
LLNL-ABS-551872, LLNL-PRES-559675  

Groundwater Resources Association of California, Fresno, CA June 13, 2012 

 
Source determination of anthropogenic NO3 in groundwater by analysis of δ15N, 
δ18O, and δ11B: A case study from San Diego County, California 
 
Gary R. Eppicha; Michael J. Singletona; Sarah K. Robertsa; Josh B. Wimpennyb; Elizabeth Derubeisc; Jean 
E. Moranc; Bradley K. Essera; Qing-zhu Yinb 

 

a  Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, 
CA 94550 

b  Department of Geology, University of California – Davis, 1 Shields Avenue, Davis, CA 94705 
c  Department of Earth and Environmental Sciences, California State University – East Bay, 25800 

Carlos Bee Boulevard, Hayward, CA 94542 
 
 
Nitrate is a major contaminant of water resources worldwide. Previous studies have used the isotopic 
composition of nitrate (δ15N, δ18O) to determine source(s) of nitrate in groundwater. Mineral fertilizer, 
animal manure, and wastewater are anthropogenic sources of nitrate with characteristic ranges of δ15N 
and δ18O values. However, the nitrate isotopic composition in animal manure and wastewater largely 
overlap, making them difficult to distinguish. In addition, denitrification causes isotopic fractionation 
that can make it difficult to determine the isotopic composition of the original source. Therefore, using 
nitrate nitrogen and oxygen isotopic compositions alone can lead to ambiguous nitrate source 
attributions for areas where animal manure and wastewater sources are co-located. Co-contaminants 
such as pharmaceutical compounds, artificial sweeteners, herbicides and pesticides, and major ions or 
trace elements in soil amendments or animal feed can help to distinguish among likely sources of 
nitrate. Another useful tracer of groundwater nitrate is the isotopic composition of dissolved boron 
(δ11B). Unlike nitrate isotopes, boron isotopes are believed to behave conservatively in surface water 
and groundwater systems, and animal manure and wastewater have significantly different δ11B 
signatures. We measured the water, nitrate, and boron isotopic composition of samples from domestic 
drinking water wells tapping shallow groundwaters collected in San Diego County under the GAMA 
Domestic Well Program. The range in δ15N is +1.7 to +30.5 ‰, while the range in δ18O for San Diego is 
+1.2 to +18.0 ‰. Some of the samples fall within the overlapping isotopic range of animal manure and 
wastewater. The range in δ11B is -0.82 to +64.38 ‰. Most samples, and particularly samples with high 
nitrate concentrations, have δ11B values greater than +20‰, typical of an animal manure nitrate source, 
or possibly, saline water of non-marine origin. Considering the contribution of both natural and 
anthropogenic sources of boron to groundwater, we demonstrate that the combined use of δ15N and 
δ11B suggest animal manure is a significant source of nitrate in the majority of groundwaters sampled in 
San Diego County. The coupled nitrate and boron isotopic analyses in the context of water isotopic and 
land-use data can be used to fingerprint nitrate sources with less ambiguity than each isotopic system in 
isolation. 
 
This work was funded by the State of California Water Board’s Groundwater Ambient Monitoring & 
Assessment (GAMA) program under the GAMA Special Studies and GAMA Domestic Well Projects, and 
was  performed under the auspices of the U.S. Department  of Energy by Lawrence Livermore National 
Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC  
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NO3 is a threat to the safety of the water supply
WHO/US EPA limit of 10 mg/L

Elevated groundwater NO3 due to anthropogenic contamination:
• NH4 fertilizer

NO f tili• NO3 fertilizer
• Human wastewater (septic)
• Animal manure

Different nitrate sources have distinct isotopic signatures
Nitrate isotopic composition (δ15N, δ18O) is useful in fingerprinting nitrate 
source

Co-contaminants can also be useful in fingerprinting nitrate source(s)

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
2

g p g ( )
• Trace organic compounds 

• (e.g., pharmaceuticals, personal care products, 
pesticides and herbicides)

• Boron isotope composition (δ11B)
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GAMA Domestic Well Project is a voluntary water quality program 
managed by the State Water Resources Control Board

• ~600,000 private domestic wells in California are not routinely monitored
• Private well owners volunteer to have their wells sampled.
• Analyses include minerals, bacteria, major anions, metals, organic 

compounds, radionuclides 
• Technical lead: State Water Board (John Borkovich)

San Diego County focus area

LLNL applies isotopic techniques to supplement Domestic Well Project
• Water (δD, δ18O): routine
• Nitrate (δ15N, δ18O): routine
• Boron (δ11B): a GAMA Special Study

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
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• 137 domestic wells sampled
• Predominantly shallow wells in quaternary alluvium and crystalline bedrock
• Results can be found in March 2010 report at:

http://www.waterboards.ca.gov/gama/docs/sdreport.pdf
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San Diego
Campo

Results from 
SWRCB San 
Diego Domestic 
Well Report, 
March 2010

LLNL-PRES-559675

20

25

Animal Animal 
manuremanure

NONO33

fertilizerfertilizerPrecipitationPrecipitation
NONO33

5

10

15

δ1
8 O

-N
O

3
(‰

)

NO3

manuremanure

WastewaterWastewater

NHNH

Soil NSoil N

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
8

-5

0

-10 -5 0 5 10 15 20 25 30 35

δ15N-NO3 (‰)

>100 mg/L

50-100 mg/L

10-50 mg/L

<10 mg/L

NHNH44

fertilizerfertilizer

LLNL-PRES-559675



LLNL‐PRES‐559675  Eppich et al. (2012)

GRAC (Fresno, CA; June 13, 2012) 5

11B10B
~19 9 % ~80 1 %

Two stable isotopes with a large (9%) mass difference. 

NATURAL19.9 % 80.1 %

Naturally-occurring element in groundwater
Common sources:
Weathering of rock
Seawater intrusion
Precipitation

ABUNDANCE

Isotopic fractionation caused by:
Evaporation and condensation

Boron bio-uptake by plants and animals
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Anthropogenic sources
•NH4, NO3 fertilizers – low B concentration
•Human wastewater – high B concentration (detergents)
•Animal manure – high B concentration (nutrient consumption)

Sorption to clay minerals

LLNL-PRES-559675

Ion exchange – boron separation
Amberlite IRA 743 boron-specific ion exchange resin
Standards SRM 951, IAEA-B-2, IAEA-B-3, and NASS-5 for QC
Chemical separations performed in batches of 20

•Total procedural duplicate of one sample per batch
•Three standards per batch

1

•Three standards per batch
•One blank per batch

δ11B measured on a Thermo Neptune MC-ICP-MS at UC-Davis
Standard-sample-standard bracketing to correct for mass bias using SRM 

951
Blank-corrections performed for each sample and standard

Instrumental wash-out was main source of blank
Analyses performed in three campaigns (July 2011 – Feb 2012)

2
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Analyses performed in three campaigns (July 2011 Feb 2012)

Treatment of measurement uncertainty
QC standards typically within 0.75 ‰ of certified values
Uncertainty of δ11B measurements presented here as ±1.5 ‰ 

3

Adapted from Lemarchand et al. (2002); Guerrot et al. (2011)
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Boron source Typical B concentration Minimum δ11B Maximum δ11B

Seawater 4.4 ppm +39.6 ‰ +39.6 ‰

Meteoric water ppb range 0 ‰ +40 ‰
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References
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Komor et al. (1997)
Eisenhut and Heumann (1997)
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Vengosh et al. (1999)
Widory et al. (2004)
Seiler et al. (2005)
Accoe et al. (2008)
Tirez et al (2010)

Crystalline 
bedrock

1-100 ppm -5 ‰ +5 ‰

Marine evaporites Up to wt. % boron +10 ‰ +20 ‰
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Boron source Typical B concentration Minimum δ11B Maximum δ11B

Mineral fertilizer Typically low -3 ‰ +25 ‰

Animal manure Moderate to high +6 ‰ +42 ‰

Wastewater High -8 ‰ +13 ‰
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Samples with highest B/Cl and 
low NO3 have lowest δ11B 

What is the source of natural boron 
in these samples?

Is it possible to resolve the 
anthropogenic boron signature in 
NO3-contaminated samples?
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The San Diego County data are consistent 
with an animal manure source of nitrate & boron
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1 Nitrate isotopic composition  – ambiguous determination of nitrate 
source

• Nitrate-δ15N and δ18O in groundwater from sampled San Diego County domestic 
wells falls within overlapping range of septic wastewater and animal manure (with 
possible denitrification)

• Can rule out NO3 fertilizer

• Unable to determine nitrate source using only nitrate isotopic data

2 Boron – natural sources

• Natural boron varies from +50 to 0 ‰

• End-member natural boron source of ~0 ‰ (possible interaction with non-marine 
evaporites

Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
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3 Anthropogenic boron

• Possible to resolve isotopic signatures of animal manure and wastewater

• High-NO3 samples in San Diego County study area consistent with an animal 
manure NO3 source.
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