An Overview of Domestic Well Data in California's Central Valley: Opportunities for Informed Risk Assessment

Rich Pauloo, PhD Candidate Hydrologic Sciences Graduate Group, UC Davis

Graham Fogg, Alvar Escriva-Bou, Amanda Fencl, Hervé Guillon

Agenda

- Background & Motivation
- Previous work on CA domestic wells
- Ongoing Work: Online State Well Completion Report Database (OSWCR)
- Vulnerability Case Study using OSWCR data
- Online Web Application for clean, ready-to-go OSWCR data
- Towards an assessment of Central Valley domestic well vulnerability to water quality contamination
- Conclusions

Background & Motivation

AB 685: Human Right to Water:

"every human being has the right to safe, clean, affordable, and accessible water adequate for human consumption, cooking, and sanitary purposes"

[Left] Donna Johnson, 70, (L) lifts pallets of donated bottled water from the back of her truck during her daily delivery run to residents whose wells have run dry, with resident Gabriel Tapia, 31, in Porterville, California October 14, 2014. Picture taken October 14, 2014. Photograph: Reut.ers/Lucy Nicholson . [Right] One of the many emergency water tanks in the Tulare Basin, CA during the 2012-2016 drought.

Background & Motivation

- Shallow domestic wells vulnerable to:
 - non-point source pollutants:
 - nitrates (Ransom et al., 2017; Harter et al., 2012; Faunt et al., 2009; Balazs et al., 2011)
 - total dissolved solids (Pauloo, 2018 (in prep); CV-SALTS; Cismowski et al., 2006; Schoups et al., 2005; Bertoldi et al., 1991)
 - drought (Pauloo, 2018 (in prep); Lund et al., 2018; Gailey et al., 2018; London et al., 2018)
- Drought \rightarrow pumping to replace lost surface water (Hanak et al., 2011) \rightarrow groundwater levels fall \rightarrow well failure.
- Global warming → increased drought risk in California (Swain et al., 2018; Rhoades et al., 2018; Diffenbaugh et al., 2015; Cook et al., 2015) → intensification of groundwater demand to replace lost surface water.

Background & Motivation

- Shallow domestic wells vulnerable to:
 - non-point source pollutants:
 - nitrates (*Ransom et al., 2017; Harter et al., 2012; Faunt et al., 2009; Balazs et al., 2011*)
 - total dissolved solids (Pauloo, 2018 (in prep); CV-SALTS; Cismowski et al., 2006; Schoups et al., 2005; Bertoldi et al., 1991)
 - drought (*Pauloo, 2018 (in prep); Lund et al., 2018; Gailey et al., 2018; London et al., 2018)*
- Drought → pumping to replace lost surface water (Hanak et al., 2011) → groundwater levels fall → well failure.
- Global warming → increased drought risk in California (Swain et al., 2018; Rhoades et al., 2018; Diffenbaugh et al., 2015; Cook et al., 2015) → intensification of groundwater demand to replace lost surface water.

(CA-DWR, 2018)

Overarching Workshop Goal

- Needs Assessment: estimate cost of implementing SB 623 (Safe and Affordable Drinking Water Fund).
- Today we focus on domestic wells

This Presentation's Goal

- Review existing/ongoing research that informs the cost estimation of SB 623 as it pertains to *domestic well vulnerability to water quality contamination in the Central Valley (CV)*.
- Online State Well Completion Report Database (OSWCR)

Overarching Workshop Goal

- Needs Assessment: estimate the cost of SB 623 (Safe and Affordable Drinking Water Fund).
- Domestic wells

This Presentation's Goal

- Review existing/ongoing research that informs the cost estimation of SB 623 as it pertains to *domestic well vulnerability to water quality contamination in the Central Valley (CV)*.
- Online State Well Completion Report Database (OSWCR)

- Statewide Johnson and Belitz, 2015
 - 741,262 scanned OSWCR Well Completion Reports (WCR)
 - 41,671 total WCRs viewed
 - 13,557 domestic WCRs viewed
 - Statewide, 1.2 million people rely on domestic wells for drinking water (1990 US Decadal Census)
 - Likely 1.5 million by 2010.
 - 80% of wells in 3 regions:
 - Central Valley (31.6%)
 - Sierra Nevada (31.5%)
 - North Coast Range (16.6%)

(Johnson and Belitz, 2015)

8

- Basin-Scale Gailey et al., 2018
 - Tulare county domestic well failure model
 - Economic impact analysis
- Basin-Scale London et al., 2018
 - Disadvantaged unincorporated communities
 - Proximity to public water systems
- Statewide Pauloo et al., 2018 (in prep)
 - 943,469 WCRs cleaned/analyzed
 - Best estimates of statewide well count/distribution
 - Cleaned data freely accessible: ucwater.org/oswcr
 - Central Valley wide domestic well failure model
 - Drought simulation / SGMA compliance scenarios

9

(Gailey, 2018)

- Basin-Scale Gailey et al., 2018
 - Tulare count domestic well failure model
 - Economic impact analysis
- Basin-Scale London et al., 2018
 - Disadvantaged unincorporated communities
 - Proximity to public water systems
- Statewide Pauloo et al., 2018 (in prep)
 - 943,469 WCRs cleaned/analyzed
 - Best estimates of statewide well count/distribution
 - Cleaned data freely accessible: ucwater.org/oswcr
 - Central Valley wide domestic well failure model
 - Drought simulation / SGMA compliance scenarios

(London et al.., 2018)

- Basin-Scale Gailey et al., 2018
 - Tulare count domestic well failure model
 - Economic impact analysis
- Basin-Scale London et al., 2018
 - Disadvantaged unincorporated communities
 - Public water systems
- Statewide Pauloo et al., 2018 (in prep)
 - 943,469 WCRs cleaned/analyzed
 - Best estimates of statewide well count/distribution
 - Cleaned data freely accessible: <u>ucwater.org/oswcr</u>
 - Central Valley wide domestic well failure model
 - Drought simulation / SGMA compliance scenarios

(Pauloo et al., 2018) – in prep

Ongoing Work: OSWCR

Guiding Questions:

- 1. How many **active** domestic wells are in the Central Valley and where are they located?
- 2. Where are domestic wells most vulnerable?

n = 365,618

well type	n
domestic	356,618
missing	245,048
monitoring	127,296
agriculture	82,907
unused	66,220
remediation	18,146
public	14,831
test well	12,011
cathodic	5,587
industrial	5,080
other	4,914
injection	3,202
stock	1,609
SUM	943,469

2000

Q1: How many active domestic wells are in the Central Valley and where are they located? A1: Examine spatial distribution, consider retirement age, consider "missing" (undesignated) wells

Assume all wells are missing completely at random \rightarrow proportionally distribute missing well types.

Scale	cale missing well domestic type well count		adjusted dom well count	
Statewide	245,048	356,618	481,741	
Central Valley	54,316	102,123	129,201	

Actual active well count lower due to retirement.

Q1: How many active domestic wells are in the Central Valley and where are they located? A1: Examine spatial distribution, consider retirement age, consider "missing" (undesignated) wells

Assume all wells are missing completely at random \rightarrow proportionally distribute missing well types.

Scale	missing well type	domestic well count	adjusted dom well count	20% added 80% original
Statewide	245,048	356,618	481,741	
Central Valley	54,316	102,123	129,201	

Actual active well count lower due to retirement.

Q1: How many active domestic wells are in the Central Valley and where are they located? A1: Examine spatial distribution, consider retirement age, consider "missing" (undesignated) wells

Final estimates are adjusted for missing wells.

A1: Examine depth properties

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

23

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

Perforated Interval Thickness by Well Type

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

29

Top/Bottom of Perforated

Interval missing for ~50%

But Total Completed Depth

is present for nearly 100%

Use simple linear model to

Use simple linear model to

of CV data.

of samples!

impute top.

impute bottom.

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

30

Top/Bottom of Perforated

Interval missing for ~50%

But Total Completed Depth

is present for nearly 100%

Use simple linear model to

Use simple linear model to

of CV data.

of samples!

impute top.

impute bottom.

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

Top/Bottom of Perforated Interval missing for ~50% of CV data.

But Total Completed Depth is present for nearly 100% of samples!

Use simple linear model to impute bottom.

Use simple linear model to impute top.

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

Top/Bottom of Perforated Interval missing for ~50% of CV data.

But Total Completed Depth is present for nearly 100% of samples!

Use simple linear model to impute bottom.

Use simple linear model to impute top.

A1: Examine depth properties (drill depth, perforated interval thickness, top of perforated interval).

Case Study using OWCR data (3 minutes)

- Motivation: ~2,500 reported CV domestic well failures during 2012-2016 drought
- Questions:
 - 1. How would a future extended drought affect domestic well failure in California's Central Valley?
 - 2. Are well failures more associated with particular social drivers of vulnerability, like income?

Winning submission to the 2018 California Water Data Challenge: goo.gl/D5fLwY

Approach:

- Develop a Central Valley wide spatially-explicit well failure model
 - Calibrate to 2012-2016 observed failure
 - Simulate 1, 2, 3, 4 year droughts by scaling 2012-2016 drought by 0.25, 0.50, 0.75, 1.00
 - Identify economic status of populations and compare impact

SP 2011

Results: 2012-2016 drought

Results: 2012-2016 drought

Results: 2012-2016 drought

Kernel Density Residual

Density Plot of Residuals

Results: Extended drought (*t*₀ = **January 2017)**

Failures during 2012 – 2016 drought ≈ 2,500

Results: Extended drought (*t*₀ = **January 2017)**

Density (n/100 km²) 📕 0-1 📕 1-2 📕 2-3 📕 3-4 📕 5-6 📕 6-7 📕 10-11 📕 12-13 📙 13-14

Results: Extended drought (*t*₀ = **January 2017)**

Results: 2012-2016 drought SE Impact

Income Level

DAC

SDAC

Socioeconomic Status

~ 1.5 times more well failures were reported by households in disadvantaged (DAC) and severely disadvantaged (SDAC) census tracts, compared to communities at or above the Median Household Income (MHI+).

Results: 2012-2016 drought SE Impact

Socioeconomic Status

Income Leve

SDAC

Distance from Well Failure to Closest Water System

Web Application

- Download clean OSWCR data: <u>ucwater.org/oswcr/</u>
- Cleaning script: goo.gl/MthQQd
- Used by researchers, consultants at:
 - UC Davis
 - Stanford
 - Pacific Institute
 - Community Water Center
 - Tully & Young
- <u>Youtube video</u>

Interface to the CA Online State Well Completion Report Database Extract Data from a Region of Interest

44

No shapefile currently entered. Please enter a shapefile.

UCWATER Database Search About

Interface to the CA Online State Well Completion Report Database Extract Data from a Region of Interest

755 wells were found within this shapefile. Click to zoom.

Conclusion: Towards an assessment of Central Valley domestic well vulnerability to water quality contamination

Conclusions

- There are ~120,000 domestic WCRs in the Central Valley. Assuming a moderate retirement age of 25-35 years and accounting for missing well types, active well estimate is ~35,000 60,000.
- Key WCR information that informs water quality vulnerability includes: *well location (x, y),* and *top of the screened interval (z)*.
- A simple data-driven spatial/geographic approach leveraging existing datasets (e.g. OSWCR, salt, nitrate) can provide a rapid first-order estimate of the count and distribution of vulnerable domestic wells.

Thank You for your Attention!

Acknowledgements: state-led open data initiatives, Rob Gailey, Debbie Franco, Ben Breezing, Alvar Escriva Bou, Herve Guillon, Amanda Fencl, Thomas Harter, Graham Fogg, Darcy Bostic, Nisha Marwaha

Resources:

- OSWCR Exploratory Data Analysis: goo.gl/MthQQd
- 2018 California Water Data Challenge: <u>goo.gl/D5fLwY</u>
- OSCWR data download tool: <u>ucwater.org/oswcr/</u>

Statewide				
well type	n			
domestic	356,618			
missing	245,048			
monitoring	127,296			
agriculture	82,907			
unused	66,220			
remediation	18,146			
public	14,831			
test well	12,011			
cathodic	5,587			
industrial	5,080			
other	4,914			
injection	3,202			
stock	1,609			
SUM	943,469			

	State	ewide	Central Valley		
well type	n	n+missing	n	n+missing	
domestic	356,618	481,741	102,123	129,201	
monitoring	127,296	171,959	46,779	59,182	
agriculture	82,907	111,996	22,168	28,046	
unused	66,220	89,454	16,906	21,389	
remediation	18,146	24,513	3,935	4,978	
public	14,831	20,035	3,848	4,868	
test well	12,011	16,225	3,336	4,221	
cathodic	5,587	7,547	2,056	2,601	
industrial	5,080	6,862	1,501	1,899	
other	4,914	6,638	1,026	1,298	
injection	3,202	4,325	632	800	
stock	1,609	2,174	540	683	

Table 1: Count of well types across CA.

Table 2: Count of well types across CA and CV adjusted for missing wells.

Figure 1: (A) Annual count of all wells drilled in Bulletin 118 basins. (B) Same as (A), but broken down by the 4 most common well types.

Annual Count of Missing Wells

Figure 3: Annual count of well type "missing".

Figure 4: Missing and present Top of Perforated Interval data.

Figure 5: Completed Depth v Bottom of Perforated Interval. (CV-wide)

	bot v tot_completed_depth		top v bot			
Basin_Subb	β_0	β_1	r^2	β_0	β_1	r^2
5-22.14	124.9	0.63	0.65	46.97	0.5	0.49
5-22.10	-8.51	1	1	129.83	0.37	0.43
5-22.13	8.28	0.9	0.86	-9.3	0.66	0.71
5-22.12	100.1	0.52	0.56	-4.33	0.82	0.88
5-22.11	13.86	0.8	0.61	-16.83	0.66	0.51
5-22.09	25.79	0.91	0.97	-23.88	0.84	0.85
5-22.08	44.35	0.66	0.61	0.25	0.68	0.6
5-22.05	-4.15	0.99	0.93	53.25	0.57	0.31
5-22.06	62.08	0.79	0.65	-18.62	0.83	0.56
5-22.04	41.11	0.75	0.74	-6.83	0.92	0.85
5-22.03	0.11	0.97	0.94	-2.89	0.87	0.85
5-22.07	8.33	0.93	0.92	-2.17	0.85	0.87
5-22.02	27.04	0.82	0.83	-5.78	0.88	0.83
02-06	-0.27	0.94	0.97	49.83	0.14	0.18
2-05	-3.42	0.99	0.98	2.05	0.45	0.35
5-22.15	15.74	0.8	0.86	-0.08	0.84	0.89
5-22.01	40.93	0.76	0.75	37.37	0.65	0.6
2-03	11.27	0.85	0.87	1.25	0.49	0.57
5-22.16	56.56	0.74	0.66	-3.89	0.78	0.61
5-21.66	11.21	0.89	0.88	8.08	0.55	0.56
5-21.65	-5.88	0.91	0.91	22.19	0.6	0.62
5-21.67	5.43	0.9	0.91	-0.83	0.79	0.8
5-21.68	-1.53	0.88	0.85	-5.09	0.78	0.8
5-21.64	60.34	0.5	0.46	11.57	0.57	0.55
5-21.61	13.13	0.73	0.78	41.46	0.35	0.46
5-21.62	12.58	0.76	0.66	-27.29	0.95	0.75
5-21.59	-4.97	1	0.96	-6.06	0.64	0.65
5-21 58	17.02	0.88	0.81	29.77	0.53	0.54
5-21 52	10.25	0.91	0.93	24.06	0.55	0.67
5-21.51	0.02	0.99	0.96	14.97	0.74	0.76
5-21.57	-9.17	1.02	0.96	-39.64	0.88	0.77
5-21.56	-4.12	1.01	0.99	6.74	0.68	0.8
5-21.55	5.17	0.85	0.65	-0.48	0.74	0.66
5-21.54	38.19	0.6	0.72	56.12	0.15	0.12
5-21.50	-2.92	1	0.98	-8.42	0.9	0.92
5-21.53	5.64	0.93	0.93	-27.15	0.94	0.91
5-06.01	-1.76	0.99	0.98	9.38	0.78	0.85
5-06.02	0.72	0.99	1	-6.59	0.85	0.84
5-06.03	8.43	0.93	0.94	5.83	0.76	0.78
5-06.05	-5.71	0.99	0.93	-17.93	0.89	0.86
5-00.04	2.5/	0.95	0.9	-6.62	0.83	0.85
3-21.00	12.18	0.83	0.75	19.17	0.43	0.43

Table 3: Linear model coefficients and goodness of fit for top v bottom.

Don't forget!

- We've only been talking about Central Valley domestic wells!
- ~350,000 domestic wells outside of CV (including missing wells)
- Population = upwards of 1 million
- Loss of alpine snowpack **ALSO** threatens alpine granitic/volcanic aquifers
 - different water retention properties = different "breaking points" (Markovich et al., 2016)

