A drinking water vulnerability screening tool for domestic well communities

Water Equity Science Shop (WESS)

Clare Pace, MPH, PhD (UC Berkeley) Carolina Balazs, PhD (OEHHA)

Presentation Outline

- Background on the WESS
- Framing the problem
- Study Questions/Goals
- Methods
- Results
- Next steps
- Additional applications
- Questions/ Feedback

Water Equity Science Shop (WESS)

San Francisco State University

Support community organizations, research, and policy

Water Equity Science Shop (WESS)

Rachel Morello-Frosch UC Berkeley (UCB), WESS Co-lead

Carolina Balazs OEHHA, WESS Co-lead

Lara Cushing San Francisco State University, UCB, Co-lead

Clare Pace UCB, Post-doctoral researcher

Community Water Center (CWC)

Laurel Firestone CWC

Adriana Renteria CWC

Amanda Fencl CWC, UC Davis

Rob Gailey CWC, UC Davis

Framing the problem

85% of California's population relies on groundwater¹

250,000 residents in the Central Valley are exposed to nitrate levels that exceed federal safety standards²

2 million Californians are estimated to use unregulated water sources³

Significant data gap: Where are domestic well communities located? What is their water quality?

Study question/goals

Locate domestic well communities

Estimate water quality

Identify vulnerable populations

Domestic Well Screening Tool

Layers

Ban

Domestic well communities

Interpolated groundwater quality estimation

Demographics

Domestic Wells

327,265 domestic wells aggregated to 1x1 mile Public Land Survey System (PLSS) sections in CA

PLSS Sections

Source: Online system for well completion reports (OSWCR) database

Domestic wells aggregated to **PLSS** sections

Methods

Community Drinking Water systems

2,887 community water systems with geographic boundaries

Source: SDWIS Public Portal; CDPH Water Boundary Tool

CWS have 15+ service connections; SSWS have 5-14 service connections

Methods

Populated areas

403,398 Populated Census Blocks

Source: US Census, 2010

Methods

Community Water Systems (CWS)

PLSS sections with a well

Populated areas not served by a CWS or a domestic well

Results

Example Results in Tulare County

- Approximately 397,744 people (89.95%) in Tulare county are served by Community Water Systems (blue areas).
- Approximately 33,295 people (7.53%) in Tulare County live in areas with domestic wells (yellow areas).
- Approximately 11,140 people (2.52%) in Tulare county have an unknown water source (pink areas).

Results

Census Block Geography

Next steps

Completed Layers: Domestic Well Communities

Community Water Systems

Currently in Progress: Population in each water type

Next Steps

Next Steps

Chemical contaminants:	Nitrate Arsenic 1,2,3-trichloropropane (1,2,3- TCP) Hexavalent chromium (Cr(VI))
Source:	OEHHA (CalEnviroScreen 3.0)
Underlying data sources:	
Community water systems	(SWRCB) Water Quality monitoring (2005-2013)
Domestic well communities / state smalls	raw or untreated groundwater quality test results from (SWRCB) Water Quality Monitoring (2005- 2013); USGS Priority Basins well- water data from 2004-2012; GAMA 2002-2011

Groundwater quality estimation

Spring 2019

Next Steps

Demographics

Data source:	American Community Survey
	5-year estimates (2012-16)
Demographic	Median household income
measures:	
	Disadvantaged community
	status
	Education
	Race/ethnicity

Fall 2019

Additional applications for the domestic well layer

Oil and Gas activities: impact on water quality and health

- Domestic well clusters
- Stimulated fracking well
- Active oil and gas well

Identifying communities for targeted and non-targeted sampling of tap water

Integration with California's Human Right to Water

Questions and feedback

Clare Pace: <u>cpace@Berkeley.edu</u> Carolina Balazs: <u>Carolina.Balazs@oehha.ca.gov</u>

References

1. Dubrovsky NM et al. *The Quality of Our Nation's Waters—Nutrients in the Nation's Streams and Groundwater*. U.S. Geological Survey; 2010. http://pubs.usgs.gov/circ/1350/. Accessed February 3, 2016.

2. Belitz K et al. Metrics for Assessing the Quality of Groundwater Used for Public Supply, CA, USA: Equivalent-Population and Area. *Environ Sci Technol.* 2015;49(14):8330-8338. doi:10.1021/acs.est.5b00265.

3. Balazs C, Morello-Frosch R, Hubbard A, Ray I. Social Disparities in Nitrate-Contaminated Drinking Water in California's San Joaquin Valley. *Environ Health Perspect*. 2011;119(9):1272-1278. doi:10.1289/ehp.1002878

4. Online System for Well Completion Reports (OSWCR). Department of Water Resources; 2018. <u>https://civicnet.resources.ca.gov/DWR_WELLS/</u>. Accessed May 1, 2018.

5. California Public Water Supply Systems. SDWIS Version 3.21. Drinking Water Watch; 2018. <u>https://sdwis.waterboards.ca.gov/PDWW/</u>. Accessed October 2, 2018.

6. CalEnviroscreen 3.0. Update to the California communities environmental health screening tool. CalEPA, OEHHA; 2017. https://oehha.ca.gov/media/downloads/calenviroscreen/report/ces3report.pdf. Accessed June 12, 2018.

7. California Environmental Health Tracking Program's Drinking Water Systems Geographic Reporting Tool (Water Boundary Tool); 2018. http://cehtp.org/water/. Accessed October 2, 2018.

8. US Census Bureau. TIGER/Line Shapefiles. *Tabblock2010_06pophu*; 2018. <u>https://www.census.gov/geo/maps-data/data/tiger-data.html</u>. Accessed June 12, 2018.

9. Groundwater Ambient Monitoring and Assessment (GAMA) Program. Groundwater information system. California Water Boards; 2018. http://geotracker.waterboards.ca.gov/gama/gamamap/public/.

10. USGS CA GAMA-PBP Groundwater-Quality Results: Assessment and Trends. <u>https://ca.water.usgs.gov/projects/gama/water-quality-results/</u>

11. American Community Survey. US Census Bureau; 2016. https://www.census.gov/programs-surveys/acs/