilogram (parts per billion)

Attachment 4

Site map showing the locations of grab soil samples collected by ASE during the removal of a septic tank on September 27, 1997 at the former TADCO site, and a summary table of EPA 8260 chemical analysis data for the soil samples and liquid/sludge samples collected from the septic tank.

TABLE 1

Summary of Chemical Analysis Data for Liquid/Sludge Samples Collected from within the Septic Tank and Soil Samples Collected from Beneath the Septic Tank and Leach Line Concentrations are in µg/l for Septic Tank Samples and µg/kg for Soil Samples

	Septic Ta	ink Samples		Soil Samp	oles	
Chemical Compounds	ST-SI.2	ST-L1,2	ST-A	ST-B	LL-I	LL-2
Acetone	ND	ND	ND	61	ND	ND
Benzene	5.5	ND	ND	ND	ND	ND
4-Chlorotoluene	53	a a 30 g	9.4	ND	64	43
1.4-Dichlorobenzene	230	150	130	24	46	21
1.1-Dichloroethane	ND	ND	6.0	7.6	7.2	6.9
cis-1,2-Dichloroethene	ND	ND	11	ND	ND	ND
Ethylbenzene	36	22	ND	ND	13	9.9
p-Isopropyltoluene	25	13	ND	ND	28	16
Methylene Chloride	ND	ND	7.2	11	ND	33
Naphthalene	24	9	5.1	ND	47	42
n-Propylbenzene	ND	ND	ND	ND	9.1	6.7
Toluene	36	22	ND	ND	6.4	ND
1.2.4-Trimethylbenzene	39	25	5.4	ND	79	61
1.3.5-Trimethylbenzene		6.4	ND	ND	25	19
Xylenes (total)	26	21	_ND	ND	43	33

Compounds not listed were not detected

ND = not detected at specified detection level

Attachment 5

.

Site maps showing the groundwater elevation and flow characteristics determined by ASE during April 1998, and selected VOC chemical analysis data for groundwater samples collected by ASE from wells MW-1 through MW-4.

Attachment 6

Summary table and Cal-EPA certified laboratory report of EPA 8260 and 8015 chemical analysis data for groundwater samples collected from wells MW-1 through MW-4 by ASE on April 28, 1998.

TABLE 2

						An	Concentia	lions are re	por teo in p	arts per				
Well Number	Sample Date	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Acctone	2-Butanone	4-Methyl- 2-Pentanone	Chloroform	TCFM	Vinyl Chłoride	PCE	TCE	tran E
MW-1	5/16/97 7/9/97	_1	162 89	28 17	162 61	949 116	18 ND	149 ND			17,100 20,700		4,270 1,210	
MW-I	4/28/98	ND	67.5	ND	ND	ND	ND	ND	ND	ND	5.830	ND	675	
MW-2	4/28/98	ND	ND	ND	ND	ND	ND	ND	ND	ND	283	ND	7.350	1
MW-3	4/28/98	ND	240	ND	ND	180,000	ND	ND	ND	ND	4.180	ND	6,400	
MW-4	1/6/98 4/28/98	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	20 20	22 29	240 170	22 28	4,600 7,500	
MDI.	}	5	5	5	5	20	20	20	5	5	5	5	5	4
DMCL_		1	150	700	1.750	NA	NA	NA	NA	150	0.5	5	5	

Summary of Volatile Organic Compound EPA 8260 Chemical Analysis Data for Groundwater Samples Collect Groundwater Wells MW-1, 2, 3 and 4 Installed by Frey Environmental for Standard Metals All Concentrations are reported in parts per billion (µg/l)

EXPLANATION' FOR TABLE /

¹MW-1 = groundwater samples collected on 5/16/97 and 7/9/97 were collected by Frey Environmental. Inc. - Laboratory reports were not provided

TCFM = trichtorofluromethane

DCE = dichloroethene

DCA = dichloroethane

TCE = trichloroethene

PCE = tetrachloroethene

TCA = trichloroethane

ND = not detected

MDL = method detection level for samples collected by ASE. Inc. DMCL = Title 22 Maximum Drinking Water Contaminant Level

NA = not applicable or not available For samples collected by ASE on 4/28/98 the dilution factors for the chemical analyses are as follows:

MW-1 = 12.5, MW-2 = 25, MW-3 = 25, MW-4 = 1

The actual detection levels for the sample is the MDL x dilution factor

Southland Technical Services, Inc.

Environmental Laboratories

7801 Telegraph Road, Suite L Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

Mr. Mike Marello Aqua Science Engineers 17895 Sky Park Circle, Suite E. Irvine, CA 92714

Project:Standard MetalsProject Site:378 W. 133rd Street, Los AngelesSample Date:04-28-1998Lab Job No.:G80471

Dear Mr. Marello:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 04-28-1998 and analyzed by the following EPA methods:

EPA 8260 (VOCs by GC/MS) EPA 8015M (Gasoline)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (213) 888-0728 if our Laboratory can be of further service to you.

Sincerely.

ho hay

Roger Wang, Ph. D. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

Client: Aqua Science Engi Reviews Standard Motols/2	neers	Brd Streat	Lab Jo	b No.:G80471 Water	Date Reported: Date Sampled:	()5-()4-9 ()4-28-9
Project: Standard Metals/3	/0 vv. 1. F	DA 8760A	WOCs by GC	/MS. Page 1 of	· 2)	0-7 20-2
	Ľ	Rej	porting Unit: μ	g/L(pph)		
DATE ANAL	YZED	04-29-98	04-29-98	04-29-98		
DILUTION FA	CTOR	1	1	1		
LAB SAMPI	LE I.D.		G0471-4	G0471-5		
CLIENT SAMPI	LE I.D.		TB	EB		
COMPOUND	MDL	MB				
Dichlorodifluoromethane	5	ND	ND	ND		
Chloromethane	5	ND	ND	ND		
Vinyl Chloride	5	ND	ND	ND		
Bromomethane	5	ND	ND	ND		
Chloroethane	5	ND	ND	ND		
Trichlorofluoromethane	5	ND	ND	ND		
1,1-Dichloroethene	5	ND	ND	ND		
Iodomethane	- 5	ND	ND	ND		
Methylene Chloride	5	ND	ND	ND		
trans-1,2-Dichloroethene	5	ND	ND	ND		
1.1-Dichloroethane	5	ND	ND	ND		
2,2-Dichloropropane	5	ND	ND	ND		
eis-1,2-Dichloroethene	5	ND	ND	ND		
Bromochloromethane	5	ND	ND	ND		
Chloroform	5	ND	ND	ND		
1,2-Dichloroethane	5	ND	ND	ND		
1,1,1-Trichloroethane	5	ND	ND	ND		
Carbon tetrachloride	5	ND	ND	ND		
1.1-Dichloropropene	5	ND	ND	ND		
Benzene	5	ND	ND	ND		
Trichloroethene		ND	ND	ND		
1.2-Dichloropropane	5	ND	ND	ND		
Bromodichloromethane	5	ND	ND	ND		
Dibromomethane	5	ND	ND	ND		
Trans-1.3- Dichloropropene	5	ND	ND	ND		
eis-1,3-Dichloropropene	3	ND	ND	ND		
1.1.2-Trichloroethane	3	ND	ND	ND		
1.3-Dichloropropane	3	ND	ND	ND		
Dibromochloromethane	5	ND	ND	ND		
2-Chloroethylvinyl ether	5	ND	ND	ND		
Bromotorm	5	ND	ND	ND		
Isopropylbenzene	5	ND	ND	ND		
Bromobenzene	5	ND	ND	ND		

.

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

Client: Aqua Science Engi	neers		Lab Job No.:G	80471	Date Reported:	05-04-9
	El	PA 8260A	(VOCs by GC/	MS, Page 2 of	f 2)	
		Rep	orting Unit: µg	g/L(ppb)		
COMPOUND	MDL	MB	TB	EB		
Toluene	5	ND	ND	ND		
Tetrachloroethene	5	ND	ND	ND		
1,2-Dibromoethane(EDB)	5	ND	ND	ND		
Chlorobenzene	5	ND	ND	ND		
1,1,1,2-Tetrachloroethan	5	ND	ND	ND		
Ethylbenzene	5	ND	ND	ND		
m+p-Xylenes	5	ND	ND	ND		
o-Xylene	5	ND	ND	ND		
Styrene	- 3	ND	ND	ND		
1,1,2,2-Tetrachloroethan	5	ND	ND	ND		
1,2,3-Trichloropropane	5	ND	ND	ND		
n-Propylbenzene	- 5	ND	ND	ND		
2-Chlorotoluene	5	ND	ND	ND		
4-Chlorotoluene	5	ND	ND	ND		
1 3 5-Trimethylbenzene	5	ND	ND	ND		
tert-Butylbenzene	5	ND	ND	ND		
1.2.1-Trimethylbenzene	5	ND	ND	ND		
Sec-Butylbenzene	5	ND	<u>ND</u>	ND		
L 3-Dichlorobenzene	5	ND	ND	ND		
n-leopropyltoluene	5	ND	ND	ND		
1.4 Diphlorobenzene	5	ND	ND	ND		
1.4-Dichlorobangana	5	ND	ND	ND		
Putulbongono	5		ND	ND		
n-Butyloenzene			ND ND			
1.2.4-Themotobenzene						
Chluzopropupu	5	ND	ND	ND		
Launshbrohuterliene		ND	ND ND	ND -		
Nuchthalana			ND	ND		
1 2 3 Triable reburgers	5		ND	ND		
Additional Co	mpounds					
Acetone	20					
2-Butanone (MEK)	20				_ 	
Carbon disulfide	20					
H-Methyl-2-pentanone	20	ND	ND	ND		
MIBK			NTD		_ 	
2-Hexanone	20					
Vinyl Acetate	50					
MTBE	5					

ND=Not Detected (at the specified limit)

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

			05-04-1998
Client:	Aqua Science Engineers	Lab Job No.:	G80471
Project: Project Site: Matrix: Batch No.:	Standard Metals 378 W. 133rd Street, LA Water CD29-GW1	Date Sampled: Date Received: Date Analyzed:	04-28-1998 04-28-1998 04-29-1998

EPA Method 8015M(Gasoline) Reporting Units: $\mu g/L$ (ppb)

Sample ID	Lab ID	Gasoline Range TPH*	Reporting Limit
Method Blank		ND	50
MW-1	G0471-1	3,970	50
MW-2	G0471-2	2,640	50
MW-3	G0471-3	12,600	50
ТВ	G0471-4	ND	50
ЕВ		ND	50

Gasoline Range TPH are hydrocarbons in the range of C4 - C12. *

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

Project: Standard Metals/3	78 W. 13	33rd Street,	LA Matrix	: Water	Date Sampled:	04-28-
	E	PA 8260A	(VOCs by GC	/MS, Page 1 of	2)	
		Rej	porting Unit: µ	g/L(ppb)		
DATE ANA	LYZED	04-29-98	04-29-98	04-29-98	04-29-98	
DILUTION FA	ACTOR	1	12.5	25	25	
LAB SAMP	LE I.D.		G0471-1	G0471-2	G0471-3	
CLIENT SAMP	LE I.D.		MW-1	MW-2	MW-3	
COMPOUND	MDL	MB				
Dichlorodifluoromethane	5	ND	ND	ND	ND	
Chloromethane	5	ND	ND	ND	ND	_
Vinyl Chloride	5	ND	5,830*	283	4,180	
Bromomethane	3	ND	ND	ND	ND	
Chloroethane	5	ND	ND	ND	ND	
Trichlorofluoromethane	5	ND	ND	ND	ND	
1,1-Dichloroethene	5	ND	ND	NĎ	ND	
lodomethane	5	ND	ND	ND	ND	
Methylene Chloride	5	ND	ND	ND	ND	
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	
I,1-Dichloroethane	5	ND	ND	ND	ND	
2,2-Dichloropropane	5	ND	ND	ND	ND	
cis-1,2-Dichloroethene	5	ND	7,350*	5,300*	4,630	
Bromochloromethane	5	ND	ND	ND	ND	
Chloroform	5	ND	ND	ND	ND	
1,2-Dichloroethane	5	ND	ND	ND	ND	
1,1.1-Trichloroethane	5	ND	NĎ	ND	ND	
Carbon tetrachloride	5	ND	ND	ND	ND	
1.1-Dichloropropene	5	ND	ND	ND	ND	
Benzene	5	ND	ND	ND	ND	
Trichloroethene	5	ND	675	7,350*	6,400	
1.2-Dichloropropane	5	ND	ND	ND	ND	
Bromodichloromethane	5	ND	ND	ND	ND	
Dibromomethane	5	ND	ND	ND	ND	
Trans-1.3-			ND	ND	ND	
Dichloropropene						
cis-1.3-Dichloropropene	5	ND	ND	ND		
1.1.2-Trichloroethane	5	ND	ND	ND		
1.3-Dichloropropane	5	ND	ND	ND		
Dibromochloromethane	5	ND	ND	ND		
2-Chloroethylvinyl ether	5	ND	ND	ND		
Bromotorm	5	ND	ND	ND		
Isopropylhenzene	5	ND	ND	-1 ND		
Bromobenzene	5	ND	ND	<u>ND</u>		

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

		кер	forting Unit: μ_{i}	g/ L (ppo)		
COMPOUND	MDL	MB		MW-2	MW-3	
Toluene	5	ND	67.5	ND	24()	
Tetrachloroethene	5	ND	ND	ND	ND	
1,2-Dibromoethane(EDB)	5	ND	ND	ND	ND	
Chlorobenzene	5	ND	ND	ND	ND	
1.1.1.2-Tetrachloroethan	5	ND	ND	ND	ND	
Ethylbenzene	5	ND	ND	ND	ND	
m+p-Xylenes	5	ND	ND	ND	ND	
o-Xylene	5	ND	ND	ND	ND	
Styrene	5	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethan	5	ND	ND	ND	ND	
1,2,3-Trichloropropane	5	ND	ND	ND	ND	
n-Propylbenzene	5	- ND	ND	ND	ND	
2-Chlorotoluene	5	ND	ND	ND	ND	
4-Chlorotoluene	5	ND	ND	ND	ND	
1.3.5-Trimethylbenzene	5	ND	ND	ND	ND	
tert-Butylbenzene	5	ND	ND	ND	ND .	
1.2.4-Trimethylbenzene	5	ND	ND	ND	ND	
Sec-Butylbenzene	5	ND	ND	ND	ND	
1.3-Dichlorobenzene	5	ND	ND	ND	ND	
p-Isonronyltoluene	5	ND	ND	ND	ND	
4-Dichlorobenzene	5	ND	ND	ND	ND	
2-Dichlorobenzene	5	ND	ND	ND	ND	
n-Butylbenzene	5	ND	ND	ND	ND	
1.2.4-Trichlorobenzene	3	ND	ND	ND	ND	
1.2-Dibromo-3-	5	ND	ND	ND	ND	
Chloropropane						
Hexachlorobutadiene	5	ND				
Naphthalene	5	ND				
1.2.3-Trichlorobenzene	5	ND				
Additional Co	mpounds	}				
Acetone	20	ND	ND	ND	180,000*	
2-Butanone (MEK)	20	ND	ND	ND	ND	
Carbon disulfide	2()	ND	ND	ND		
4-Methyl-2-pentanone MIBK	20	ND	ND	ND	ND	
2-Hexanone	20	ND	ND	ND	ND	
Vinyl Acetate	50	ND	ND	ND	ND	
MTBE	5	ND	ND	ND	ND	

ND=Not Detected (at the specified limit);

* Obtained with a higher dilution analysis.

7801 Telegraph Road, Suite L Montebello, CA 90640

•

Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

EPA 8260 Batch QA/QC Report

Client:	Aqua Science Engineers	Lab Job No.:	G 80471
Project: Matrix:	Standard Metals Water	Lab Sample ID:	V0473-4
Batch No:	0429-VOCW	Date Analyzed:	04-29-98
	I MS/MSD	Renort	

1. MS/MSD Report Unit: ppb

Compound	MB Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1,1- Dichloroethene	ND	20	19.4	20.5	97.0	103	5.5	30	70-130
Benzene	ND	20	18.7	20.4	93.5	102	8.7	30	70-130
Trichloro- ethene	ND	20	22.7	26.0	114	130	13.6	30	70-130
Toluene	ND	20	19.4	21.7	97.0	109	11.2	30	70-130
Chlorobenzene	ND	20	20.5	23.0	103	115	11.5	30	70-130

II. LCS Result Unit: ppb

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1,1-Dichloroethene	23.7	20	119	80-120
Benzene	18.3	20	91.5	80-120
Trichloro-ethene	20.4	20	102	80-120
Toluene	19.5	20	97.5	80-120
Chlorobenzene	19.9	20	99.5	80-120

ND: Not Detected (at the specified limit)

7801 Telegraph Road, Suite L Montebello, CA 90640

. `

Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

EPA 8015M (Gasoline) Batch QA/QC Report

Client:	Aqua Science Engineers	Lab Job No.:	G80471
Project: Matrix: Batch No:	Standard Metals Water CD29-GW1	Lab Sample ID: Date Analyzed:	LCS 04-29-98

LCS/LCSD Report Unit: ppb

Compound	MB	Spike Conc.	LCS	LCSD	LCS %Rec.	LCSD %Rec.	LCSD % RPD %Rec.		%Rec Accept. Limit
Gasoline	ND	1000	919	936	91.9	93.6	1.8	30	70-130

Southland Technical Services, Inc.

Environmental Laboratories

7801 Telegraph Road, Suite L Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

Mr. Mike Marello Aqua Science Engineers 17895 Sky Park Circle, Suite E. Irvine, CA 92714

Project:TADCOProject Site:363 W. 133rd Street, Los AngelesSample Date:04-28-1998Lab Job No.:G80472

Dear Mr. Marello:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 04-28-1998 and analyzed by the following EPA methods:

EPA 8260 (VOCs by GC/MS) EPA 8015M (Gasoline)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (213) 888-0728 if our Laboratory can be of further service to you.

Sincerely,

-Wards

Roger Wang, Ph. D. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

tebello, CA 90640						Fax (213) 888
Client: Aqua Science Engine roject: TADCO/363 W. 13	eers 3rd Stra El	eet, Los An PA 8260A (Lab Jo geles Matrix (VOCs by GC)	b No.:G80472 : Water / MS, Page 1 of	Date Reported: Date Sampled: 2)	05-04-98 04-28-98
		Rep	orting Unit: µ	g/L(ppb)		
DATE ANALY	YZED	04-29-98	04-29-98			
DILUTION FAC	TOR	1	1			
LAB SAMPLE	E I.D.		G0472-1			
CLIENT SAMPLE	E I.D.		MW-4			
COMPOUND	MDL	MB				
Dichlorodifluoromethane	5	ND	ND			
Chloromethane	5	ND	ND			
Vinyl Chloride	5	ND	170			
Bromomethane	5	ND	ND			
Chloroethane	5	ND	ND			
Frichlorofluoromethane	5	ND	29			
1.1-Dichloroethene	5	ND	10			
lodomethane	5	ND	ND			
Methylene Chloride	5	ND	ND			
trans-1.2-Dichloroethene	5	ND	110			
1.1-Dichloroethane	5	ND	5.8		:	
2.2-Dichloropropane	5	ND	ND ND			
cis-1.2-Dichloroethene	5	ND	510*			
Bromochloromethane	5	ND	ND			
Chloroform	5	ND	20			
1.2-Dichloroethane	5	ND	ND			
1.1.1-Trichloroethane	5	ND	ND			
Carbon tetrachloride	5	ND	ND			
1.1-Dichloropropene	5	ND	ND			
Benzene	5	ND	ND			
Trichloroethene	5	ND	7.500*			
1,2-Dichloropropane	5	ND	ND			
Bromodichloromethane	5	ND	ND			
Dibromomethane	3	ND	ND			
Trans-1,3- Dichloropropene	5	ND	ND			
eis-1.3-Dichloropropene	5	ND	ND			
1,1,2-Trichloroethane	5	ND	ND			
1.3-Dichloropropane	5	ND	ND			
Dibromochloromethane	5	ND	ND			L
2-Chloroethylvinyl ether	5	ND	ND			
Bromotorm	5	ND	ND			
Isopropylbenzene	- 5	ND	ND			

ND

5

Bromobenzene

ND

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

Client: Aqua Science Engi	neers		Lab Job No.:(G80472	Date Reported:	05-04-98
	El	PA 8260A	VOCs by GC	/MS, Page 2	of 2)	
		Rep	orting Unit: μ	g/L(ppb)		
COMPOUND	MDL	MB	MW-4			
Toluene	5	ND	ND			
Tetrachloroethene	5	ND	28			
1,2-Dibromoethane(EDB)	5	ND	ND			
Chlorobenzene	5	ND	ND			
1,1,1,2-Tetrachloroethan	5	ND	ND			
Ethylbenzene	5	ND	ND			
m+p-Xylenes	5	ND	ND			
o-Xylene	5	ND	ND			
Styrene	5	ND	ND]
1,1,2,2-Tetrachloroethan	3	ND	ND			
1,2,3-Trichloropropane	5	ND	ND			
n-Propylbenzene	Š	ND	ND			
2-Chlorotoluene	5	ND	ND			
4-Chlorotoluene	5	ND	ND			
1.3.5-Trimethylbenzene	5	ND	ND			
tert-Butylbenzene	5	ND	ND			
1.2.4-Trimethylbenzene	5	ND	ND			
Sec-Butylbenzene	Ś	ND	ND			
1.3-Dichlorobenzene	5	ND	ND			
p-Isopropyltoluene	5	ND	ND			
1.4-Dichlorobenzene	5	ND	ND			
1.2-Dichlorobenzene	5	ND	ND			
n-Butylbenzene	5	ND	ND			
1,2,4-Trichlorobenzene	5	ND	ND			
1.2-Dibromo-3-		ND	ND			
Chloropropane	5	RD				
Hexachlorobutadiene	5	ND	ND			
Naphthalene	5	ND	ND			
1,2,3-Trichlorobenzene	5	ND	ND			
Additional Co	mpounds	5				
Acetone	20	ND	ND			
2-Butanone (MEK)	20	ND	ND			
Carbon disulfide	20	ND	ND			
4-Methyl-2-pentanone	20	ND	ND	ļ		
MIBK						
2-Hexanone	20	ND		_		
Vinyl Acetate	50	ND	ND			
MTBE	5	ND				

* Obtained with a higher dilution analysis. ND=Not Detected (at the specified limit);

Phone (213) 888-0728 Eav (213) 888-1509

Montebello, CA 906	40		Fax (213) 888-150
			05-04-1998
Client:	Aqua Science Engineers	Lab Job No.:	G80472
Project:	TADCO		
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-28-1998
Matrix:	Water	Date Received:	04-28-1998
Batch No.:	CE04-GW1	Date Analyzed:	05-04-1998

EPA Method 8015M(Gasoline) Reporting Units: $\mu g/L$ (ppb)

Sample ID	Lab ID	Gasoline Range TPH*	Reporting Limit
Method Blank		ND	50
MW-4	G0472-4	1,800	50

Gasoline Range TPH are hydrocarbons in the range of C4 - C12. ¥

.

7801 Telegraph Road, Suite L

7801 Telegraph Road, Suite L Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

EPA 8260 Batch QA/QC Report

Client:	Aqua Science Engineers		Lab Job No.:	G80472
Project:	TADCO			
Matrix:	Water		Lab Sample ID:	V0473-4
Batch No:	0429-VOCW		Date Analyzed:	04-29-98
		I. MS/MSD Report		

Unit: ppb

Compound	MB Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1.1- Dichloroethene	ND	20	19.4	20.5	97.0	103	5.5	30	70-130
Benzene	ND	20	18.7	20.4	93.5	102	8.7	30	70-130
Trichloro- ethene	ND	20	22.7	26.0	114	130	13.6	30	70-130
Toluene	ND	20	19.4	21.7	97.0	109	11.2	30	70-130
Chlorobenzene	ND	20	20.5	23.0	103	115	11.5	30	7()-130

II. LCS Result Unit: ppb

Compound	LCS Report Value	True Value	Rec. %	Accept. Limit
1.1-Dichloroethene	23.7	20	119	80-120
Benzene	18.3	20	91.5	80-120
Trichloro-ethene	20.4	20	102	80-120
Toluene	19.5	20	97.5	80-120
Chlorobenzene	19.9	20	99.5	80-120

ND: Not Detected (at the specified limit)

7801 Telegraph Road, Suite L

. '

Client: Project:

Matrix:

Batch No:

Phone (213) 888-0728 Fax (213) 888-1509

05-04-1998

EPA 8015M (Gasoline) Batch QA/QC Report

Lab Job No.:	G80472
Lab Sample ID:	LCS
Date Analyzed:	()5-04-98

LCS/LCSD Report Unit: ppb

Compound	MB	Spike Conc.	LCS	LCSD	LCS %Rec.	LCSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
Gasoline	ND	1000	1036	850	104	85.0	19.7	30	70-130

Montebello, CA 90640

Aqua Science Engineers

TADCO

CE04-GW1

Water

CHAIN OF CUSTODY RECORD

Client Name				 مرد ،			An	alyse	es Re	ques	ted	
Address	1 ch ve	<u>rngine</u>	<u>erz , +</u> :					[L L
17895 SV. P	av Ci	r_{1}	L E	Trin	L. U.	1	a					<u> </u>
Report Attention	Phone #	<u> </u>	7	Sampled By			, ä	ล	[.		
M. Marcilla	Fax #			mm	u	H H	7	es Se				
Project No./Name	Project Site)				0	32.5	Die				12
Stil. Metalis	378	<u>iv_1</u>	33cd	St. LA		1 2 2 2	100		-1	ΙÖ		
Client	Sample	Collection	Matrix	Sample	No., type" & size of	02/8	10151	30151	118.	36		
Sample ID	Date	Time	Туре	Preserve	container	°	αο 	—	.	$ \infty$		
Mw-1	4 28	2:301m	1120	þ.	3 YUOA		X			X		(
MW-2	4/28	3. 206	1-1-0	Ø,	SXUDA	<u> </u>	X			X		
MW-23	4/28	3:55	112:0	10	37VOA		\times			X		└──┤─
TB	4 28	00:00	HO	6	24.104		\star			X		
EIB	4/28	13 07	1420	6	2×UGA		\prec			X		
							L	<u> </u>				
]									
······································												
				1								
	+		1			1						
	<u> </u>			1								
	+		<u> </u>			<u>†</u>		-				
Relinquished By Cor	mpany		Date/	Time	Received By		mpany	<u> </u>	·		*Sam	ple Conta
Relinquished By Col	ASE		0-12998	S.OO	Received By		mpany				G=G	lass Con
			<u> </u>	<u> </u>	Note: Samples	dis	carder	130 d	avs af	er resi	I SI=S	reported

STS E. L.

7801 Telegraph Road, Suite J. Montebello, CA 90640 Tel: 213-888-0728 Fax: 213-888-1509 Note: Samples are discarded 30 days after results are reported made. Hazardous samples will be returned to client or dis Distribution: WHITE with report, YELLOW to STS, PINK to co

Lab Jo

CHAIN OF CUSTODY RECORD

Lab Jol

Client Name								Analyses Requested						
Address	Sede Cir	<u>~~~</u>					â							
Report Attention	Phone #	Phone # Sampled By						ਜ਼ਿ						
M.Morell.	Fax #	Fax # m. min					10	e se	}	0				
Project No./Name	Project Site	Project Site 323 W. 133M. St. LA						Di.		$ \nabla $				
TADLO	323 1							U N	-1	V		¦⊑.		
Client Sample ID	Sample Collection		Matrix Type	Sample Preserve	size of	602/1	80151	8015	418.	SU				
Sample 10	Date				container					1				
MIN = 4	4 28	13:25)	1120_	ø	3 XUDA		$ \star $		ļ	X		<u> </u>		
						<u> </u>				ļ				
								ļ	 					
									ļ					
						1	<u> </u>	<u> </u>	ļ					
							1			<u> </u>				
	<u> </u>													
		<u> </u>								T				
		<u> </u>					1							
									<u> </u>					
			┼	<u> </u>		1		†	┼	1				
	 			 		╂──	+		<u> </u>		$\left - \right $			
		<u> </u>	<u> </u>	┨			┼──	┼──		┼──-				
			ļ		· · · · · · · · · · · · · · · · · · ·	┦	+	┣	┦					
			<u> </u>			<u> </u>			<u> </u>	<u> </u>		nle Conta		
Relinquished By Co	Dato / A.B. 98	Sime CO	STS					A=Air Bag						
Relinquished By Co	Date	Time	Received By		mpany				ST=Steel Tube					
STS E. L.			<u></u>		Note: Samples	are dis	icarde	d 30 d	ays af vill he	ter res returne	ults are ed to cli	reported ient or dis		

7801 Telegraph Road, Suite J. Montebello, CA 90640

Tel: 213-888-0728 Fax: 213-888-1509

made. Hazardous mp Distribution: WHITE with report, YELLOW to STS, PINK to cou

EXHIBIT 8

May 14, 1997

Mr. Patrick Rendon, Esq. Calvillo & Rendon 200 Oceangate, Suite 430 Long Beach, CA 90802-4323

RE: Draft Project Report for 363 West 133rd Street, Los Angeles, Ca.

Dear Mr. Rendon:

Please find enclosed the draft project report titled "Subsurface Environmental Investigation of Soil at 363 West 133rd Street, Los Angeles, California." The draft has been provided for discussion purposes only.

Please contact me at (714) 833-3667 if you have any questions regarding this project.

Sincerely,

Aqua Science Engineers, Inc.

Michael Marello, R.G. Vice President Principal Geologist

<u>CONFIDENTIAL</u> ATTORNEY/CLIENT PRIVILEGE

MAY 14, 1997

DRAFT PROJECT REPORT

SUBSURFACE ENVIRONMENTAL INVESTIGATION OF SOIL AT:

363 WEST 133RD STREET LOS ANGELES, CALIFORNIA

PREPARED FOR:

MR. PATRICK RENDON, ESQ. CALVILLO & RENDON 200 OCEANGATE, SUITE 430 LONG BEACH, CA 90802-4323

PREPARED BY:

AQUA SCIENCE ENGINEERS, INC. 17895 SKY PARK CIRCLE, SUITE. E IRVINE, CA 92714

and the state of the second states of the

TABLE OF CONTENTS

<u>sec</u>	TIONS PAGES
1.0	INTRODUCTION 1
2.0	SITE SETTING AND PROJECT BACKGROUND
3.0	GEOLOGY AND HYDROLOGY
4.0	INVESTIGATIVE METHODS.44.1 Drilling Methods.44.2 Soil Sample Collection.44.3 Chemical Analysis Methods for Soil.4
5.0	INVESTIGATIVE RESULTS
6.0	CONCLUSIONS
7.0	REPORT LIMITATIONS7
<u>Taf</u> Taf	BLES BLE 1: Summary of Chemical Analysis Data for Soil
<u>FIG</u> FIG FIG	URES URE 1: USGS Topographic Site Location Map
<u>API</u> API API	PENDICES PENDIX I: Soil Logs for Borings B28 and B29 PENDIX II: Cal-EPA Certified Laboratory Reports and Chain-of-Custody Document

1

1.0 INTRODUCTION

The following report documents the methods and results of a subsurface environmental assessment of soil conducted by Aqua Science Engineers, Inc., (ASE) at 363 W. 133rd Street, Los Angeles, California (former TADCO site, Figures 1 and 2). ASE was retained by Mr. Patrick Rendon, Esq., to perform the assessment. The purpose of the assessment was to further investigate the extent and magnitude of volatile organic chemical contamination in soil at the former TADCO site. Field work for this investigation was conducted on April 10, 1997. Previous investigative work conducted by ASE in the subject area is documented in the following reports:

- September 1, 1996, Soil Contamination Assessment Investigation Report for B.I.G./TADCO Site Located at 363 West 133rd Street, Los Angeles, California
- May 6, 1996, Subsurface Environmental Investigation of Soil at 13255 South Broadway,. Los Angeles California
- July 31, 1996, Environmental Assessment of Soil Surrounding the Removed Underground Chemical Storage Tanks at the Former TADCO Facility, 363 133rd Street, Los Angeles, California
- November 6, 1996, Demolition of Septic Tank System at the Former TADCO Site, 363 West 133rd Street, Los Angeles, California

2.0 SITE SETTING AND PROJECT BACKGROUND

2.1 Site Setting

The former TADCO site is an industrial property occupying an area of approximately one-half acre at 363 West 133rd Street, approximately 1,800 feet south of El Segundo Boulevard and 2,000 feet east of Interstate 110 (Figure 1). The former TADCO site is bounded on the north and east by industrial properties, on the south by 133rd Street, and on the west by LA Industrial Service/Standard Metals at 378 West 133rd Street. All building structures at the former TADCO site have been removed. The surface of the site has been paved with concrete.

2.2 Previous Subsurface Environmental Investigations

Previous subsurface environmental investigations have been conducted in relation to contamination discovered at the TADCO site by Environmental Resolutions, Inc., (ERI) and ASE. A relatively wide variety of chemical contaminants were discovered in soil beneath the

TADCO site by these investigations. In particular, relatively high concentrations of acetone were detected in soil samples collected between 10 and 45 feet below the ground surface (BGS) at the TADCO site. Concentrations of petroleum hydrocarbons and volatile organic compounds (halogenated and non-halogenated) have also been detected in soil to depths of 45 feet BGS. Information regarding pervious investigations are contained in the reports referenced above.

3.0 GEOLOGY AND HYDROLOGY

3.1 Regional Geology and Hydrology

The subject site is located near the southwestern end of the Rosecrans Hills near the eastern boundary of the Southwestern Block of the Los Angeles Basin. The Rosecrans Hills are the most prominent surface expression of the Newport-Inglewood Uplift in the subject site vicinity. The Newport-Inglewood Uplift has been reported to act as a barrier to groundwater flow in deep confined aquifers underlying the region. The subject site is also located within the Rosecrans Oil Field. The occurrence of petroleum in the Rosecrans Oil Field is associated with stratigraphic and structural traps.

The subject site is also located near the eastern edge of the West Coast Hydrologic Basin which extends south-southwest from the Newport-Inglewood Fault Zone to the Santa Monica Bay, and north-northwest to the Ballona Escarpment and Baldwin Hills. The shallowest known regional aquifer beneath the subject area is reported to be the Gage Aquifer located approximately 150 feet BGS. Based on the information contained in *Department of Water Resources Bulletin No. 104.* Regional deep groundwater flow in the vicinity is generally south-southwest.

3.2 Subject Site Geology and Hydrology

The 1964 Inglewood, California Quadrangle 7.5-minute U.S.G.S series topographic map indicates that the subject site is located on a plateau on the southeastern side of the Rosecrans Hills at a ground surface elevation of approximately 125 feet AMSL (Figure 1). A swale, or drainage depression, appears to extend from north to south through the middle of the former TADCO site. The drainage depression appears to receive surface waters from areas north and west of the swale. Surface waters apparently flow towards the south to 133rd Street through the drainage depression.

Los Angeles County well number 1408E is located on the corner of 122nd Street and Berendo Avenue, approximately 5,400 feet northwest of subject site. According to information provided by the County of Los Angeles Department of Hydrologic Records, the well had a depth to groundwater surface of 166.5 feet below top of well casing on May 15, 1994. The top of well casing elevation was 126.0 feet AMSL. Therefore, the groundwater surface elevation in the well was 40.5 feet below mean sea level (BMSL). The County of Los Angeles Department of Public Works Coastal Plain Deep Aquifer Groundwater Contour Map for Fall 1989 shows that deep groundwater in the vicinity of the subject site flows towards the south to southwest.

The apparent native soil types encountered during drilling by ASE beneath the subject area consisted primarily of fine sand, silty fine sands, sandy silts, and some silt and clay. What appears to be artificial fill has encountered beneath the subject area to depths between approximately 9 feet and 15 feet BGS in several borings. The artificial fill contains concrete, asphalt, glass, brick, tile and wood debris, and appears to encompass the northern 3/4 of the subject site.

Water-saturated soils are encountered at depths between 43 and 45 feet BGS beneath the site. A thin water-saturated zone has been encountered between 18 and 23 feet BGS in borings drilled in the northern portion of the site. The direction of the shallow groundwater flow, and the aerial extent of the water-bearing zones, have not been determined by this investigation or previous investigations conducted by ASE.

4.0 INVESTIGATIVE METHODS

4.0 Drilling Methods

Field activities for this investigation performed by ASE at the former TADCO site were conducted on April 10, 1997. The locations of the soil borings drilled by ASE are indicated on Figure 2. All drilling and soil sampling activities were directly supervised by a California Registered Geologist employed by Aqua Science Engineers, Inc.

Soil borings B-28 and B-29 were drilled on April 10, 1997, using a CME-75 truck-mounted drill rigs equipped with 8.25-inch diameter continuous flight, hollow stem auger. These borings were drilled to 45 feet BGS. All drilling equipment was steam cleaned before use. Soil cuttings from boring B-28 and B-29 were placed in 55 gallon DOT class 17H steel drums and stored on-site. The borings were backfilled with bentonite chips.

4.2 Soil Sample Collection

Split sets of soil samples were collected in borings B-28 and B-29 using a 1.5 inch inside diameter split spoon sampler holding pre-cleaned brass sample tubes. The split spoon sampler was washed with a non-phosphate detergent and water solution, then rinsed with clean tap water between sample collections. The sampler was driven into undisturbed soil in advance of the hollow stem auger using a hydraulic hammer. Soil samples were collected at five foot depth intervals between five feet and 45 feet BGS. One set of soil samples was secured with aluminum foil, plastic end-caps and tape. The secured samples were logged on a chain-of-custody form and then placed in an ice chest for temporary cold storage. Soil from the second tube of each sample interval was placed in Zip-Loc[™] plastic bags and examined for soil classification, general moisture content and obvious odor or staining. Soil observations were recorded on the soil boring logs (Appendix I).

4.3 Chemical Analysis Methods for Soil

Soil samples collected from borings B-28 and B-29 were submitted to Southland Technical Service Environmental Laboratory, Inc., (STS) for chemical analysis. STS is certified by Cal-EPA to perform the chemical analyses used for this project (certificate #1986). All of the samples collected from boring B-28 and B-29 were analyzed for volatile organic compounds (VOC) using EPA method 8260 (GC/MS). ASE requested analysis for seven additional volatile

organic compounds not included in the normal list of EPA 8260 compounds. These compounds were detected in soil samples from previous investigations by EPA method 8240 analysis.

5.0 INVESTIGATIVE RESULTS

5.1 Chemical Analysis Results for Soil

A summary of the chemical analyses results for the soil samples collected by ASE from borings B-28 and B-29 is provided as Table 1 attached. The Cal-EPA certified laboratory report and chain-of-custody document are provided as Appendix II.

The chemical analyses conducted on the soil samples from borings B-28 and B-29 using EPA method 8260 detected the following volatile organic compounds:

Benzene n-Butylbenzene sec-Butylbenzene tert-Butylbenzene cis-1,2-Dichloroethene trans-1,2-Dichloroethene Ethylbenzene Isopropylbenzene p-Isopropyltoluene Napthalene n-Propylbenzene Toluene Trichloroethene 1,2,4-Trimethylbenzene 1.3.5-Trimethylbenzene Vinyl Chloride m+p-Xylene o-Xylene

The soil samples collected from boring B-28 generally contained a greater number and higher concentrations of volatile organic compounds then the samples from boring B-29. Of the compounds listed above, cis-1,2-dichloroethene, naphthalene, toluene, trichloroethene and vinyl chloride were the only compounds detected in the samples from boring B-29. Vinyl chloride was not detected in any of the samples from boring B-28.

6.0 CONCLUSIONS

Based on the findings of this assessment, and previous assessments, Aqua Science Engineers concludes the following regarding subsurface environmental conditions at 363 West 133rd Street (TADCO):

- The apparent native soil types encountered during drilling by ASE beneath the subject area consisted primarily of fine sand, silty fine sands, sandy silts, and some silt and clay. What appears to be artificial fill is present in some areas beneath the subject area to depths between approximately 9 feet and 15 feet BGS. Artificial fill was identified at the location of boring B-29 from the surface to approximately eight feet BGS. Artificial fill was not identified at the location of boring B-28.
- Groundwater was encountered between 43 and 45 feet BGS beneath the site. A wet zone was encountered in boring B-28 between approximately 18 and 19 feet BGS.
- Of the two soil borings drilled for this investigation, soil samples from B-28 generally contained the greatest number and highest concentrations of detected volatile organic compounds.
- Previous reports prepared by ASE identified at least two potential sources of the relatively
 high levels and wide range of chemical contamination discovered in soil beneath the site.
 The potential sources were identified as the septic system used by TADCO and a ±12 foot
 deep concrete pit located on the LA Industrial Services/Standard Metals site. Waste
 chemicals placed in the septic system (drain pipes, septic tank and leach line) could
 potentially impact soil beneath the site. The concrete pit on the LA Industrial
 Services/Standard Metals site is identified as a "briquetter" in a Phase I report prepared by
 NATEC, Inc. Waste chemicals placed in the pit, or leaked from metal objects crushed in the
 pit, could potentially impact soil beneath the site. In addition to these sources, potential
 surface spills of chemicals at either the TADCO site or the LA Industrial Services/Standard
 Metals site could have possibly impacted soil beneath the former TADCO site.
- Fourteen of the 18 volatile organic compounds detected in the soil samples collected for this
 investigation have been detected in soil samples collected during previous investigations at
 the TADCO site. Eight of the volatile organic compounds were also detected in liquid/sludge
 samples collected from within a septic tank former located at the site (see ASE November 6,

1996 report). These chemicals were benzene, toluene, xylene, p-isoproyltoluene, naphthalene, n-propylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene and xylene.

7.0 REPORT LIMITATIONS

The project described in this report was intended to further investigate the presence of volatile organic chemical contamination in soil beneath the former TADCO site. The results of the chemical analysis conducted for this project represent conditions at the times and locations/depths at which the soil samples were collected, for the chemical parameters specified in the analytical methods employed. The chemical analysis conducted during this project were performed by independent Cal-EPA Certified Laboratories. The independent laboratories are solely responsible for the contents and conclusions of their reports.

Aqua Science Engineers, Inc.

Michae Seni

REA David M Senior Civil Engineer
TABLES

TABLE 1

													、		·	
Boring	Sample Depth (ft)	Benzene	n-Butyl- benzene	sec-Butyl-	tert-Butyl- benzene	cis-1,2 DCE	trans-1,2 DCE	Ethyl- benzene	Isopropyl- benzene	p-lsoproyl- toluene	Nanihalene	n-Propyl benzene	Tolucne	ICE_	1,2,4-Trimethyl	1,3,5-Tri benz
B-28	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	74	ND	ND	1
	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	188	ND	ND	1
	15	1,000	3,040	5,000	200	ND	ND	11,600	7,540	4,800	11,800	14,100	233	200	12,000	6
	20	60	46	ND	ND	53	32	150	76	55	100	120	83	62	476	l i
	25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	I
	30	ND	ND	ND	ND	162	18	ND	ND	ND	ND	ND	8	27	NÐ	2
	35	ND	26	104	ND	83	636	8,5	25	28	18	20	970	1,560	ND	{ !
	40	ND	ND	ND	ND	8.4	ND	ND	ND	ND	ND	ND	224	ND	ND	1
	45	ND	ND	ND	ND	118	8.5	ND	ND	ND	ND	ND	ND	187	ND	1
B-29	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	28	ND	ND	1
	10	ND	ND	ND	ND	20	ND	ND	ND	ND	66	ND	170	ND	ND	1
	15	ND	ND	ND	ND	41	ND	ND	ND	ND	17	ND	7.4	ND	ND	1
	20	ND	ND	ND	ND	47	ND	ND	ND	ND	ND	ND	35	ND	ND	1
	2.5	ND	ND	ND	ND	11	ND	DN	ND	ND	ND	ND	25	ND	ND	1
ł	30	ND	ND	ND	ND	103	ND	ND	ND	ND	ND	ND	16	7.8	ND	1
	35	ND	ND	ND	ND	192	ND	ND	ND	ND	ND	ND	18	32	ND	1
	40	ND	ND	ND	ND	12	ND	ND	ND	ND	ND	ND	49	ND	ND	1
	45	ND	ND	ND	ND	120	ND	ND	ND	ND	ND	ND	6.1	150	ND	<u>ا</u>
Method Level (N	Detection	5	5	5	5	5	5	5	5	5	5	5	5	5	5	

Summary of Chemical Analysis Data For Soil Samples Collected from Borings B-28 and B-29 at the Former TADCO Site, 363 West 133rd Sti EPA Method 8260 Compounds and Additional GC/MS Compounds - Concentrations in µg/kg (Parts Per Billion)

EXPLANATION FOR TABLE 1 DCE = Dichloroethene TCE = Trichloroethene ND = not detected at MDL

.

FIGURES

APPENDIX I

SOIL LOGS FOR BORINGS B-28 AND B-29

Aqua Science Engineers Inc.

Project Name: Former TADOO Site Project Location: 383 W. 133rd St., Los Angeles Page 1 of 2 Driller: ABC Liovin Type of Rig: CME 75 Type and Size of Auger: 8" O.D. H.S. Logged By: M. Marello, R.G.#5339 Date Drilled: 4/10/97 Chacked By: WATER AND WELL DATA Total Depth of Walt Completed: NA Well Screen Type and Diameter: NA Static Depth of Water First Encountered: 44-45 ft. Well Screen Type and Diameter: NA Static Depth of Boring: 45 ft. Total Depth of Boring: 45 ft. Type and Size of Soil Sampler: 1.5" 1.D. Split Spoon Descentron OF LITHOUSY Education: 4000 OF LITHOUSY Education: 4000 OF LITHOUSY Education: 4000 OF LITHOUSY. USE ULBORING 500 00 00 00 00 00 00 00 00 00 00 00 00	SOIL BORING LOG AND MON	IITORING WEL	L CON	STRUCTI	ON DETAILS	BORING	NO. B-28	
Driller: ABC Liovin Type of Rig: CME 75 Type and Size of Auger: 8' O.D. H.S. Logged By: Marello, R.G.R5339 Date Drilled: 4/10'97 Checked By: WATER AND WELL DATA Depth of Water First Encountered: 44-45 ft. Total Depth of Well Completed: NA Water First Encountered: 44-45 ft. Well Screen Type and Diameter: NA Static Depth of Water In Well: NA Well Screen Type and Diameter: NA Total Depth of Boring: 45 ft. Type and Size of Soll Sampler: 1.5' 1.D. Split Spoon DESCRIPTIONOF LITHOLOGY Standard Lassification, texture, relative moisture, data frace, And With Some Trace WELLBORING U.S. Soll /FOCX: SAMPLE DATA BE SCIPTION OF LITHOLOGY Standard Lassification, texture, relative moisture, data frace, And With Some Trace 10 Static Science Static Science Static Science Static Science Static Science Scien	Project Name: Former TADCO Site	Projec	ct Locatio	on: 363 W	. 133rd St., Los A	ngeles	Page 1 of 2	
Logged By: M. Marello, R.G.#5339 Date Drilled: 4/10/97 Checked By: WATER AND WELL DATA Depth of Water First Encountered: 44-45 ft. Total Depth of Well Completed: NA Static Depth of Water First Encountered: 44-45 ft. Well Screen Type and Diameter: NA Static Depth of Water first Encountered: 44-45 ft. Well Screen Type and Diameter: NA Total Depth of Boring: 45 tt. Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Boring: 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Total Depth of Water First 500/ROOK SAMPLE DAT Type and Size of Soll Sampler: 1.5" Silt and fine sand (SM), dark olive-gray, dry, no odor 10 </td <td>Driller: ABC Liovin</td> <td>Type of Rig: C</td> <td>ME 75</td> <td></td> <td>Type and Size of</td> <td>Auger: 8" (</td> <td>D.D. H.S.</td>	Driller: ABC Liovin	Type of Rig: C	ME 75		Type and Size of	Auger: 8" (D.D. H.S.	
Total Depth of Well Completed: NA Depth of Water First Encountered: 44-45 ft. Well Screen Type and Diameter: NA State Depth of Water in Well: NA Well Screen Stot Size: NA Total Depth of Boring: 45 tt. Type and Size of Soil Sampler: 1.5" LD. Split Spoon DESCHIPTION OF LITHOLOGY Total Depth of Boring: 45 tt. Type and Size of Soil Sampler: 1.5" LD. Split Spoon DESCHIPTION OF LITHOLOGY Total Depth of Water in Well: Completed: NA WELLUBORING UPEN SAMPLE DAT Type and Size of Soil Sampler: 1.5" LD. Split Spoon DESCHIPTION OF LITHOLOGY Total Depth of Water in Well: Completed: NA UPEN EDATI Type and Size of Soil Sampler: 1.5" LD. Split Spoon DESCHIPTION OF LITHOLOGY Total Depth of Water in Well: Completed: NA ODESCHIPTION OF LITHOLOGY Total Depth of Water Soil (10-0%) Add of Water Soil (25-1%) (10-0%) ODESCHIPTION OF LITHOLOGY ODESCHIPTION OF LITHOLOGY ODESCHIPTION OF LITHOLOGY	Logged By: M. Marello, R.G.#5339	Date Drilled:	4/10/97	4/10/97 Checked By:				
Depth of Water First Encountered: 44-45 ft. Well Screen Type and Diameter: NA Static Depth of Water in Well: NA Well Screen Slot Size: NA Total Depth of Boring: 45 ft. Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Image: Sold State Control of Boring: 45 ft. Type and Size of Soll Sampler: 1.5" I.D. Split Spoon Image: Sold State Control of Boring: 45 ft. Sold Rock SAMPLE DATE Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of Boring: 45 ft. Image: Sold State Control of	WATER AND WELL DATA		Total D	Total Depth of Well Completed: NA				
Static Depth of Water in Well: NA Well Screen Slot Size: NA Total Depth of Boring: 45 ft. Type and Size of Soil Sampler: 1.5" I.D. Split Spoon Image: Split Spl	Depth of Water First Encountered: 4	4-45 ft.	Well So	creen Type	and Diameter: NA	۱ ــــــــــــــــــــــــــــــــــــ		
Total Depth of Boring: 45 ft. Type and Size of Soll Sampler: 1.5" LD. Split Spoon Total Depth of Boring: 45 ft. Type and Size of Soll Sampler: 1.5" LD. Split Spoon Build WelluBORING Soll/ROCK SAMPLE DAT Boring DESCRIPTION OF LITHOLOGY Soll/BORING Soll/BORING Soll/BORING Description OF LITHOLOGY Colspan="2">Colspan="2">DESCRIPTION OF LITHOLOGY Soll/BORING Soll/BORING Soll/BORING Soll/BORING O Soll/BORING Soll/BORING Soll/BORING Soll/BORING Soll/BORING 0 Soll/BORING Soli/BORING Soli/BORING Soli/BORING Soli/BORING	Static Depth of Water in Well: NA		Well So	Well Screen Slot Size: NA				
Bit SOLUBOCK SAMPLE DATA standard classification, texture, relative moisture, definition of the standard classification, texture, relative moist, slight sout (petroleum?) odor	Total Depth of Boring: 45 ft.	Type a	Type and Size of Soil Sampler: 1.5" I.D. Split Spoon					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth in Feet Description Blow Ct. Blow Ct.	Field VOC (ppmv) (rog Log	DESCRIPTION OF LITHOLOGY standard classification, texture, relative moisture standard classification, texture, relative moisture density, stiffness, odor-staining, USCS designat And With Some Trace (40-50%) (40-25%) (25-10%)			DGY tive moisture, <u>S designation.</u> Trace (10-0%)		
	$\begin{bmatrix} 0 \\ 2 \\ 2 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12$		0 - - - - - - - - - - - - - - - - - - -	Silt and fir no odor Silt, some slightly m Silt with moist, he Wet zon Silt, sor olive-gra odor	e fine sand (SM), dar e fine sand (ML-SI oist, no odor some clay (ML-CI eavy dary oil conte te 18-19 ft. ne fine to med. sa ay, slightly moist,	rk olive-gra M), dark o L), olive-gr ent visible and, trace slight so	iy, dry, live-gray to black, ay to black, clay (ML-SM), ut (petroleum?)	

SOIL BORING LOG AND MON	SOIL BORING LOG AND MONITORING WELL CONSTRUCTION DETAILS BORING NO. B-29									
Project Name: Former TADCO Site	Projec	ct Location: 363 V	V. 133rd St., Los Angel	es Page 1 of 2						
Driller: ABC Liovin	Type of Rig: C	ME 75	E 75 Type and Size of Auger: 8" O.							
Logged By: M. Marello, R.G.#5339	Date Drilled:	4/10/97	4/10/97 Checked By:							
WATER AND WELL DATA		Total Depth of W	ell Completed: NA							
Depth of Water First Encountered: 4	3-44 ft.	Well Screen Typ	e and Diameter: NA							
Static Depth of Water in Well: NA		Well Screen Slot	Size: NA							
Total Depth of Boring: 45 ft.		Type and Size o	f Soil Sampler: 1.5" I.D.	Split Spoon						
Depth in Feet Blow Ct Interval Interval	Field VOC (ppmv) Graphic Log	tu LL standard .LL density, .tu density, .tu And .C. (40-50%	DESCRIPTION OF LIT d classification, texture stiffness, odor-staining, With Sor) (40-25%) (25-	THOLOGY , relative moisture, <u>USCS designation.</u> ne Trace 10%) (10-0%)						
$\begin{bmatrix} 0 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ -5 \\ $		0 Artifical fil dark gray slightly m 10 Clay and moist, sli -15 Med. to olive-bro	I containing silt, clay a to black, concrete debr noist silt (CL-ML), dark bro ght odor fine sand and silt, some wn, very moist, no od d clay (ML-CL), mottled moist, some black org	nd sand (CL-ML) is, no odor wn-gray to olive-gray, clay (SM-SC), or olive-tan and rust, anic "specks",						
- []]]]] ASE Form 20A		IENCE ENGINE	ERS, INC.	997 - 1 August 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 						

	OIL BORING	100	QN	NOM	TORIN	IG WEL	CO L	NSTRUCTIC	NN DETAILS	SORING N	O. B-29
Proj	ect Name: Forn	ner TAI		Site		Projec	it Loca	tion: 363 W.	133rd St. Los Ange	les F	age 2 of 2
Dril	ler: ABC Liovin				Type (of Rig: Cl	ME 75		Type and Size of Au	ger: 8" O.C). Н.S.
Log	ged By: M. Ma	rello, R	₩ Ū	5339	Date	Drilled:	4/10/9	17	Checked By:		
ţe			SOL	/BOCI	SAMP	LE DATA	ţ9		DESCRIPTION OF I	THOLOG	×
∋e∃ ni ntqeC	WELLIBORING	Description	levnətni	Blow Ct.	(ppmv) -ield VOC	Graphic Log	ni dtqaG	standard density, s And (40-50%)	classification, textu <u>tiffness, odor-stainin</u> With S (40-25%) (25	re, relativ Iq. USCS ome	e moisture, designation. Trace (10-0%)
			MM	N 10 00				Very fine s slightly mo	and and silt, trace ist to moist, no odo	ciay (SM), r	, olive-tan,
		ite chips	MM	~ ~ ~			0 M	Silt, some (some dark no odor	clay and fine sand (organic "specks", s	ML), mottle lightly moi	ed olive and tan, st to moist,
с С Ц Ц Ц Ц Ц Ц		notnad ritiw ballity	MM_	4 00 5			32 7	Silt with v slight odor	ery fine sand (ML-{	SM), olive-	-tan, moist,
4 0		Boring back		r 0 0			0 0 0 0 0	Fine sand moist to v	, some silt (SP-SM) ery moist, no odor	, olive-gra	iy,
	EOH 45 ft.		1/W	12			4 1 1 1 4 0	Water-satu Fine sand no odor	irated soil encountei I, some silt (SP), ol	red betwee live-gray, v	en 43 and 44 ft. water saturated,

APPENDIX II

CAL-EPA CERTIFIED LABORATORY REPORT FOR SOIL ANAYSES AND CHAIN OF CUSTODY DOCUMENT FOR SAMPLES COLLECTED FROM BORINGS B-28 AND B-29

Environmental Laboratories

7801 Telegraph Road, Suite J Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

04-28-1997

Mr. Mike Marello Aqua Science Engineers 17895 Sky Park Circle, Suite E. Irvine, CA 92714

Project:TADCOProject Site:363 W. 133rd Street, Los AngelesSample Date:04-10-1997Lab Job No.:G70419

Dear Mr. Marello:

Enclosed please find the analytical report for the sample(s) received by STS Environmental Laboratories on 04-10-1997 and analyzed by the following EPA methods:

EPA 8260 (Volatile Organics by GC/MS)

All analyses have met the QA/QC criteria of this laboratory.

The sample(s) arrived in good conditions (i.e., chilled, intact) and with a chain of custody record attached.

STS Environmental Laboratory is certified by CA DHS (Certificate Number 1986). Thank you for giving us the opportunity to serve you. Please feel free to call me at (213) 888-1128 if our Laboratory can be of further service to you.

Sincerely,

no who

Roger Wang, Ph. D. Laboratory Director

Enclosures

This cover letter is an integral part of this analytical report.

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

nontebeno, OA 500-			
			04-28-1997
Client: Project:	Aqua Science Engineers	Lab Job No.:	G70419
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix:	Soil	Date Received:	04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04 - 13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 1 of 3) Reporting Unit: µg/kg (ppb)

LAB SAME	PLE I.D.		G0419-1	G0419-2	G0419-3	G0419-4
CLIENT SAME	PLE I.D.		B28-5'	B28-10'	B28-15'	B28-20'
DILUTION F	ACTOR		1	1	50	2
COMPOUND	MDL	MB				
Benzene	5	ND	ND	ND	1,000	ND
Bromobenzene	5	ND	ND	ND	ND	ND
Bromochloromethane	.5	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND
Bromoform	5	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	3,040	60
sec-Butylbenzene	5	ND	ND	ND	5,000	46
tert-Butylbenzene	5	ND	ND	ND	200	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	NĎ	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	5	ND	ND	ND	ND	ND
Chloroform	5	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND
2-Chlorotoluene	5	ND	ND	ND	ND	ND
4-Chlorotoluene	5	ND	ND	ND	NĎ	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND
1,2-Dibromo-3-	5	ND	ND	ND	ND	ND
chloropropane	3	TAD				
1,2-Dibromoethane	5	ND	ND	ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	ND	ND

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

4-28-1997

Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project:	TADCO		
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix:	Soil	Date Received:	04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 2 of 3)

Reporting Unit: µg/kg (ppb)

			<u> </u>			
LAB SAMP	LE I.D.		G0419-1	G0419-2	G0419-3	G0419-4
CLIENT SAMP	LE I.D.		B28-5'	B28-10'	B28-15'	B28-20'
DILUTION FA	ACTOR		1	1	50	2
COMPOUNDMDL	MDL	MB				
1,1-Dichloroethane	5	ND	ND	ND ND	ND	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	NĎ
cis-1.2-Dichloroethene	5	ND	ND	ND	ND	53
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	32
1,2-Dichloropropane	5	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ND	ND	ND	ND	ND
2.2-Dichloropropane	5	ND	ND	ND	NĎ	ND
1,1-Dichloropropene	5	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	11,600	150
Hexachlorobutadiene	5	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	7,540	76
p-Isopropyltoluene	5	ND	ND	ND	4,800	55
Methylene-chloride	5	ND	ND	ND	ND	ND
Naphthalene	5	ND	ND	ND	11,800	100
n-Propylbenzene	5	ND	ND	ND	14,100	120
Styrene	5	ND	ND	ND	ND	ND
1,1.1,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND

Environmental Laboratories

7801 Telegraph Road, Suite J Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project: Project Site: Matrix: Batch No.:	TADCO 363 W. 133rd Street, Los Angeles Soil 0413VOCS1	Date Sampled: Date Received: Date Analyzed:	04-10-1997 04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 3 of 3) Reporting Unit: $\mu g/kg$ (ppb)

LAB SAMP	LE I.D.		G0419-1	G0419-2	G0419-3	G0419-4
CLIENT SAMP	LE I.D.		B28-5'	B28-10'	B28-15'	B28-20'
DILUTION F	ACTOR		1	1	50	2
COMPOUNDMDL	MDL	MB				
Toluene	5	ND	74	188	233	83
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	200	62
Trichlorofluoromethane	5	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	12,000	476
1,3,5-Trimethylbenzene	5	ND	ND	ND	640	96
Vinyl Chloride	5	ND	ND	ND	ND	ND
m+p-Xylenes	5	ND	ND	ND	3,470	146
o-Xylene	5	ND	ND	ND	1,050	ND
Additio	nal Con	pounds				
Acetone	50	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND
Carbon disulfide	50	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	50	ND	ND	ND	ND	ND
2-Hexanone	50	ND	ND	ND	ND	ND
Vinyl Acetate	50	ND	ND	ND	ND	ND
Methyl t-butyl ether (MTBE)	5	ND	ND	ND	ND	ND

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

Phone (213) 888-0728 7801 Telegraph Road, Suite J Fax (213) 888-1509 Montebello, CA 90640 04-28-1997

Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project: Project Site: Matrix:	TADCO 363 W. 133rd Street, Los Angeles Soil	Date Sampled: Date Received:	04-10-1997 04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 1 of 3) Reporting Unit: µg/kg (ppb)

LAB SAMP	PLE I.D.	G0419-5	G0419-6	G0419-7	G0419-8	G0419-9
CLIENT SAMP	LE I.D.	B28-25'	B28-30'	B28-35'	B28-40'	B28-45'
DILUTION F	ACTOR	1	1	1	1	1
COMPOUND	MDL					
Benzene	5	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND
Bromoform	5	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND
n-Butylbenzene	- 5	ND	ND ND	26	ND	ND
sec-Butylbenzene	5	ND	ND	104	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND
Chlorobenzene	5	NĎ	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	5	ND	NĎ	ND	ND	ND
Chloroform	5	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND
2-Chlorotoluene	5	ND	ND	ND	ND	ND
4-Chlorotoluene	5	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND
1,2-Dibromo-3-	5	ND	ND	ND	ND	ND
chloropropane	5		ND			
1,2-Dibromoethane	5	ND	ND	ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	ND	ND		ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	
Dichlorodifluoromethane	5	ND	ND	ND	ND	

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client:	Aqua Science Engineers	Lab Job No.:	G 7 0419
Project: Project Site:	IADCO 363 W 133rd Street Los Angeles	Date Sampled:	04-10-1997
Matrix:	Soil	Date Received:	04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 2 of 3)

Reporting Unit: $\mu g/kg$ (ppb)

LAB SAMP	LÊ I.D.	G0419-5	G0419-6	G0419-7	G0419-8	G0419-9
CLIENT SAMPI	LE I.D.	B28-25'	B28-30'	B28-35'	B28-40'	B28-45'
DILUTION FA	ACTOR	1	1	1	1	1
COMPOUNDMDL	MDL					
1,1-Dichloroethane	5	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	162	83	8.4	118
trans-1,2-Dichloroethene	5	ND	18	636	ND	8.5
1,2-Dichloropropane	5	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ND	ND	ND	ND	ND
2.2-Dichloropropane	5	ND	ND	ND	ND	ND
1.1-Dichloropropene	5	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	8.5	ND	ND
Hexachlorobutadiene	5	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	25	ND	ND
p-Isopropyltoluene	5	ND	ND	28	ND	ND
Methylene-chloride	5	ND	ND	ND	ND	ND
Naphthalene	5	ND	ND	18	ND	ND
n-Propylbenzene	5	ND	ND	20	ND	ND
Styrene	5	ND	ND	ND	ND	ND
1.1.1.2-Tetrachloroethane	5	ND	ND	ND	ND	ND
1.1.2.2-Tetrachloroethane	5	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND

7

Southland Technical Services, Inc.

Environmental Laboratories

7801 Telegraph Road, Suite	J
Montebello, CA 90640	

Client:	Aqua Science Engineers		
	Lab Job No.: G70419		
Project:	TADCO		
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix:	Soil	Date Received:	04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 3 of 3) Reporting Unit: μg/kg (ppb)

LAB SAMP	LE LD.	G0419-5	G0419-6	G0419-7	G0419-8	G0419-9
CLIENT SAMP	LE I.D.	B28-25'	B28-30'	B28-35'	B28-40'	B28-45'
DILUTION F	ACTOR	1	1	1	1	1
COMPOUNDMDL	MDL					
Toluene	5	13	8	970	224	ND
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND
Trichloroethene	5	ND	27	1,560	ND	187
Trichlorofluoromethane	5	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5	ND	ND	ND	ND	NĎ
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	9.4	ND	ND
Vinyl Chloride	5	ND	ND	ND	ND	ND
m+p-Xylenes	5	ND	ND	15	ND	ND
o-Xylene	5	ND	ND	ND	NĎ	ND
Additio	nal Con	pounds				
Acetone		ND	ND	ND	NĎ	ND
2-Butanone (MEK)	<u> </u>	ND	ND	ND	ND	ND
Carbon disulfide	<u> </u>	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK)		ND	ND	ND	ND	ND
2-Hexanone	}	ND	ND	ND	ND	ND
Vinyl Acetate	<u>}</u>	ND	ND	ND	NĎ	ND
Methyl t-butyl ether (MTBE)		ND	ND	ND	ND	ND

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

Fax (213) 888-1509

Phone (213) 888-0728

4-28-1997

7801 Telegraph Road, Suite J

Phone (213) 888-0728 Fax (213) 888-1509

Montebello, CA 90640			Fax (213) 888-1509
			04-28-1997
Client: Project:	Aqua Science Engineers TADCO	Lab Job No.:	G70419
Project Site: Matrix: Batch No.:	363 W. 133rd Street, Los Angeles Soil 0413VOCS1	Date Sampled: Date Received: Date Analyzed:	04-10-1997 04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 1 of 3) Reporting Unit: µg/kg (ppb)

LAB SAMP	PLE I.D.	G0419-10	G0419-11	G0419-12	G0419-13	G0419-14
CLIENT SAME	PLE I.D.	B29-5'	B29-10'	B29-15'	B29-20'	B29-25'
DILUTION F	ACTOR	1	1	1	1	1
COMPOUND	MDL					
Benzene	5	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND
Bromoform	5	ND	ND	ND	ND	ND
Bromomethane	5	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	5	ND	ND	ND	ND	ND
Chloroform	5	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND
2-Chlorotoluene	5	ND	ND	ND	ND	ND
4-Chlorotoluene	5	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND
1,2-Dibromo-3-	5			ND	ND	ND
chloropropane	5	ND				
1,2-Dibromoethane	5	ND	ND	ND	ND	ND
Dibromomethane	5	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5	ND	ND	ND	<u>ND</u>	ND

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client: Project	Aqua Science Engineers TADCO	Lab Job No.:	G70419
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix: Batch No.:	Soil 0413VOCS1	Date Received: Date Analyzed:	04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 2 of 3)

Reporting Unit: µg/kg (ppb)

LAB SAMP	LE LD.	G0419-10	G0419-11	G0419-12	G0419-13	G0419-14
CLIENT SAMP	LE I.D.	B29-5'	B29-10'	B29-15'	B29-20'	B29-25'
DILUTION FA	ACTOR	1	1	1	1	1
COMPOUNDMDL	MDL					
1,1-Dichloroethane	5	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	20	41	47	11
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	ND	ND	ND	ND	ND
1.3-Dichloropropane	5	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5	ND	ND	ND	ND	NĎ
trans-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND
Hexachlorobutadiene	5	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND
Methylene-chloride	5	ND	ND	ND	<u>ND</u>	ND
Naphthalene	5	ND	66	17	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND
Styrene	5	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND

Environmental Laboratories

7801 Telegraph Road, Suite J Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project: Project Site:	TADCO 363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix: Batch No.:	Soil 0413VOCS1	Date Received: Date Analyzed:	04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 3 of 3)

Reporting Unit: $\mu g/kg$ (ppb)

LAB SAMP	LE I.D.	G0419-10	G0419-11	G0419-12	G0419-13	G0419-14
CLIENT SAMP	LE I.D.	B29-5'	B29-10'	B29-15'	B29-20'	B29-25'
DILUTION FA	ACTOR	1	1	1	1	1
COMPOUNDMDL	MDL					
Toluene	5	28	170	7.4	35	24
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND
Vinyl Chloride	5	ND	ND	22	ND	ND
m+p-Xylenes	5	ND	ND	ND	ND	ND
o-Xylene	5	ND	ND	ND	ND	ND
Additio	nal Com	pounds				
Acetone	<u> </u>	ND	ND	ND	ND	NĎ
2-Butanone (MEK)		ND	ND	ND	ND	ND
Carbon disulfide		ND	ND	ND	ND	NĎ
4-Methyl-2-pentanone		ND	ND	ND	ND	ND
(MIBK)	L		<u></u>			
2-Hexanone	ļ	ND				ND
Vinyl Acetate		ND				
Methyl t-butyl ether (MTBE)		ND	ND	ND	ND	ND

MDL=Method Detection Limit: MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

			04-28-1997
Client: Project:	Aqua Science Engineers	Lab Job No.:	G70419
Project Site:	363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix: Batch No.:	Soil 0413VOCS1	Date Received: Date Analyzed:	04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 1 of 3)

Reporting Unit: µg/kg (ppb)

LAB SAMP	PLE I.D.		G0419-15	G0419-16	G0419-17	G0419-18
CLIENT SAMP	LE I.D.		B29-30'	B29-35'	B29-40'	B29-45'
DILUTION F	ACTOR		1	1	1	1
COMPOUND	MDL	MB				
Benzene	5	ND	ND	ND	ND	ND
Bromobenzene	5	ND	ND	ND	ND	ND
Bromochloromethane	5	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND
Bromoform	5	ND	ND	ND	ND	NĎ
Bromomethane	5	ND	ND	ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND
Carbon tetrachloride	5	ND	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND
Chloroethane	5	ND	ND	ND	ND	ND
2-Chloroethyl vinyl ether	5	ND	ND	ND	ND	ND
Chloroform	5	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND
2-Chlorotoluene	5	ND	ND	ND	ND	ND
4-Chlorotoluene	5	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND
1,2-Dibromo-3-	5	ND	ND	ND	ND	ND
chloropropane						
1,2-Dibromoethane	5	ND	ND			
Dibromomethane	5	ND	ND	ND	ND	
1,2-Dichlorobenzene	5	ND	ND	ND		
1,3-Dichlorobenzene	5	ND	ND			
1,4-Dichlorobenzene	5	ND	ND	ND	ND ND	ND
Dichlorodifluoromethane	5	ND	ND	ND		ND

7801 Telegraph Road, Suite J Montebello, CA 90640

Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project Site:	363 W, 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix: Batch No.:	Soil 0413VOCS1	Date Received: Date Analyzed:	04-10-1997 04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 2 of 3)

Reporting Unit: $\mu g/kg$ (ppb)

					and the second	
LAB SAMP	LE I.D.		G0419-15	G0419-16	G0419-17	G0419-18
CLIENT SAMP	LE I.D.		B29-30'	B29-35'	B29-40'	B29-45'
DILUTION FA	ACTOR		1	1	1	1
COMPOUNDMDL	MDL	MB				
1,1-Dichloroethane	5	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	103	192	12	120
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	15
1,2-Dichloropropane	5	ND	ND	ND	ND	ND
1,3-Dichloropropane	5	ND	ND	ND	ND	ND
2,2-Dichloropropane	5	ND	ND	ND	ND	ND
1,1-Dichloropropene	5	ND	ND	ND	ND	ND
cis-1.3-Dichloropropene	5	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	NĎ	ND	ND
Hexachlorobutadiene	5	ND	ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND
Methylene-chloride	5	ND	ND	ND	ND	ND
Naphthalene	5	ND	ND	ND	ND	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND
Styrene	5	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND

Environmental Laboratories

7801 Telegraph Road, Suite J Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

			4-28-1997
Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project: Project Site:	1ADCO 363 W. 133rd Street, Los Angeles	Date Sampled:	04-10-1997
Matrix:	Soil	Date Received:	04-10-1997
Batch No.:	0413VOCS1	Date Analyzed:	04-13-1997

EPA 8260, Volatile Organic Compounds by GC/MS (Page 3 of 3) Reporting Unit: μg/kg (ppb)

LAB SAMP	LE I.D.		G0419-15	G0419-16	G0419-17	G0419-18	
CLIENT SAMP	LE I.D.		B29-30'	B29-35'	B29-40'	B29-45'	
DILUTION FA	ACTOR		1	1	1	1	
COMPOUNDMDL	MDL	MB					
Toluene	5	ND	16	18	49	6.1	
1,2,3-Trichlorobenzene	5	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	5	ND	ND	ND	ND	ND	
1,1.1-Trichloroethane	5	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND	
Trichloroethene	5	ND	7.8	32	ND	150	
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	
1,2,3-Trichloropropane	5	ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	5	ND	ND ND	ND	ND	ND	
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	
Vinyl Chloride	5	ND	17	12	ND	24	
m+p-Xylenes	5	ND	ND	ND	ND	ND	
o-Xylene	5	ND	ND	ND	ND	ND	
Additio	nal Com	pounds					
Acetone		ND	ND	ND	ND	NĎ	
2-Butanone (MEK)		ND	ND	ND	ND	ND	
Carbon disulfide		ND	ND	ND	ND	ND	
4-Methyl-2-pentanone (MIBK)		ND	ND	ND	ND	ND	
2-Hexanone		ND	ND	ND	ND	ND	
Vinyl Acetate		ND	ND	ND	ND	ND	
Methyl t-butyl ether (MTBE)		ND	ND	ND	ND	ND	

MDL=Method Detection Limit; MB=Method Blank; ND=Not Detected(Below MDL); NA=Not Analyzed

Environmental Laboratories

7801 Telegraph Road, Suite J Montebello, CA 90640 Phone (213) 888-0728 Fax (213) 888-1509

04-28-1997

EPA 8260 Batch QA/QC Report

Client:	Aqua Science Engineers	Lab Job No.:	G70419
Project:	TADCO		
Matrix:	Soil	Lab Sampled ID:	SS0413-1
Batch No.:	0413VOCS1	Date Analyzed:	04-13-97

I. MS/MSD Report Unit: ppb

Compound	Sample Conc.	Spike Conc.	MS	MSD	MS %Rec.	MSD %Rec.	% RPD	%RPD Accept. Limit	%Rec Accept. Limit
1,1-Dichloro- ethene	ND	20	19.9	19.4	99.5	97	2.5	30	70-130
Trichloro- ethene	ND	20	17.0	17.1	85	85.5	0.6	30	70-130
Chloro- benzene	ND	20	16.7	17.4	83.5	87	87 4.1		70-130
Benzene	ND	20	17.3	17.8	86.5	89	2.8	30	70-130
Toluene	ND	20	16.6	17.7	83	88.5	6.5	30	70-130

II. LCS Result Unit: ppb

Compound	LCS Report Value	True Value	Rec.%	Accept. Limit
1,1-Dichloroethene	21.1	20	106	80-120
Trichloroethene	18.3	20	91.5	80-120
Chlorobenzene	19.0	20	95	80-120
Benzene	19.1	20	95.5	80-120
Toluene	18.2	20	91	80-120

ND: Not Detected (at the specified limit).

CHAIN OF CUSTODY RECORD

Client Name							An	alyse	es Re	quest	ed	
Address	- AST	<u>urz </u>	_									
17895 Sky Penk	<u>c Cincle</u>	<u>, Ste</u>	E, Iru	1-e			Je)				ĺ	
Report Attention	Fax #	4)833-3	667	Sampled By	mil	TE)		e	1			
Project No /Name	Project Site	2-2257	<u>468</u>	PP JXT	.fun Cr	- E	0 S Z	es	ſ	6	[
Tadio	363 W	13300	R 5+. C	03 Ange	les	020	(<u></u>	<u> </u>		1 2		
Client	Sample C	Collection	Matrix	Sample	No., type* & size of	02/8	015M	015N	18.1	27		
Sample ID	Date	Time	Туре	Preserve	container	ق 	8	α 	्ष 	Ц Ц		
E28-5'	4/10/57		sri (LXBT			<u> </u>	 _	X		
B28-101						+		<u> </u>		X		
B28-15'				ļ					<u> </u>	X		ļ
B28-20'						<u> _ </u>		<u> </u>	ļ	X		
1328-25'					L	_				X		
1328-30'				<u> </u>		_	<u> </u>	<u> </u>	<u> </u>	\times		
1328-35'						_			ļ	X		
1328-40'						1	1	 	<u> </u>	\times		<u> </u>
1328-45'				L						X		<u> </u>
R29-5'								ļ		X		ļ
1329-10'							┨			X		┨
1329-15'								_	<u> </u>	X		
1329-201								ļ		X		<u> </u>
1329-25'							┦	<u> </u>		X		
1329-30'			$ \downarrow$							<u> </u> X_		
Relinquished By / Cor	mpany		Date	Time	Received By	са /	ompany	- <i>i</i>			*Sam A≖Ai	iple Ci ir Ban
Relinquished By Con	<u>4SE</u>		14/in/9-	Time	Received By	т <u>, с</u>	<u> </u>	<u>></u>		<u> </u>	G=G ST≈	ilass (Steel 1

STS E. L.

7801 Telegraph Road, Suite J. Montebello, CA 90640 Tel: 213-888-0728 Fax: 213-888-1509 Note: Samples are discarded 30 days after results are repor made. Hazardous samples will be returned to client or Distribution: WHITE with report, YELLOW to STS, PINK to

Lab J

CHAIN OF CUSTODY RECORD

Client Name AGUS SCIENCE FOSIDERES							An	alyse	es Re	quest	ed	
Address	<u></u>						â					
Report Attention	Phone # Fax #	Phone # Fax #			,	STEX)	olíne	sel)		20		
Project No./Name	Project Site				1	20 (1	Gas	(Díe		37		
Client	Sample C	Collection	Matrix		No., type* &	2/80	15M	15M	8.1	4		
Sample ID	Date	Time	Туре	Preserve	size of container	602	80	80	41	ΕP.		
B29-35'	4/10/47		sai (IXBT					\times	· · · · · · · · · · · · · · · · · · ·	
1329-401										X		
1321-45'					4					\times		
						-						
												ļ
												<u> </u>
				<u> </u>			 		-			
				_				-				<u> </u>
						-	\vdash	+	\vdash			
				<u> </u>		1-	+					
				<u> </u>					\uparrow			
Relinquished By	Company ASE Company	<u> </u>	Date 4/10/47 Date	Time 12:30 Pm Time	Received By		mpany S " mpany	ŗς			*Sam A=A G=C ST=	iple C ir Bag 3lass (Steel
Relinquished By C	ASE		4/10/47 Date	12:30 <i>fm</i> Time	Received By		<u>S</u> " impany	r <u>S</u>	lavs af	ter resi	A=A G=C ST=	ir 別 S=e

STS E. L.

 7801 Telegraph Road, Suite J.
 Tel:
 213-888-0728

 Montebello, CA 90640
 Fax:
 213-888-1509

NOIE: Samples are made. Hazardous samples will be returned to client o Distribution: WHITE with report, YELLOW to STS, PINK to

EXHIBIT 9