A Hybrid Boosted Regression Tree Model to Predict and Visualize Nitrate Concentration Throughout the Central Valley Aquifer

Katherine M. Ransom, Bernard T. Nolan, Jon Traum, Claudia C. Faunt, Andrew M. Bell, Jo Ann M. Gronberg, David C. Wheeler, Celia Rosecrans, Bryant Jurgens, Gregory E. Schwarz, Kenneth Belitz, Sandra Eberts, George Kourakos, and Thomas Harter

Study Goals and Overview

- To map groundwater nitrate concentration "wall to wall and top to bottom"
- Gain understanding of the system
Groundwater age, field scale nitrogen input, oxidation/reduction potential Boosted Regression Trees

Nitrate in Groundwater - Sources

Natural sources (organic matter decay) contributes a minimal amount.

Nitrate in Groundwater - US

Nitrate in Groundwater - Models

Authors	Scale	Method(s)
Nolan, Hitt, and Ruddy, 2002	National	Logistic Regression
Nolan and Hitt, 2006	National	Central Valley
Nolan et al., 2014	Central Valley	Logistic Regression, Random Forest
Nolan, Fienen, and Lorenz, 2015	Boosted Regression Trees, Bayesian Networks, Artificial Neural	
Ransom et al., 2017	Central Valley	Boostworks Regression Trees

[^0]
Building on Previous Work

Hybrid Approach

- Oxidation/reduction potential
- Groundwater age
- Nitrogen loading - field scale

3D map
Predictions mapped at depth Interpolation between predictions

Machine Learning for Nitrate

Pros

- Relations need not be linear or follow a particular data distribution
- Screens large numbers of variables
- Handles missing data
- Results not affected by collinearity
- Automatically incorporates interactions and thresholds Useful for inference

Cons

Overfitting the data
Model is harder to interpret
Perceived as "black box"

Statistical Methods - Workflow

- Predictor variables attributed to wells, 145 total
- Boosted regression tree modeling
- Predictors ranked based on importance (variable reduction routine)
- Top 25 variables kept for final
- Predictions made at 17 depths, 3D map created

Measured concentrations

Well Data and Predictor Variables

EXPLANATION Nitrate concentration in groundwater, in milligrams per liter, as \mathbf{N}

- 0 to 2
- >2 to 4
- $\quad>4$ to 6
- $\quad>6$ to 8
- >8 to 10
- >10

3508 Training
wells (shown)

Shallow: 1400 wells Domestic wells $180 \mathrm{ft} / 54.9 \mathrm{~m}$ 27\% exceedance

Deep:
 2108 wells Public wells $400 \mathrm{ft} / 121.9 \mathrm{~m}$ 6\% exceedance

1662 "Hold-out" wells (not shown)

Probability of Anoxic Condition

CALIFORNIA

EXPLANATION
Probability of DO < 0.5 ppm
\square <0.15
\square 0.15-0.3
0.3-0.45
0.45-0.6
0.6-0.75
>0.75

MODFLOW/MODPATH
 Estimates of Groundwater Age with Depth

- Key component not included in previous models.
- "Proxies" such as well depth or depth to water.

Estimates from: Central Valley Hydrologic Model, Faunt, C. C. (2009).
Groundwater availability of the Central Valley Aquifer, California. Professional Paper 1766, U.S. Geological Survey.

EXPLANATION
Unsaturated zone nitrogen leaching flux to groundwater, 1975
\square

Field-Scale Nitrogen Leaching Flux - 1975

Based on nearly 200 land use types, including 60 crop types.

Available for 1945, 1960, 1975, 1990, and 2005.

CALIFORNIA

EXPLANATION
Total landscape nitrogen input, 1992 (kg)

	$<=2000$
\square	$>2000-4000$
\square	$>4000-6000$
\square	$>6000-8000$
\square	$>8000-10000$
	>10000

Statistical Methods - Software

Variable Processing

ArcGIS
ESRI

Modeling and Prediction

R Studio

Packages

- caret
- gbm
- raster
- sensitivity
- boot

3D Visualization

GEOSOFT
Oasis montaj

Statistical Methods - Boosted Regression Trees

- aka Gradient Boosting Machine
- An ensemble method: collection of many small models (boosting)
- Based on classification trees
- Each new tree built on the residuals of the previous tree (gradient)
- Randomness added by subsampling data
- Trees controlled by tuning aka metaparameters

Example Apartments Dataset

	m2.price	construction.year	surface	floor	no.rooms
1	5897	1953	25	3	1
2	1818	1992	143	9	5
3	3643	1937	56	1	2
4	3517	1995	93	7	3
5	3013	1992	144	6	5
6	5795	1926	61	6	2
7	2983	1970	127	8	5
8	2346	1985	105	8	4
9	4745	1928	145	6	6
10	4284	1949	112	9	4

Simple Regression Tree

Results - Model Performance

Training RMSE: 0.705 Training $\mathrm{R}^{2}: 0.825$

Hold-out RMSE: 1.132
Hold-out R2: 0.443

Residual Comparison

Distribution of |residual|

Results - Oasis Montaj 3D map

- To 1600 ft below ground surface
- 17 predicted layers
- Linear interpolation
- 1 m vertical resolution

Results - Predictions at Specified Depths

Secondary Results - Importance Ranking

Secondary Results - Partial Dependency Plots

Probability of Anoxic Conditions - Mn

Secondary Results - Partial Dependency Plots

Distance to River

Natural and Water Land Use, 1990s

Secondary Results - Partial Dependency Plots

Summary and Conclusions

- Mapped nitrate tended to decrease with depth
- Alluvial fans region had higher nitrate concentrations than basin subregion
- Anoxic conditions highly related to nitrate concentration
- Patterns on partial plots make intuitive sense
- Coming soon: updated national nitrate and arsenic maps

Locating High Risk Domestic Wells

- Cookie cutter national models (updated or current) for full coverage
- Use estimates from current national arsenic model (Ayotte et al., 2017)
- Develop new California specific model
- Consider multiple constituents together (multinominal BRT)?
- Nitrate, arsenic, uranium, others?
- Overlay with well locations

Questions?

Article available at:
https://www.sciencedirect.com/science/arti cle/pii/S0048969717313013?via\%3Dihub

Data raster grids available at: https://www.sciencebase.gov/catalog/item/ 58c1d920e4b014cc3a3d3b63

Appendix

Statistical Methods - Cross Validation

Metaparameters: interaction depth, shrinkage, number of trees, size of terminal nodes

CV tuning addresses over fit by limiting model complexity

Statistical Methods - Variable Reduction

Increase in Prediction Errors to Hold-out Data

Results - Prediction Intervals

199 models made with bootstrapped sets of the training data

199 predictions

 made to hold-out data
Results - Prediction Interval Width

EXPLANATION
Relative prediction interval width

	<4
$4-8$	
$8-12$	
>12	

Results - Sobol Sensitivity Indices

[^0]: Nolan, Hitt, and Ruddy, 2002. Probability of Nitrate Contamination of Recently Recharged
 Groundwaters in the Conterminous United States, Environmental Science and Technology 36 (10), 2138-2145.

 Nolan and Hitt, 2006. Vulnerability of Shallow Groundwater and Drinking-Water Wells to
 Nitrate in the United States, Environmental Science and Technology, 40 (24), 7834-7840.

